1
|
Finn BP, Dattani MT. The molecular basis of hypoprolactinaemia. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09906-9. [PMID: 39417960 DOI: 10.1007/s11154-024-09906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Hypoprolactinaemia is an endocrinopathy which is typically encountered as part of a combined pituitary hormone deficiency picture. The vast majority of genetic causes identified to date have been in the context of congenital hypopituitarism with multiple co-existent endocrinopathies. This is primarily with its closest hormonal relation, namely growth hormone. Acquired hypoprolactinaemia is generally rare in paediatric patients, and usually occurs together with other hormonal deficiencies. Congenital hypopituitarism occurs with an incidence of 1:4,000-10,000 cases and mutations in the following transcription factors account for the majority of documented genetic causes: PROP-1, POU1F1, LHX3/4 as well as documented case reports for a smaller subset of transcription factors and other molecules implicated in lactotroph development and prolactin secretion. Isolated prolactin deficiency has been described in a number of sporadic case reports in the literature, but no cases of mutations in the gene have been described to date. A range of genetic polymorphisms affecting multiple components of the prolactin signalling pathway have been identified in the literature, ranging from RNA spliceosome mutations (RNPC3) to loss of function mutations in IGSF-1. As paediatricians gain a greater understanding of the long-term ramifications of hypoprolactinaemia in terms of metabolic syndrome, type 2 diabetes mellitus and impaired fertility, the expectation is that clinicians will measure prolactin more frequently over time. Ultimately, we will encounter further reports of hypoprolactinaemia-related clinical presentations with further genetic mutations, in turn leading to a greater insight into the molecular basis of hypoprolactinaemia in terms of signalling pathways and downstream mediators. In the interim, the greatest untapped reserve of genetic causes remains within the phenotypic spectrum of congenital hypopituitarism.
Collapse
Affiliation(s)
- Bryan Padraig Finn
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK.
| | - Mehul T Dattani
- Department of Paediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK
- Genetics and Genomic Medicine Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
| |
Collapse
|
2
|
Wu T, Duan Y, Jiang J, Gu T, Zhang P, Bi Y. A Century of Prolactin: Emerging Perspectives as a Metabolic Regulator. Diabetes Metab Res Rev 2024; 40:e3836. [PMID: 39096246 DOI: 10.1002/dmrr.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 08/05/2024]
Abstract
Prolactin, a hormone that has been studied for almost a century, has evolved from a reproductive regulator to a key player in metabolic health. Initially identified for its lactogenic role, the impact of prolactin on glucose and lipid metabolism became evident in the 1970s, leading to a paradigm shift in our understanding. Deviations in prolactin levels, including hyperprolactinaemia and hypoprolactinaemia, have been associated with adverse effects on glucose and lipid metabolism. Mechanistically, prolactin regulates metabolic homoeostasis by maintaining islet abundance, regulating the hypothalamic energy regulatory centre, balancing adipose tissue expansion, and regulating hepatic metabolism. Given the widespread use of pharmaceutical agents that affect prolactin levels, it is important to examine prolactin-related metabolic effects. Recently, a profound exploration of the intricate metabolic role of prolactin has been conducted, encompassing its rhythm-dependent regulatory influence on metabolism and its correlation with cognitive impairment associated with metabolic diseases. In this review, we highlight the role of prolactin as a metabolic regulator, summarise its metabolic effects, and discuss topics related to the association between prolactin and metabolic comorbidities.
Collapse
Affiliation(s)
- Tianyu Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yanjie Duan
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jiaxuan Jiang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Tianwei Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Pengzi Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
3
|
Mele C, Pigni S, Caputo M, Birtolo MF, Ciamparini C, Mazziotti G, Lania AGA, Marzullo P, Prodam F, Aimaretti G. Could low prolactin levels after radiotherapy predict the onset of hypopituitarism? Rev Endocr Metab Disord 2024:10.1007/s11154-024-09900-1. [PMID: 39172174 DOI: 10.1007/s11154-024-09900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Both local and external cranial radiotherapy (RT) can induce neurotoxicity and vascular damage of the hypothalamic-pituitary area, which can promote neuroendocrine alterations. While anterior pituitary insufficiency after RT has been extensively characterized, data on the effect of RT on prolactin (PRL) secretion are limited and heterogeneous, with different patterns of PRL behavior described in the literature. A progressive decline in PRL levels, reflecting a time-dependent, slowly evolving radiation-induced damage to the pituitary lactotroph cells has been reported. To date, the association between hypopituitarism and hypoprolactinemia in patients undergoing RT has not yet been fully investigated. The few available data suggest that lower PRL levels can predict an extent damage of the pituitary tissue and a higher degree of hypothalamic dysfunction. However, most studies on the effect of RT on pituitary function do not properly assess PRL secretion, as PRL deficiency is usually detected as part of hypopituitarism and not systematically investigated as an isolated disorder, which may lead to an underestimation of hypoprolactinemia after RT. In addition, the often-inadequate follow-up over a long period of time may contribute to the non-recognition of PRL deficiency after RT. Considering that hypoprolactinemia is associated with various metabolic complications, there is a need to define appropriate diagnostic and management criteria. Therefore, hypoprolactinemia should enter in the clinical investigation of patients at risk for hypopituitarism, mainly in those patients who underwent RT.
