1
|
Lanzolla G, Marinò M, Menconi F. Graves disease: latest understanding of pathogenesis and treatment options. Nat Rev Endocrinol 2024; 20:647-660. [PMID: 39039206 DOI: 10.1038/s41574-024-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/24/2024]
Abstract
Graves disease is the most common cause of hyperthyroidism in iodine-sufficient areas. The main responsible mechanism is related to autoantibodies that bind and activate the thyrotropin receptor (TSHR). Although Graves hyperthyroidism is relatively common, no causal treatment options are available. Established treatment modalities are antithyroid drugs, which reduce thyroid hormone synthesis, radioactive iodine and surgery. However, emerging drugs that target the main autoantigen (monoclonal antibodies, small molecules, peptides) or block the immune pathway have been recently tested in clinical trials. Graves disease can involve the thyroid exclusively or it can be associated with extrathyroidal manifestations, among which Graves orbitopathy is the most common. The presence of Graves orbitopathy can change the management of the disease. An established treatment for moderate-to-severe Graves orbitopathy is intravenous glucocorticoids. However, recent advances in understanding the pathogenesis of Graves orbitopathy have allowed the development of new target-based therapies by blocking pro-inflammatory cytokine receptors, lymphocytic infiltration or the insulin-like growth factor 1 receptor (IGF1R), with several clinical trials providing promising results. This article reviews the new discoveries in the pathogenesis of Graves hyperthyroidism and Graves orbitopathy that offer several important tools in disease management.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Michele Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | - Francesca Menconi
- U.O. Endocrinologia II, Azienda Ospedaliero Universitaria Pisana, University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Yan K, Sun X, Fan C, Wang X, Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int J Mol Sci 2024; 25:10918. [PMID: 39456701 PMCID: PMC11507114 DOI: 10.3390/ijms252010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune thyroid diseases (AITDs) are among the most prevalent organ-specific autoimmune disorders, with thyroid hormones playing a pivotal role in the gastrointestinal system's structure and function. Emerging evidence suggests a link between AITDs and the gut microbiome, which is a diverse community of organisms that are essential for digestion, absorption, intestinal homeostasis, and immune defense. Recent studies using 16S rRNA and metagenomic sequencing of fecal samples from AITD patients have revealed a significant correlation between a gut microbiota imbalance and the severity of AITDs. Progress in animal models of autoimmune diseases has shown that intervention in the gut microbiota can significantly alter the disease severity. The gut microbiota influences T cell subgroup differentiation and modulates the pathological immune response to AITDs through mechanisms involving short-chain fatty acids (SCFAs), lipopolysaccharides (LPSs), and mucosal immunity. Conversely, thyroid hormones also influence gut function and microbiota composition. Thus, there is a bidirectional relationship between the thyroid and the gut ecosystem. This review explores the pathogenic mechanisms of the gut microbiota and its metabolites in AITDs, characterizes the gut microbiota in Graves' disease (GD) and Hashimoto's thyroiditis (HT), and examines the interactions between the gut microbiota, thyroid hormones, T cell differentiation, and trace elements. The review aims to enhance understanding of the gut microbiota-thyroid axis and proposes novel approaches to mitigate AITD severity through gut microbiota modulation.
Collapse
Affiliation(s)
- Kai Yan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| |
Collapse
|
3
|
Wang M, Li G, Dong L, Hou Z, Zhang J, Li D. Severity Identification of Graves Orbitopathy via Random Forest Algorithm. Horm Metab Res 2024; 56:706-711. [PMID: 38588699 DOI: 10.1055/a-2287-3734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
This study aims to establish a random forest model for detecting the severity of Graves Orbitopathy (GO) and identify significant classification factors. This is a hospital-based study of 199 patients with GO that were collected between December 2019 and February 2022. Clinical information was collected from medical records. The severity of GO can be categorized as mild, moderate-to-severe, and sight-threatening GO based on guidelines of the European Group on Graves' orbitopathy. A random forest model was constructed according to the risk factors of GO and the main ocular symptoms of patients to differentiate mild GO from severe GO and finally was compared with logistic regression analysis, Support Vector Machine (SVM), and Naive Bayes. A random forest model with 15 variables was constructed. Blurred vision, disease course, thyroid-stimulating hormone receptor antibodies, and age ranked high both in mini-decreased gini and mini decrease accuracy. The accuracy, positive predictive value, negative predictive value, and the F1 Score of the random forest model are 0.83, 0.82, 0.86, and 0.82, respectively. Compared to the three other models, our random forest model showed a more reliable performance based on AUC (0.85 vs. 0.83 vs. 0.80 vs. 0.76) and accuracy (0.83 vs. 0.78 vs. 0.77 vs. 0.70). In conclusion, this study shows the potential for applying a random forest model as a complementary tool to differentiate GO severity.
