1
|
Lin YJ, Liang WM, Chiou JS, Chou CH, Liu TY, Yang JS, Li TM, Fong YC, Chou IC, Lin TH, Liao CC, Huang SM, Tsai FJ. Genetic predisposition to bone mineral density and their health conditions in East Asians. J Bone Miner Res 2024; 39:929-941. [PMID: 38753886 DOI: 10.1093/jbmr/zjae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Osteoporosis, a condition defined by low BMD (typically < -2.5 SD), causes a higher fracture risk and leads to significant economic, social, and clinical impacts. Genome-wide studies mainly in Caucasians have found many genetic links to osteoporosis, fractures, and BMD, with limited research in East Asians (EAS). We investigated the genetic aspects of BMD in 86 716 individuals from the Taiwan Biobank and their causal links to health conditions within EAS. A genome-wide association study (GWAS) was conducted, followed by observational studies, polygenic risk score assessments, and genetic correlation analyses to identify associated health conditions linked to BMD. GWAS and gene-based GWAS studies identified 78 significant SNPs and 75 genes related to BMD, highlighting pathways like Hedgehog, WNT-mediated, and TGF-β. Our cross-trait linkage disequilibrium score regression analyses for BMD and osteoporosis consistently validated their genetic correlations with BMI and type 2 diabetes (T2D) in EAS. Higher BMD was linked to lower osteoporosis risk but increased BMI and T2D, whereas osteoporosis linked to lower BMI, waist circumference, hemoglobinA1c, and reduced T2D risk. Bidirectional Mendelian randomization analyses revealed that a higher BMI causally increases BMD in EAS. However, no direct causal relationships were found between BMD and T2D, or between osteoporosis and either BMI or T2D. This study identified key genetic factors for bone health in Taiwan, and revealed significant health conditions in EAS, particularly highlighting the genetic interplay between bone health and metabolic traits like T2D and BMI.
Collapse
Affiliation(s)
- Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Wen-Miin Liang
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
| | - Jian-Shiun Chiou
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
- PhD Program for Health Science and Industry, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Chen-Hsing Chou
- Department of Health Services Administration, China Medical University, Taichung 406040, Taiwan
- PhD Program for Health Science and Industry, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Ting-Yuan Liu
- Million-person precision medicine initiative, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung 406040, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin 65152, Taiwan
| | - I-Ching Chou
- Department of Pediatrics, China Medical University Children's Hospital, Taichung 404327, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
- Division of Medical Genetics, China Medical University Children's Hospital, Taichung 404327, Taiwan
- Department of Medical Laboratory Science & Biotechnology, Asia University, Taichung 413005, Taiwan
| |
Collapse
|
2
|
Hetemäki N, Robciuc A, Vihma V, Haanpää M, Hämäläinen E, Tikkanen MJ, Mikkola TS, Savolainen-Peltonen H. Adipose Tissue Sex Steroids in Postmenopausal Women with and without Menopausal Hormone Therapy. J Clin Endocrinol Metab 2024:dgae458. [PMID: 38986008 DOI: 10.1210/clinem/dgae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
CONTEXT The decrease in serum estrogens after menopause is associated with a shift from a gynoid to an android adipose tissue (AT) distribution. Menopausal hormone therapy (HT) mitigates this change and accompanying metabolic dysfunction, but its effects on AT sex steroid metabolism have not been characterized. OBJECTIVE We studied effects of HT on subcutaneous and visceral AT estrogen and androgen concentrations and metabolism in postmenopausal women. DESIGN, SETTING, PATIENTS, AND INTERVENTIONS Serum and subcutaneous and visceral AT from 63 postmenopausal women with (n=50) and without (n=13) per oral HT were analyzed for estrone, estradiol, progesterone, testosterone, androstenedione, dehydroepiandrosterone, and serum estrone sulfate using liquid chromatography-tandem mass spectrometry. Steroid sulfatase activity was measured using radiolabeled precursors. mRNA expression of genes encoding sex steroid-metabolizing enzymes and receptors was performed using real-time reverse transcription quantitative polymerase chain reaction. RESULTS HT users had 4- to 7-fold higher concentrations of estrone and estradiol in subcutaneous and visceral AT, and 30% lower testosterone in visceral AT compared to non-users. Estrogen-to-androgen ratios were 4- to 12-fold higher in AT of users compared to non-users of HT. In visceral AT, estrogen-to-androgen ratios increased with HT estradiol dose. AT to serum ratios of estrone and estradiol remained high in HT users. CONCLUSIONS Higher local estrogen to androgen ratios and high AT to serum ratios of estrogen concentrations in HT users suggest that HT may significantly influence intracrine sex steroid metabolism in AT, and these local changes could be involved in the preventive effect of HT on menopause-associated abdominal adiposity.