Collapse
Affiliation(s)
- Chiara Mele
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, Novara, 28100, Italy
| | - Stella Pigni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maria Francesca Birtolo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Carola Ciamparini
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gherardo Mazziotti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Andrea Gerardo Antonio Lania
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (MI), Italy
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Paolo Marzullo
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, Novara, 28100, Italy
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Gianluca Aimaretti
- Department of Translational Medicine, University of Piemonte Orientale, Via Solaroli 17, Novara, 28100, Italy.
| |
Collapse
|
4
|
Lankester J, Guarischi-Sousa R, Hilliard AT, Shere L, Husary M, Crowe S, Tsao PS, Rehkopf DH, Assimes TL. Increased BMI associated with decreased breastfeeding initiation in Million Veteran Program participants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.02.24309047. [PMID: 39006437 PMCID: PMC11245076 DOI: 10.1101/2024.07.02.24309047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Breastfeeding has been associated with maternal and infant health benefits but has been inversely associated with body mass index (BMI) prepartum. Breastfeeding and BMI are both linked to socioeconomic factors. Methods Data from parous female participants with available breastfeeding information from the Million Veteran Program cohort was included. BMI at enrollment and earliest BMI available were extracted, and polygenic scores (PGS) for BMI were calculated. We modeled breastfeeding for one month or more as a function of BMI at enrollment; earliest BMI where available pre-pregnancy; and PGS for BMI. We conducted Mendelian randomization for breastfeeding initiation using PGS as an instrumental variable. Results A higher BMI predicted a lower likelihood of breastfeeding for one month or more in all analyses. A +5 kg/m 2 BMI pre-pregnancy was associated with a 24% reduced odds of breastfeeding, and a +5 kg/m 2 genetically predicted BMI was associated with a 17% reduced odds of breastfeeding. Conclusions BMI predicts a lower likelihood of breastfeeding for one month or longer. Given the high success of breastfeeding initiation regardless of BMI in supportive environments as well as potential health benefits, patients with elevated BMI may benefit from additional postpartum breastfeeding support.
Collapse
|
5
|
Uzun I, Karaca Z, Hacioğlu A, Unluhizarci K, Kelestimur F. The diagnosis and prevalence of hypoprolactinemia in patients with panhypopituitarism and the effects on depression and sexual functions. Pituitary 2024; 27:277-286. [PMID: 38700812 DOI: 10.1007/s11102-024-01393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE We aimed to investigate the prevalence and the diagnostic criteria of hypoprolactinemia in patients with panhypopituitarism and the effects of hypoprolactinemia on depression and sexual functions. MATERIALS AND METHODS Forty-eight patients with panhypopituitarism and 20 healthy volunteers were included. Basal hormone levels were measured and a TRH stimulation test was performed. For the evaluation of sexual functions, questionnaries of Female Sexual Functional Index (FSFI) for females and International Erectile Functional Index for males were performed to the subjects. Depressive symptoms were evaluated by Beck Depression Envontory score (BDI-II). RESULTS The peak PRL response to TRH stimulation test at 5th percentile in the control group was 18.6 ng/ml in males and 41.6 ng/ml in females and accepted as the cut-offs for sufficient response of PRL. Prolactin was insufficient in 42(87.5%) patients. A basal PRL level of ≤ 5.7 ng/ml in males and 7.11 ng/ml in females was 100% specific in predicting an inadequate response to TRH stimulation test with 80% and 70% sensitivity respectively. A basal PRL level of ≥ 8.5 ng/dl in males was 100% specific and 76% sensitive, and in females a level of ≥ 15.2 ng/dl was 96% specific and 66% sensitive in predicting an adequate response to TRH. PRL deficient patients with panhypopituitarism had higher depression scores compared to the controls, lower sexual function scores in males. CONCLUSION PRL deficiency is prevalent among individuals with panhypopituitarism, with the potential to result in elevated depression scores in both sexes and impaired sexual functions in males. A basal PRL level seems to be sufficient for the diagnosis of hypoprolactinemia in routine clinical practice.