Collapse
Affiliation(s)
- Minghui Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gongfei Li
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany
| | - Li Dong
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
| | - Zhijia Hou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
| | - Ju Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
| | - Dongmei Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing, China
| |
Collapse
|
4
|
Zhang X, Dong K, Zhang X, Kang Z, Sun B. Exploring gut microbiota and metabolite alterations in patients with thyroid-associated ophthalmopathy using high-throughput sequencing and untargeted metabolomics. Front Endocrinol (Lausanne) 2024; 15:1413890. [PMID: 39135625 PMCID: PMC11317416 DOI: 10.3389/fendo.2024.1413890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Thyroid-associated ophthalmopathy (TAO) is an autoimmune-driven orbital inflammatory disease. Despite research efforts, its exact pathogenesis remains unclear. This study aimed to characterize the intestinal flora and metabolic changes in patients with TAO to identify the flora and metabolites associated with disease development. Methods Thirty patients with TAO and 29 healthy controls were included in the study. The intestinal flora and metabolites were analyzed using high-throughput sequencing of the 16S rRNA gene and non-targeted metabolomics technology, respectively. Fresh fecal samples were collected from both populations for analysis. Results Reduced gut richness and diversity were observed in patients with TAO. Compared to healthy controls, significant differences in relative abundance were observed in patients with TAO at the order level Clostridiales, family level Staphylococcaceae, genus level Staphylococcus, Fournierella, Eubacterium siraeum, CAG-56, Ruminococcus gnavus, Intestinibacter, Actinomyces, and Erysipelotrichaceae UCG-003 (logFC>1 and P<0.05). Veillonella and Megamonas were closely associated with clinical symptoms in patients with TAO. Among the 184 significantly different metabolites, 63 were upregulated, and 121 were downregulated in patients with TAO compared to healthy controls. The biosynthesis of unsaturated fatty acids was the significantly enriched metabolic pathway. Correlation analysis revealed Actinomyces was positively correlated with NAGlySer 15:0/16:0, FAHFA 3:0/20:0, and Lignoceric Acid, while Ruminococcus gnavu was positively correlated with Cer 18:0;2O/16:0; (3OH) and ST 24:1;O4/18:2. Conclusion Specific intestinal flora and metabolites are closely associated with TAO development. Further investigation into the functional associations between these flora and metabolites will enhance our understanding of TAO pathogenesis.