Collapse
Affiliation(s)
- Natalia Hetemäki
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Alexandra Robciuc
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Veera Vihma
- Department of General Practice and Primary Health Care, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Mikko Haanpää
- HUSLAB, Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Esa Hämäläinen
- Departments of Clinical Chemistry, University of Helsinki, FIN-00029 HUS, Helsinki, and University of Eastern Finland, FIN-70210, Kuopio, Finland
| | - Matti J Tikkanen
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Tomi S Mikkola
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| | - Hanna Savolainen-Peltonen
- Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, FIN-00029 HUS, Helsinki, Finland
| |
Collapse
|
3
|
Zhang X, Zhu R, Jiao Y, Simayi H, He J, Shen Z, Wang H, He J, Zhang S, Yang F. Expression profiles and gene set enrichment analysis of the transcriptomes from the cancer tissue, white adipose tissue and paracancer tissue with colorectal cancer. PeerJ 2024; 12:e17105. [PMID: 38563016 PMCID: PMC10984182 DOI: 10.7717/peerj.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide and is related to diet and obesity. Currently, crosstalk between lipid metabolism and CRC has been reported; however, the specific mechanism is not yet understood. In this study, we screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. According to the results of the biological analysis, we speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Methods We screened differentially expressed long non-coding RNAs (lncRNAs) and mRNAs from primary cancer, paracancer, and white adipose tissue of CRC patients. We screened and analyzed the genes differentially expressed between primary and paracancer tissue and between paracancer and white adipose tissue but not between primary and white adipose tissue. Results We speculated a lncRNA (MIR503HG) that may be involved in the crosstalk between CRC and lipid metabolism through exosome delivery. Conclusions In this study, the findings raise the possibility of crosstalk between lipid metabolism and CRC through the exosomal delivery of lncRNAs.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Rui Zhu
- Affiliated XiaoShan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ye Jiao
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Halizere Simayi
- Chronic Disease Research Institute, The Children’s Hospital, and National Clinical Research Center for Child Health, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jialing He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhong Shen
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Houdong Wang
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun He
- Department of Colorectal Surgery, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Suzhan Zhang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine; Zhejiang Provincial Clinical Research Center, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Khaledian B, Thibes L, Shimono Y. Adipocyte regulation of cancer stem cells. Cancer Sci 2023; 114:4134-4144. [PMID: 37622414 PMCID: PMC10637066 DOI: 10.1111/cas.15940] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Cancer stem cells (CSCs) are a highly tumorigenic subpopulation of the cancer cells within a tumor that drive tumor initiation, progression, and therapy resistance. In general, stem cell niche provides a specific microenvironment in which stem cells are present in an undifferentiated and self-renewable state. CSC niche is a specialized tumor microenvironment for CSCs which provides cues for their maintenance and propagation. However, molecular mechanisms for the CSC-niche interaction remain to be elucidated. We have revealed that adipsin (complement factor D) and its downstream effector hepatocyte growth factor are secreted from adipocytes and enhance the CSC properties in breast cancers in which tumor initiation and progression are constantly associated with the surrounding adipose tissue. Considering that obesity, characterized by excess adipose tissue, is associated with an increased risk of multiple cancers, it is reasonably speculated that adipocyte-CSC interaction is similarly involved in many types of cancers, such as pancreas, colorectal, and ovarian cancers. In this review, various molecular mechanisms by which adipocytes regulate CSCs, including secretion of adipokines, extracellular matrix production, biosynthesis of estrogen, metabolism, and exosome, are discussed. Uncovering the roles of adipocytes in the CSC niche will propose novel strategies to treat cancers, especially those whose progression is linked to obesity.
Collapse
Affiliation(s)
- Behnoush Khaledian
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Lisa Thibes
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Yohei Shimono
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
7
|
Rizk J, Sahu R, Duteil D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 2023; 199:109306. [PMID: 37634653 DOI: 10.1016/j.steroids.2023.109306] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Androgens are a class of steroid hormones primarily associated with male sexual development and physiology, but exert pleiotropic effects in either sex. They have a crucial role in various physiological processes, including the regulation of skeletal muscle and adipose tissue homeostasis. The effects of androgens are mainly mediated through the androgen receptor (AR), a ligand-activated nuclear receptor expressed in both tissues. In skeletal muscle, androgens via AR exert a multitude of effects, ranging from increased muscle mass and strength, to the regulation of muscle fiber type composition, contraction and metabolic functions. In adipose tissue, androgens influence several processes including proliferation, fat distribution, and metabolism but they display depot-specific and organism-specific effects which differ in certain context. This review further explores the potential mechanisms underlying androgen-AR signaling in skeletal muscle and adipose tissue. Understanding the roles of androgens and their receptor in skeletal muscle and adipose tissue is essential for elucidating their contributions to physiological processes, disease conditions, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joe Rizk
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Rajesh Sahu
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France
| | - Delphine Duteil
- Université de Strasbourg, CNRS, Inserm, IGBMC UMR 7104- UMR-S 1258, F-67400 Illkirch, France.