Collapse
Affiliation(s)
- Ilknur Uzun
- Faculty of Medicine, Department of Endocrinology, Erciyes University, Kayseri, Turkey
| | - Zuleyha Karaca
- Faculty of Medicine, Department of Endocrinology, Erciyes University, Kayseri, Turkey.
| | - Aysa Hacioğlu
- Faculty of Medicine, Department of Endocrinology, Erciyes University, Kayseri, Turkey
| | - Kursad Unluhizarci
- Faculty of Medicine, Department of Endocrinology, Erciyes University, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Faculty of Medicine, Department of Endocrinology, Yeditepe University, İstanbul, Turkey
| |
Collapse
|
6
|
Ken-Dror G, Fluck D, Lean MEJ, Casanueva FF, Han TS. The relationship between low prolactin and type 2 diabetes. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09886-w. [PMID: 38760578 DOI: 10.1007/s11154-024-09886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Prolactin (PRL) is secreted throughout life in men and women. At elevated levels, its physiological role in pregnancy and lactation, and pathological effects, are well known. However clinical implications of low circulating PRL are not well established. We conducted a meta-analysis to examine the relationship between low PRL levels and type 2 diabetes. Five papers included cross-sectional studies comprising 8,720 men (mean age range 51.4-60 years) and 3,429 women (49.5-61.6 years), and four papers included cohort studies comprising 2,948 men (52.1-60.0 years) and 3,203 women (49.2-60.1 years). Individuals with pregnancy, lactation and hyperprolactinemia, drugs known to alter circulating PRL levels, or pituitary diseases had been excluded. Although most studies used quartiles to categorize PRL groups for analysis, PRL cut-off values (all measured by chemiluminescence immunoassay) were variably defined between studies: the lowest PRL quartiles ranged from 3.6 ng/ml to 7.2 ng/ml in men and between 4.5 ng/ml to 8 ng/ml in women; and the highest PRL quartiles ranged from 6.9 ng/ml to 13 ng/ml in men and 9.6 ng/ml to 15.8 ng/ml in women. Type 2 diabetes was defined variably using self-reported physician's diagnosis, fasting blood glucose, oral glucose tolerance test or glycated hemoglobin (HbA1C). In cross-sectional studies, compared to individuals in the highest PRL groups (reference), those in the lowest PRL groups had greater risk of type 2 diabetes both in men: odds ratio (OR) and 95% confidence interval = 1.86 (1.56-2.22) and in women: OR = 2.15 (1.63-2.85). In cohort studies, women showed a significant association between low PRL and type 2 diabetes: OR = 1.52 (1.02-2.28) but not men: OR = 1.44 (0.46-4.57). Relatively low heterogeneity was observed (I2 = 25-38.4%) for cross-sectional studies, but higher for cohort studies (I2 = 52.8-79.7%). In conclusion, low PRL is associated with type 2 diabetes, but discrepancy between men and women in the relationship within cohort studies requires further research.
Collapse
Affiliation(s)
- Gie Ken-Dror
- Institute of Cardiovascular Research, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - David Fluck
- Department of Cardiology, Ashford and St Peter's NHS Foundation Trust, Guildford Road, Chertsey, Surrey, KT16 0PZ, UK
| | - Michael E J Lean
- Department of Human Nutrition, University of Glasgow, Glasgow, UK
| | - Felipe F Casanueva
- Department of Medicine, CIBER de Fisiopatología Obesidad y Nutricion, Instituto Salud Carlos III, SCB06/03, Santiago de Compostela University, Complejo Hospitalario Universitario de Santiago (IDIS), Santiago de Compostela, Spain
| | - Thang Sieu Han
- Institute of Cardiovascular Research, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK.