Collapse
Affiliation(s)
- Xiran Zhang
- Laboratory of Ophthalmic Microbiology, Shanxi Eye Hospital, Taiyuan, China
| | - Kui Dong
- Laboratory of Ophthalmic Microbiology, Shanxi Eye Hospital, Taiyuan, China
| | - Xinxin Zhang
- Laboratory of Ophthalmic Microbiology, Shanxi Eye Hospital, Taiyuan, China
| | - Zhiming Kang
- Laboratory of Ophthalmic Microbiology, Shanxi Eye Hospital, Taiyuan, China
| | - Bin Sun
- Shanxi Province Key Laboratory of Ophthalmology, Shanxi Eye Hospital, Taiyuan, China
| |
Collapse
|
5
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
6
|
Moledina M, Damato EM, Lee V. The changing landscape of thyroid eye disease: current clinical advances and future outlook. Eye (Lond) 2024; 38:1425-1437. [PMID: 38374366 PMCID: PMC11126416 DOI: 10.1038/s41433-024-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/07/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
AIMS This review aims to provide an overview of the current understanding of TED and its pathophysiology. To describe the evidence base for current consensus treatment recommendations and newer biological therapies available as well as to present future therapeutic research. METHODS We reviewed and assessed the peer-reviewed literature placing particular emphasis on recent studies evaluating the pathophysiology of TED, landmark trials forming the basis of current management and recent clinical trials informing future therapeutics. Searched were made in MEDLINE Ovid, Embase Ovid, US National Institutes of Health Ongoing Trials Register and EU Clinical Trials Register. Keywords included: "Thyroid Eye Disease", "Graves Orbitopathy", "Thyroid Orbitopathy" and "Graves' Ophthalmopathy". RESULTS AND CONCLUSIONS The pathophysiology of TED involves a complex array of cellular and humoral based autoimmune dysfunction. Previous therapies have been broad-based acting as a blunt instrument on this mechanism with varying efficacy but often accompanied with a significant side effect profile. The recent development of targeted therapy, spearheaded by Teprotumumab has led to an array of treatments focusing on specific components of the molecular pathway optimising their impact whilst possibly minimising their side effect profile. Future challenges involve identifying the most effective target for each patient rather than any single agent being a panacea. Long-term safety profiles will require clarification as unintended immunological consequence downstream may become manifest as seen in other diseases. Finally, future novel therapeutics will entail significant expenditure and may lead to a divergence of available treatment modalities between healthcare systems due to funding disparities.
Collapse
Affiliation(s)
- Malik Moledina
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Erika M Damato
- Department of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vickie Lee
- Oculoplastics Service, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
7
|
Jeong C, Baek H, Bae J, Hwang N, Ha J, Cho YS, Lim DJ. Gut microbiome in the Graves' disease: Comparison before and after anti-thyroid drug treatment. PLoS One 2024; 19:e0300678. [PMID: 38820506 PMCID: PMC11142679 DOI: 10.1371/journal.pone.0300678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/01/2024] [Indexed: 06/02/2024] Open
Abstract
While several studies have proposed a connection between the gut microbiome and the pathogenesis of Graves's disease (GD), there has been a lack of reports on alteration in microbiome following using anti-thyroid drug treatment (ATD) to treat GD. Stool samples were collected from newly diagnosed GD patients provided at baseline and after 6 months of ATD treatment. The analysis focused on investigating the association between the changes in the gut microbiome and parameter including thyroid function, thyroid-related antibodies, and the symptom used to assess hyperthyroidism before and after treatment. A healthy control (HC) group consisting of data from 230 healthy subjects (110 males and 120 females) sourced from the open EMBL Nucleotide Sequence Database was included. Twenty-nine GD patients (14 males and 15 females) were enrolled. The analysis revealed a significant reduction of alpha diversity in GD patients. However, after ATD treatment, alpha diversity exhibited a significant increase, restored to levels comparable to the HC levels. Additionally, GD patients displayed lower levels of Firmicutes and higher levels of Bacteroidota. Following treatment, there was an increased in Firmicutes and a decrease in Bacteroidota, resembling levels found in the HC levels. The symptoms of hyperthyroidism were negatively associated with Firmicutes and positively associated with Bacteroidota. GD had significantly lower levels of Roseburia, Lachnospiraceaea, Sutterella, Escherichia-shigella, Parasuterella, Akkermansia, and Phascolarctobacterium compared to HC (all p < 0.05). Post-treatment, Subdoligranulum increased (p = 0.010), while Veillonella and Christensenellaceaea R-7 group decreased (p = 0.023, p = 0.029, respectively). Anaerostipes showed a significant association with both higher smoking pack years and TSHR-Ab levels, with greater abundantce observed in smokers among GD (p = 0.16). Although reduced ratio of Firmicutes/Bacteroidetes was evident in GD, this ratio recovered after treatment. This study postulates the involvement of the gut microbiome in the pathogenesis of GD, suggesting potential restoration after treatment.