| |
Collapse
|
8
|
Sanz-Cánovas J, Ricci M, Cobos-Palacios L, López-Sampalo A, Hernández-Negrín H, Vázquez-Márquez M, Mancebo-Sevilla JJ, Álvarez-Recio E, López-Carmona MD, Pérez-Velasco MÁ, Pérez-Belmonte LM, Gómez-Huelgas R, Bernal-López MR. Effects of a New Group of Antidiabetic Drugs in Metabolic Diseases. Rev Cardiovasc Med 2023; 24:36. [PMID: 39077405 PMCID: PMC11273146 DOI: 10.31083/j.rcm2402036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 07/31/2024] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is rising in the general population. This increase leads to higher cardiovascular risk, with cardiovascular diseases being the main cause of death in diabetic patients. New therapeutic weapons for diabetes mellitus are now available. Sodium-glucose cotransporter type 2 (SGLT2) inhibitors are novel drugs that are widely used due to their strong benefit in preventing hospitalization for decompensated heart failure and renal protection, limiting the deterioration of the glomerular filtration rate, independently of the presence of diabetes mellitus. These drugs have also shown benefit in the prevention of atherosclerotic cardiovascular events and cardiovascular mortality in diabetic patients with established cardiovascular disease. On the other hand, patients with T2DM usually present a high burden of associated comorbidities. Some of these entities are arterial hypertension, dyslipidemia, hyperuricemia, obesity, non-alcoholic fatty liver disease (NAFLD), polycystic ovary syndrome (PCOS), vascular aging, respiratory diseases, or osteoporosis and fractures. Healthcare professionals should treat these patients from an integral point of view, and not manage each pathology separately. Therefore, as potential mechanisms of SGLT2 inhibitors in metabolic diseases have not been fully reviewed, we conducted this review to know the current evidence of the use and effect of SGLT2 inhibitors on these metabolic diseases.
Collapse
Affiliation(s)
- Jaime Sanz-Cánovas
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Michele Ricci
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Lidia Cobos-Palacios
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Almudena López-Sampalo
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Halbert Hernández-Negrín
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - María Vázquez-Márquez
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Juan José Mancebo-Sevilla
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Elena Álvarez-Recio
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - María Dolores López-Carmona
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Miguel Ángel Pérez-Velasco
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Luis Miguel Pérez-Belmonte
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
| | - Ricardo Gómez-Huelgas
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria-Rosa Bernal-López
- Unidad de Gestión Clínica de Medicina Interna, Hospital Regional Universitario de Málaga, Universidad de Málaga (UMA), 29010 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma Bionand), 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Ludwig M, Newton C, Pieters A, Homer NZM, Feng Li X, O'Byrne KT, Millar RP. Provocative tests with Kisspeptin-10 and GnRH set the scene for determining social status and environmental impacts on reproductive capacity in male African lions (Panthera leo). Gen Comp Endocrinol 2022; 329:114127. [PMID: 36150474 DOI: 10.1016/j.ygcen.2022.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022]
Abstract
Understanding the hypothalamic factors regulating reproduction facilitates maximising the reproductive success of breeding programmes and in the management and conservation of threatened species, including African lions. To provide insight into the physiology and pathophysiology of the hypothalamic-pituitary-gonadal reproductive axis in lions, we studied the luteinising hormone (LH) and steroid hormone responses to gonadotropin-releasing hormone (GnRH) and its upstream regulator, kisspeptin. Six young (13.3 ± 1.7 months, 56.2 ± 4.3 kg) and four adult (40.2 ± 1.4 months, 174 ± 6 kg) male lions (Ukutula Conservation Centre, South Africa) were used in this study. Lions were immobilised with a combination of medetomidine and ketamine and an intravenous catheter was placed in a jugular, cephalic or medial saphenous vein for blood sampling at 10-min intervals for 220 min. The ten-amino acid kisspeptin which has full intrinsic activity (KP-10, 1 µg/kg) and GnRH (1 µg/kg) were administered intravenously to study their effects on LH and steroid hormone plasma concentrations, measured subsequently by ELISA and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Basal LH levels were similarly low between the age groups, but testosterone and its precursor levels were higher in the adult animals. Adult lions showed a significant LH response to KP-10 (10-fold) and GnRH (11-fold) administration (p < 0.05 and P < 0.001, respectively) whereas in young lions LH increased significantly only in response to GnRH. In adults alone, testosterone and its precursors steadily increased in response to KP-10, with no significant further increase in response to GnRH. Plasma levels of glucocorticoids in response to KP-10 remained unchanged. We suggest that provocative testing of LH and steroid stimulation with kisspeptin provides a new and sensitive tool for determining reproductive status and possibly an index of exposure to stress, environmental insults such as disease, endocrine disruptors and nutritional status. 272 words.
Collapse
Affiliation(s)
- Mike Ludwig
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK; Department of Immunology, Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Claire Newton
- Department of Immunology, Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ané Pieters
- Department of Immunology, Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Natalie Z M Homer
- BHF/University Centre for Cardiovascular Science and Mass Spectrometry Core, University of Edinburgh, UK
| | - Xiao Feng Li
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Kevin T O'Byrne
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Robert P Millar
- Department of Immunology, Centre for Neuroendocrinology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|