- Department of Endocrinology, Ashford and St Peter's NHS Foundation Trust, Guildford Road, Chertsey, Surrey, KT16 0PZ, UK.
| |
Collapse
|
7
|
Karaca Z, Unluhizarci K, Kelestimur F. Hypoprolactinemia. Does it matter? Redefining the hypopituitarism and return from a mumpsimus : "Absence of proof is not the proof of absence". Rev Endocr Metab Disord 2023:10.1007/s11154-023-09847-9. [PMID: 37875774 DOI: 10.1007/s11154-023-09847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Prolactin (PRL) is secreted by the lactotroph cells in the anterior pituitary gland which is under inhibitory control of dopamine. The mature human PRL has more than 300 physiological actions including lactation, reproduction, homeostasis, neuroprotection, behavior, water and electrolyte balance, immunoregulation and embryonic and fetal development. PRL is involved in the growth and development of mammary gland, preparation of the breast for lactation in the postpartum period, synthesis of milk, and maintenance of milk secretion. Abnormalities in the synthesis and secretion of PRL may result in hyperprolactinemia or hypoprolactinemia. Although hyperprolactinemia has been extensively investigated in the literature, because of the subtle or unclearly defined symptoms, hypoprolactinemia is a less-known and neglected disorder. Failure of lactation is a well-known clinical manifestation of hypoprolactinemia. Recent studies reveal that hypoprolactinemia may have some effects beyond lactation such as increased risk for metabolic abnormalities including insulin resistance, abnormal lipid profile, obesity and sexual dysfunction. Very low level of PRL is suggested to be avoided in patients receiving dopamin agonist treatment to prevent unwanted effects of hypoprolactinemia. Another important point is that hypoprolactinemia is not included in the classification of hypopituitarism. Anterior pituitary failure is traditionally classified as isolated, partial and complete (panhypopituitarism) hypopituitarism regardless of prolactin level. Therefore, there are two kinds of panhypopituitarism: panhypopituitarism with normal or high PRL level and panhypopituitarism with low PRL level. In this review, we present two personal cases, discuss the diagnosis of hypoprolactinemia, hypoprolactinemia associated clinical picture and suggest to redefine the classification of hypopituitarism.
Collapse
Affiliation(s)
- Zuleyha Karaca
- Faculty of Medicine, Department of Endocrinology Kayseri, Erciyes University, Talas/Kayseri, Turkey
| | - Kursad Unluhizarci
- Faculty of Medicine, Department of Endocrinology Kayseri, Erciyes University, Talas/Kayseri, Turkey
| | - Fahrettin Kelestimur
- Faculty of Medicine, Department of Endocrinology İstanbul, Yeditepe University, Ataşehir/İstanbul, Turkey.
| |
Collapse
|
8
|
de Oliveira JM, Dualib PM, Ferraro AA, Carvalho CRDS, Mattar R, Dib SA, de Almeida-Pititto B. Prolactin does not seem to mediate the improvement on insulin resistance markers and blood glucose levels related to breastfeeding. Front Endocrinol (Lausanne) 2023; 14:1219119. [PMID: 37711904 PMCID: PMC10499379 DOI: 10.3389/fendo.2023.1219119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide. Strategies to decrease this risk should be strongly encouraged. Lactation has been associated, for the mother, with reduction in future T2DM risk in several studies. The mechanisms behind this phenomenon, however, are poorly understood. The aims of this study were, first, to compare blood glucose levels and markers of insulin resistance (MIR) in early postpartum women with overweight/obesity according to their breastfeeding status and, second, to evaluate whether prolactin (PRL) levels could mediate improvements in these parameters. Methods The prospective study followed 95 women older than 18 years from early pregnancy for up to 60 to 180 days postpartum. All participants had a BMI > 25 kg/m2 and a singleton pregnancy. At each visit, questionnaires and clinical and biochemical evaluations were performed. Participants were divided into two groups according to the breastfeeding