Collapse
Affiliation(s)
- Chaiho Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hansang Baek
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaewoong Bae
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Nakwon Hwang
- R&D Institute, BioEleven Co., Ltd., Seoul, Republic of Korea
| | - Jeonghoon Ha
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Jun Lim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Liu Y, Tang S, Feng Y, Xue B, Cheng C, Su Y, Wei W, Zhang L, Huang Z, Shi X, Fang Y, Yang J, Zhang Y, Deng X, Wang L, Ren H, Wang C, Yuan H. Alteration in gut microbiota is associated with immune imbalance in Graves' disease. Front Cell Infect Microbiol 2024; 14:1349397. [PMID: 38533382 PMCID: PMC10963416 DOI: 10.3389/fcimb.2024.1349397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Background Graves' disease (GD), characterized by immune aberration, is associated with gut dysbiosis. Despite the growing interest, substantial evidence detailing the precise impact of gut microbiota on GD's autoimmune processes remains exceedingly rare. Objective This study was designed to investigate the influence of gut microbiota on immune dysregulation in GD. Methods It encompassed 52 GD patients and 45 healthy controls (HCs), employing flow cytometry and enzyme-linked immunosorbent assay to examine lymphocyte and cytokine profiles, alongside lipopolysaccharide (LPS) levels. Gut microbiota profiles and metabolic features were assessed using 16S rRNA gene sequencing and targeted metabolomics. Results Our observations revealed a disturbed B-cell distribution and elevated LPS and pro-inflammatory cytokines in GD patients compared to HCs. Significant differences in gut microbiota composition and a marked deficit in short-chain fatty acid (SCFA)-producing bacteria, including ASV263(Bacteroides), ASV1451(Dialister), and ASV503(Coprococcus), were observed in GD patients. These specific bacteria and SCFAs showed correlations with thyroid autoantibodies, B-cell subsets, and cytokine levels. In vitro studies further showed that LPS notably caused B-cell subsets imbalance, reducing conventional memory B cells while increasing naïve B cells. Additionally, acetate combined with propionate and butyrate showcased immunoregulatory functions, diminishing cytokine production in LPS-stimulated cells. Conclusion Overall, our results highlight the role of gut dysbiosis in contributing to immune dysregulation in GD by affecting lymphocyte status and cytokine production.
Collapse
Affiliation(s)
- Yalei Liu
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shasha Tang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Feng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Binghua Xue
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaofei Cheng
- Stem Cell Research Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Su
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wei Wei
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lijun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhoufeng Huang
- Institution of Hematology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyang Shi
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanyuan Fang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junpeng Yang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Zhang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Deng
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Limin Wang
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Corporation Limited, Shanghai, China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial Key Medicine Laboratory of Intestinal Microecology and Diabetes, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Liu S, Li F, Cai Y, Ren L, Sun L, Gang X, Wang G. Bacteroidaceae, Bacteroides, and Veillonella: emerging protectors against Graves' disease. Front Cell Infect Microbiol 2024; 14:1288222. [PMID: 38404289 PMCID: PMC10884117 DOI: 10.3389/fcimb.2024.1288222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Background Graves' disease (GD) is the most common cause of hyperthyroidism, and its pathogenesis remains incompletely elucidated. Numerous studies have implicated the gut microbiota in the development of thyroid disorders. This study employs Mendelian randomization analysis to investigate the characteristics of gut microbiota in GD patients, aiming to offer novel insights into the etiology and treatment of Graves' disease. Methods Two-sample Mendelian randomization (MR) analysis was employed to assess the causal relationship between Graves' disease and the gut microbiota composition. Gut microbiota data were sourced from the international consortium MiBioGen, while Graves' disease data were obtained from FINNGEN. Eligible single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple analysis methods, including inverse variance-weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-RAPS, were utilized. Sensitivity analyses were conducted employing MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis as quality control measures. Results The Mendelian randomization study conducted in a European population revealed a decreased risk of Graves' disease associated with Bacteroidaceae (Odds ratio (OR) [95% confidence interval (CI)]: 0.89 [0.89 ~ 0.90], adjusted P value: <0.001), Bacteroides (OR: [95% CI]: 0.555 [0.437 ~ 0.706], adjusted P value: <0.001), and Veillonella (OR [95% CI]: 0.632 [0.492 ~ 0.811], adjusted P value: 0.016). No significant evidence of heterogeneity, or horizontal pleiotropy was detected. Furthermore, the preliminary MR analysis identified 13 bacterial species including Eubacterium brachy group and Family XIII AD3011 group, exhibiting significant associations with Graves' disease onset, suggesting potential causal effects. Conclusion A causal relationship exists between gut microbiota and Graves' disease. Bacteroidaceae, Bacteroides, and Veillonella emerge as protective factors against Graves' disease development. Prospective probiotic supplementation may offer a novel avenue for adjunctive treatment in the management of Graves' disease in the future.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Fan Li