status as "yes" for exclusive or predominant breastfeeding, and "no" for not breastfeeding. Results Breastfeeding women (n = 44) had significantly higher PRL levels [47.8 (29.6-88.2) vs. 20.0 (12.0-33.8), p< 0.001]. They also had significantly lower fasting blood glucose levels [89.0 (8.0) vs. 93.9 (12.6) mg/dl, p = 0.04], triglycerides (TG) [92.2 (37.9) vs. 122.4 (64.4) mg/dl, p = 0.01], TG/HDL ratio [1.8 (0.8) vs. 2.4 (1.6) mg/dl, p = 0.02], TyG index [8.24 (0.4) vs. 8.52 (0.53), p = 0.005], fasting serum insulin [8.9 (6.3-11.6) vs. 11.4 (7.7-17.0), p = 0.048], and HOMA-IR [2.0 (1.3-2.7) vs. 2.6 (1.6-3.9), p = 0.025] in the postpartum period compared to the non-breastfeeding group. Groups were homogeneous in relation to prevalence of GDM, pre-gestational BMI, as well as daily caloric intake, physical activity, and weight loss at postpartum. Linear regression analysis with adjustments for confounders showed a statistically significant association of breastfeeding with fasting blood glucose [-6.37 (-10.91 to -1.83), p = 0.006], HOMA-IR [-0.27 (-0.51 to -0.04), p = 0.024], TyG index [-0.04 (-0.06 to -0.02), p = 0.001], and TG/HDL ratio [-0.25 (-0.48 to -0.01), p = 0.038]. Mediation analysis showed that PRL did not mediate these effects. Sensitivity analyses considering different cutoffs for PRL levels also did not show modification effect in the mediation analyses. Conclusion Breastfeeding was associated with improvement in glucose metabolism and MIR 60 to 180 days after birth in overweight and obese women, even when adjusted for confounders. PRL levels were not found to mediate the association between breastfeeding and improvement in MIR.
Collapse
Affiliation(s)
- Julia Martins de Oliveira
- Post-Graduation Program in Endocrinology and Metabology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Patricia Medici Dualib
- Post-Graduation Program in Endocrinology and Metabology, Universidade Federal de Sao Paulo, São Paulo, Brazil
- Department of Medicine, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | | | | | - Rosiane Mattar
- Department of Obstetrics, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Sérgio Atala Dib
- Post-Graduation Program in Endocrinology and Metabology, Universidade Federal de Sao Paulo, São Paulo, Brazil
- Department of Medicine, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Bianca de Almeida-Pititto
- Post-Graduation Program in Endocrinology and Metabology, Universidade Federal de Sao Paulo, São Paulo, Brazil
- Department of Preventive Medicine, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Epidemiological and mechanistic studies have reported relationships between blood lipids, mostly measured by traditional method in clinical settings, and gestational diabetes mellitus (GDM). Recent advances of high-throughput lipidomics techniques have made available more comprehensive lipid profiling in biological samples. This review aims to summarize evidence from prospective studies in assessing relations between blood lipids and GDM, and discuss potential underlying mechanisms. RECENT FINDINGS Mass spectrometry and nuclear magnetic resonance spectroscopy-based analytical platforms are extensively used in lipidomics research. Epidemiological studies have identified multiple novel lipidomic biomarkers that are associated with risk of GDM, such as certain types of fatty acids, glycerolipids, glycerophospholipids, sphingolipids, cholesterol, and lipoproteins. However, the findings are inconclusive mainly due to the heterogeneities in study populations, sample sizes, and analytical platforms. Mechanistic evidence indicates that abnormal lipid metabolism may be involved in the pathogenesis of GDM by impairing pancreatic β-cells and inducing insulin resistance through several etiologic pathways, such as inflammation and oxidative stress. SUMMARY Lipidomics is a powerful tool to study pathogenesis and biomarkers for GDM. Lipidomic biomarkers and pathways could help to identify women at high risk for GDM and could be potential targets for early prevention and intervention of GDM.