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Yunjia Cai
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Linan Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Jilin, Changchun, China
| |
Collapse
|
10
|
Xian W, Liu B, Li J, Yang Y, Hong S, Xiao H, Wu D, Li Y. Graves' disease and systemic lupus erythematosus: a Mendelian randomization study. Front Immunol 2024; 15:1273358. [PMID: 38352885 PMCID: PMC10863043 DOI: 10.3389/fimmu.2024.1273358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Previous observational studies have established a correlation between Graves' disease(GD) and systemic lupus erythematosus(SLE). However, whether a causal relationship exists between these two diseases remains unknown.We utilized Mendelian randomization to infer the causal association between GD and SLE. Methods This study employed GWAS summary statistics of GD and SLE in individuals of Asian descent. The random effect inverse variance weighted (IVW) method was utilized to aggregate the causal effect estimates of all SNPs. Cochran's Q values were computed to evaluate the heterogeneity among instrumental variables. Sensitivity analyses such as MR-Egger method, median weighting method, leave-one-out method, and MR-PRESSO method were used to test whether there was horizontal pleiotropy of instrumental variables. Results Our study found genetically predicted GD may increase risk of SLE (OR=1.17, 95% CI 0.99-1.40, p=0.069). Additionally, genetically predicted SLE elevated the risk of developing GD by 15% (OR=1.15, 95% CI 1.05-1.27, p= 0.004). After correcting for possible horizontal pleiotropy by excluding outlier SNPs, the results suggested that GD increased the risk of SLE (OR=1.27, 95% CI 1.09-1.48, p =0.018), while SLE also increased the risk of developing GD (OR=1.13, 95% CI 1.05-1.22, p =0.003). Conclusion The findings of the study indicate that there may be a correlation between GD and SLE, with each potentially increasing the risk of the other. These results have important implications for the screening and treatment of patients with co-morbidities in clinical settings, as well as for further research into the molecular mechanisms underlying the relationship between GD and SLE.
Collapse
Affiliation(s)
- Wei Xian
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Pediatric Allergy, Immunology & Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Boyuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinjian Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Yang
- Zhongshan School of Medicine, Sun Yat Sen University, Guangzhou, Guangdong, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dide Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Muller I, Consonni D, Crivicich E, Di Marco F, Currò N, Salvi M. Increased Risk of Thyroid Eye Disease Following Covid-19 Vaccination. J Clin Endocrinol Metab 2024; 109:516-526. [PMID: 37622279 PMCID: PMC10795895 DOI: 10.1210/clinem/dgad501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT SARS-CoV-2 infection and Covid-19 vaccines have been associated with thyroid disorders. OBJECTIVE We analyzed the risk of thyroid eye disease (TED) following Covid-19 vaccination. This was a self-controlled case series study at a tertiary referral center for TED. A total of 98 consecutive patients with newly developed (n = 92) or reactivated (n = 6) TED occurring between January 1, 2021, and August 31, 2022, were included. TED was assessed in patients undergoing Covid-19 vaccination. Person-days were defined as exposed if TED occurred 1 to 28 days after vaccination, and unexposed if occurring outside this time window. Conditional Poisson regression models were fitted to calculate incidence rate ratio (IRR) and 95% CI of exposed vs unexposed. Sensitivity analyses were conducted considering different exposed periods, and effect modification by potential TED risk factors. RESULTS Covid-19 vaccines were administered in 81 people, 25 (31%) of whom developed TED in exposed and 56 (69%) in unexposed periods. The IRR for TED was 3.24 (95% CI 2.01-5.20) and 4.70 (95% CI 2.39-9.23) in patients below 50 years of age. Sex, smoking, and radioiodine treatment did not modify the association between TED and vaccination. TED risk was unrelated to the number of vaccine doses, and progressively decreased over time following vaccination (P trend = .03). CONCLUSION The risk of TED was significantly increased after Covid-19 vaccination, especially in people below 50 years of age. Possible mechanisms include spike protein interaction with the angiotensin-converting enzyme II receptor, cross-reactivity with thyroid self-proteins, and immune reactions induced by adjuvants. We suggest monitoring of individuals undergoing Covid-19 vaccination, especially if young and at risk for autoimmunity.