Collapse
Affiliation(s)
- Yi Wang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University
- Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
10
|
Zhang Z, Piro AL, Allalou A, Alexeeff SE, Dai FF, Gunderson EP, Wheeler MB. Prolactin and Maternal Metabolism in Women With a Recent GDM Pregnancy and Links to Future T2D: The SWIFT Study. J Clin Endocrinol Metab 2022; 107:2652-2665. [PMID: 35666146 PMCID: PMC9387721 DOI: 10.1210/clinem/dgac346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Prolactin is a multifaceted hormone known to regulate lactation. In women with gestational diabetes mellitus (GDM) history, intensive lactation has been associated with lower relative risk of future type 2 diabetes (T2D). However, the role of prolactin in T2D development and maternal metabolism in women with a recent GDM pregnancy has not been ascertained. OBJECTIVE We examined the relationships among prolactin, future T2D risk, and key clinical and metabolic parameters. METHODS We utilized a prospective GDM research cohort (the SWIFT study) and followed T2D onset by performing 2-hour 75-g research oral glucose tolerance test (OGTT) at study baseline (6-9 weeks postpartum) and again annually for 2 years, and also by retrieving clinical diagnoses of T2D from 2 years through 10 years of follow up from electronic medical records. Targeted metabolomics and lipidomics were applied on fasting plasma samples collected at study baseline from 2-hour 75-g research OGTTs in a nested case-control study (100 future incident T2D cases vs 100 no T2D controls). RESULTS Decreasing prolactin quartiles were associated with increased future T2D risk (adjusted odds ratio 2.48; 95% CI, 0.81-7.58; P = 0.05). In women who maintained normoglycemia during the 10-year follow-up period, higher prolactin at baseline was associated with higher insulin sensitivity (P = 0.038) and HDL-cholesterol (P = 0.01), but lower BMI (P = 0.001) and leptin (P = 0.002). Remarkably, among women who developed future T2D, prolactin was not correlated with a favorable metabolic status (all P > 0.05). Metabolomics and lipidomics showed that lower circulating prolactin strongly correlated with a T2D-high risk lipid profile, with elevated circulating neutral lipids and lower concentrations of specific phospholipids/sphingolipids. CONCLUSION In women with recent GDM pregnancy, low circulating prolactin is associated with specific clinical and metabolic parameters and lipid metabolites linked to a high risk of developing T2D.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario M5S 1A8, Canada
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, China
| | - Anthony L Piro
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | - Amina Allalou
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario M5S 1A8, Canada
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Feihan F Dai
- Correspondence: Feihan F. Dai, PhD, Department of Physiology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, M5S 1A8 Ontario, Canada.
| | - Erica P Gunderson
- Correspondence: Erica P. Gunderson, PhD, MS, MPH, Division of Research, Kaiser Permanente Northern California, 1 King’s College Circle, M5S 1A8 Oakland, CA, USA.
| | - Michael B Wheeler
- Correspondence: Michael B. Wheeler, PhD, Department of Physiology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, M5S 1A8 Ontario, Canada.
| |
Collapse
|
11
|
Macotela Y, Ruiz-Herrera X, Vázquez-Carrillo DI, Ramírez-Hernandez G, Martínez de la Escalera G, Clapp C. The beneficial metabolic actions of prolactin. Front Endocrinol (Lausanne) 2022; 13:1001703. [PMID: 36213259 PMCID: PMC9539817 DOI: 10.3389/fendo.2022.1001703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The role of prolactin (PRL) favoring metabolic homeostasis is supported by multiple preclinical and clinical studies. PRL levels are key to explaining the direction of its actions. In contrast with the negative outcomes associated with very high (>100 μg/L) and very low (<7 μg/L) PRL levels, moderately high PRL levels, both within but also above the classically considered physiological range are beneficial for metabolism and have been defined as HomeoFIT-PRL. In animal models, HomeoFIT-PRL levels counteract insulin resistance, glucose intolerance, adipose tissue hypertrophy and fatty liver; and in humans associate with reduced prevalence of insulin resistance, fatty liver, glucose intolerance, metabolic syndrome, reduced adipocyte hypertrophy, and protection from type 2 diabetes development. The beneficial actions of PRL can be explained by its positive effects on main metabolic organs including the pancreas, liver, adipose tissue, and hypothalamus. Here, we briefly review work supporting PRL as a promoter of metabolic homeostasis in rodents and humans, the PRL levels associated with metabolic protection, and the proposed mechanisms involved. Finally, we discuss the possibility of using drugs elevating PRL for the treatment of metabolic diseases.