Collapse
Affiliation(s)
- Ilaria Muller
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
- Graves’ Orbitopathy Center, Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Erica Crivicich
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Francesco Di Marco
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Currò
- Graves’ Orbitopathy Center, Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Ophthalmology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Salvi
- Graves’ Orbitopathy Center, Endocrinology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
12
|
Zhu F, Zhang P, Liu Y, Bao C, Qian D, Ma C, Li H, Yu T. Mendelian randomization suggests a causal relationship between gut dysbiosis and thyroid cancer. Front Cell Infect Microbiol 2023; 13:1298443. [PMID: 38106470 PMCID: PMC10722196 DOI: 10.3389/fcimb.2023.1298443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Alterations in gut microbiota composition and function have been linked to the development and progression of thyroid cancer (TC). However, the exact nature of the causal relationship between them remains uncertain. Methods A bidirectional two-sample Mendelian randomization (TSMR) analysis was conducted to assess the causal connection between gut microbiota (18,340 individuals) and TC (6,699 cases combined with 1,613,655 controls) using data from a genome-wide association study (GWAS). The primary analysis used the inverse-variance weighted (IVW) method to estimate the causal effect, with supplementary approaches including the weighted median, weighted mode, simple mode, and MR-Egger. Heterogeneity and pleiotropy were assessed using the Cochrane Q test, MR-Egger intercept test, and MR-PRESSO global test. A reverse TSMR analysis was performed to explore reverse causality. Results This study identified seven microbial taxa with significant associations with TC. Specifically, the genus Butyrivibrio (OR: 1.127, 95% CI: 1.008-1.260, p = 0.036), Fusicatenibacter (OR: 1.313, 95% CI: 1.066-1.618, p = 0.011), Oscillospira (OR: 1.240, 95% CI: 1.001-1.536, p = 0.049), Ruminococcus2 (OR: 1.408, 95% CI: 1.158-1.711, p < 0.001), Terrisporobacter (OR: 1.241, 95% CI: 1.018-1.513, p = 0.032) were identified as risk factors for TC, while The genus Olsenella (OR: 0.882, 95% CI: 0.787-0.989, p = 0.031) and Ruminococcaceae UCG004 (OR: 0.719, 95% CI: 0.566-0.914, p = 0.007) were associated with reduced TC risk. The reverse MR analysis found no evidence of reverse causality and suggested that TC may lead to increased levels of the genus Holdemanella (β: 0.053, 95% CI: 0.012~0.094, p = 0.011) and decreased levels of the order Bacillales (β: -0.075, 95% CI: -0.143~-0.006, p = 0.033). No significant bias, heterogeneity, or pleiotropy was detected in this study. Conclusion This study suggests a potential causal relationship between gut microbiota and TC, providing new insights into the role of gut microbiota in TC. Further research is needed to explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chongchan Bao
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dong Qian
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Hua Li
- Department of General Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Fenneman AC, van der Spek AH, Hartstra A, Havik S, Salonen A, de Vos WM, Soeters MR, Saeed P, Nieuwdorp M, Rampanelli E. Intestinal permeability is associated with aggravated inflammation and myofibroblast accumulation in Graves' orbitopathy: the MicroGO study. Front Endocrinol (Lausanne) 2023; 14:1173481. [PMID: 38107520 PMCID: PMC10724020 DOI: 10.3389/fendo.2023.1173481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/20/2023] [Indexed: 12/19/2023] Open
Abstract
Background Graves' disease (GD) and Graves' orbitopathy (GO) result from ongoing stimulation of the TSH receptor due to autoantibodies acting as persistent agonists. Orbital pre-adipocytes and fibroblasts also express the TSH receptor, resulting in expanded retro-orbital tissue and causing exophthalmos and limited eye movement. Recent studies have shown that GD/GO patients have a disturbed gut microbiome composition, which has been associated with increased intestinal permeability. This study hypothesizes that enhanced intestinal permeability may aggravate orbital inflammation and, thus, increase myofibroblast differentiation and the degree of fibrosis. Methods Two distinct cohorts of GO patients were studied, one of which was a unique cohort consisting of blood, fecal, and retro-orbital tissue samples. Intestinal permeability was assessed by measuring serum lipopolysaccharide-binding protein (LBP), zonulin, TLR5, and TLR9 ligands. The influx of macrophages and accumulation of T-cells and myofibroblast were quantified in orbital connective tissue. The NanoString immune-oncology RNA targets panel was used to determine the transcriptional profile of active fibrotic areas within orbital sections. Results GO patients displayed significantly higher LBP serum concentrations than healthy controls. Within the MicroGO cohort, patients with high serum LBP levels also showed higher levels of zonulin and TLR5 and TLR9 ligands in their circulation. The increased intestinal permeability was accompanied by augmented expression of genes marking immune cell infiltration and encoding key proteins for immune cell adhesion, antigen presentation, and cytokine signaling in the orbital tissue. Macrophage influx was positively linked to the extent of T cell influx and fibroblast activation within GO-affected orbital tissues. Moreover, serum LBP levels significantly correlated with the abundance of specific Gram-negative gut bacteria, linking the gut to local orbital inflammation. Conclusion These results indicate that GO patients have enhanced intestinal permeability. The subsequent translocation of bacterial compounds to the systemic circulation may aggravate inflammatory processes within the orbital tissue and, as a consequence, augment the proportion of activated myofibroblasts, which actively secrete extracellular matrix leading to retro-orbital tissue expansion. These findings warrant further exploration to assess the correlation between specific inflammatory pathways in the orbital tissue and the gut microbiota composition and may pave the way for new microbiota-targeting therapies.
Collapse
Affiliation(s)
- Aline C. Fenneman
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Anne H. van der Spek
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Annick Hartstra
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Stefan Havik
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Willem M. de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology & Metabolism (AGEM), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Peeroz Saeed
- Department of Ophthalmology, Amsterdam University Medical Centre (UMC), Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Elena Rampanelli
- Department of (Experimental) Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
15
|
Liu X, Liu J, Zhang T, Wang Q, Zhang H. Complex relationship between gut microbiota and thyroid dysfunction: a bidirectional two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1267383. [PMID: 38027113 PMCID: PMC10667917 DOI: 10.3389/fendo.2023.1267383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background Many studies have reported the link between gut microbiota and thyroid dysfunction. However, the causal effect of gut microbiota on thyroid dysfunction and the changes in gut microbiota after the onset of thyroid dysfunction are not clear. Methods A two-sample Mendelian randomization (MR) study was used to explore the complex relationship between gut microbiota and thyroid dysfunction. Data on 211 bacterial taxa were obtained from the MiBioGen consortium, and data on thyroid dysfunction, including hypothyroidism, thyroid-stimulating hormone alteration, thyroxine deficiency, and thyroid peroxidase antibodies positivity, were derived from several databases. Inverse variance weighting (IVW), weighted median, MR-Egger, weighted mode, and simple mode were applied to assess the causal effects of gut microbiota on thyroid dysfunction. Comprehensive sensitivity analyses were followed to validate the robustness of the results. Finally, a reverse MR study was conducted to explore the alteration of gut microbiota after hypothyroidism onset. Results Our bidirectional two-sample MR study revealed that the genera Intestinimonas, Eubacterium brachy group, Ruminiclostridium5, and Ruminococcaceae UCG004 were the risk factors for decreased thyroid function, whereas the genera Bifidobacterium and Lachnospiraceae UCG008 and phyla Actinobacteria and Verrucomicrobia were protective. The abundance of eight bacterial taxa varied after the onset of hypothyroidism. Sensitivity analysis showed that no heterogeneity or pleiotropy existed in the results of this study. Conclusion This novel MR study systematically demonstrated the complex relationship between gut microbiota and thyroid dysfunction, which supports the selection of more targeted probiotics to maintain thyroid-gut axis homeostasis and thus to prevent, control, and reverse the development of thyroid dysfunction.