Collapse
|
12
|
Rassie K, Giri R, Joham AE, Mousa A, Teede H. Prolactin in relation to gestational diabetes and metabolic risk in pregnancy and postpartum: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2022; 13:1069625. [PMID: 36619539 PMCID: PMC9813437 DOI: 10.3389/fendo.2022.1069625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Pre-clinical evidence suggests that prolactin has important metabolic functions in pregnancy and postpartum, in addition to lactogenic actions. OBJECTIVE To explore the relationship between prolactin and maternal metabolic outcomes in human pregnancy and postpartum, particularly in relation to gestational diabetes mellitus (GDM). DATA SOURCES MEDLINE via OVID, CINAHL plus, Embase. STUDY SELECTION Eligible studies included women who were pregnant or up to 12 months postpartum, reporting at least one maternal serum prolactin level in relation to key metabolic outcomes including GDM, glycaemic parameters, obesity, and gestational weight gain. DATA EXTRACTION Two independent reviewers extracted data. DATA SYNTHESIS Twenty-six articles were included. Meta-analysis showed no relationship between maternal prolactin levels and GDM status, with a weighted mean difference of -2.14 ng/mL (95% CI -12.54 to 8.27 ng/mL, p=0.7) between GDM and controls in early pregnancy (n=3 studies) and -3.89 ng/mL (95% CI, -15.20 to 7.41 ng/mL, p=0.5) in late pregnancy (n=11 studies). In narrative synthesis of other outcomes (due to study heterogeneity and/or lack of data), prolactin levels were not associated with maternal glycaemic or weight-related parameters during pregnancy, but in the postpartum period (particularly with lactation) a high-prolactin environment was associated with low circulating insulin and beta-cell function, and increased insulin sensitivity. CONCLUSIONS Current evidence from human studies does not clearly support a relationship between prolactin and metabolic parameters during pregnancy, including with GDM status. Elevated prolactin was associated with lower insulin and beta-cell function and higher insulin sensitivity in the post-partum period, but the direction of causality remains unclear. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/prospero/, identifier [CRD42021262771].
Collapse
Affiliation(s)
- Kate Rassie
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Departments of Endocrinology and Diabetes, Monash Health, Melbourne, VIC, Australia
| | - Rinky Giri
- Departments of Endocrinology and Diabetes, Monash Health, Melbourne, VIC, Australia
| | - Anju E. Joham
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Departments of Endocrinology and Diabetes, Monash Health, Melbourne, VIC, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Helena Teede
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Departments of Endocrinology and Diabetes, Monash Health, Melbourne, VIC, Australia
- *Correspondence: Helena Teede,
| |
Collapse
|
13
|
Glezer A, Santana MR, Bronstein MD, Donato J, Jallad RS. The interplay between prolactin and cardiovascular disease. Front Endocrinol (Lausanne) 2022; 13:1018090. [PMID: 36704037 PMCID: PMC9871591 DOI: 10.3389/fendo.2022.1018090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Hyperprolactinemia can be caused by several conditions and its effects on the hypothalamic-pituitary-gonadal axis are understood in more detail. Nevertheless, in recent decades, other metabolic effects have been studied and data pointed to a potential increased cardiovascular disease (CVD) risk. A recent study showed a decrease in total and LDL- cholesterol only in men with prolactinoma treated with dopamine agonists (DA) supporting the previous results of a population study with increased CVD risk in men harboring prolactinoma. However, other population studies did not find a correlation between prolactin (PRL) levels and CVD risk or mortality. There is also data pointing to an increase in high-density lipoprotein levels, and decreases in triglycerides, carotid-intima-media thickness, C-reactive protein, and homocysteine levels in patients with prolactinoma on DA treatment. PRL was also implicated in endothelial dysfunction in pre and postmenopausal women. Withdrawal of DA resulted in negative changes in vascular parameters and an increase in plasma fibrinogen. It has been shown that PRL levels were positively correlated with blood pressure and inversely correlated with dilatation of the brachial artery and insulin sensitivity, increased homocysteine levels, and elevated D-dimer levels. Regarding possible mechanisms for the association between hyperprolactinemia and CVD risk, they include a possible direct effect of PRL, hypogonadism, and even effects of DA treatment, independently of changes in PRL levels. In conclusion, hyperprolactinemia seems to be associated with impaired endothelial function and DA treatment could improve CVD risk. More studies evaluating CVD risk in hyperprolactinemic patients are important to define a potential indication of treatment beyond hypogonadism.
Collapse
Affiliation(s)
- Andrea Glezer
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of Sao Paulo Medical School, São Paulo, SP, Brazil
- Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
- *Correspondence: Andrea Glezer,
| | - Mariana Ramos Santana
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Marcello D. Bronstein
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of Sao Paulo Medical School, São Paulo, SP, Brazil
- Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Soares Jallad
- Neuroendocrine Unit, Division of Endocrinology and Metabolism, Hospital das Clinicas, University of Sao Paulo Medical School, São Paulo, SP, Brazil
- Laboratory of Cellular and Molecular Endocrinology LIM-25, University of Sao Paulo Medical School, São Paulo, SP, Brazil
| |
Collapse
|