Collapse
Affiliation(s)
| | | | | | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
16
|
Zheng L, Yang R, Li R, Chen W, Zhang J, Lv W, Lin B, Luo J. Exploring the Association Between Thyroid Function and Oral Microbiome Diversity: An NHANES Analysis. J Endocr Soc 2023; 7:bvad125. [PMID: 37818404 PMCID: PMC10561013 DOI: 10.1210/jendso/bvad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/12/2023] Open
Abstract
Objective To investigate the association between thyroid functions and the oral microbiome diversity. Method Data from the US National Health and Nutrition Examination Survey (NHANES; 2009-2012) were analyzed. Thyroid functions were defined using thyroid hormones and related biomarkers. Oral microbiome was measured using the observed number of amplicon sequence variants (ASVs) and the Bray-Curtis dissimilarity. Linear regression was used to estimate the average change (β) and 95% CI for the number of ASVs against thyroid functions, adjusted for sociodemographic variables, health conditions, urinary iodine status, and periodontitis. Non-metric multidimensional scaling (NMDS) was used to analyze the Bray-Curtis dissimilarity. Results A total of 2943 participants were analyzed. The observed number of ASVs has a weighted mean of 128.9. Self-reported thyroid disease was associated with reduced number of ASVs (β = -9.2, 95% CI: -17.2, -1.2), if only adjusted for sociodemographic variables and health conditions. In the fully adjusted model, compared to normal thyroid function, both subclinical and clinical hyperthyroidism were associated with reduced number of ASVs (β = -59.6, 95% CI: -73.2, -46.0; β = -28.2, 95% CI: -50.0, -6.5, respectively). Thyroid peroxidase antibody level higher than the reference range was associated with higher observed ASV (β= 9.0, 95% CI: 1.2, 16.9). NMDS analysis suggested significant difference in oral microbiome composition between free triiodothyronine groups (P = .002), between free thyroxine groups (P = .015), and between thyroglobulin groups (P = .035). Conclusion Hyperthyroidism was associated with reduced oral microbiome diversity. Free triiodothyronine, free thyroxine, and thyroglobulin levels may alter the oral microbiome composition.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Rui Yang
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Ruixia Li
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wanna Chen
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jing Zhang
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiming Lv
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bo Lin
- Department of Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jiajun Luo
- Institute for Population and Precision Health, University of Chicago, Chicago 60637, IL, USA
| |
Collapse
|
17
|
Fu X, Tan H, Huang L, Chen W, Ren X, Chen D. Gut microbiota and eye diseases: a bibliometric study and visualization analysis. Front Cell Infect Microbiol 2023; 13:1225859. [PMID: 37621873 PMCID: PMC10445766 DOI: 10.3389/fcimb.2023.1225859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Recently the role of gut microbial dysbiosis in many ocular disorders, including but not limited to uveitis, age-related macular degeneration (AMD), diabetic retinopathy (DR), dry eye, keratitis and orbitopathy is a hot research topic in the field. Targeting gut microbiota to treat these diseases has become an unstoppable trend. Bibliometric study and visualization analysis have become essential methods for literature analysis in the medical research field. We aim to depict this area's research hotspots and future directions by bibliometric software and methods. Methods We search all the related publications from the Web of Science Core Collection. Then, CiteSpace was applied to analyze and visualize the country distributions, dual-map overlay of journals, keyword bursts, and co-cited references. VOSviewer was employed to identify authors, co-cited authors, journals and co-cited journals and display the keyword co-occurrence networks. Results A total of 284 relevant publications were identified from 2009 to 2023. The number of studies has been small in the first five years and has grown steadily since 2016. These studies were completed by 1,376 authors from 41 countries worldwide, with the United States in the lead. Lin P has published the most papers while Horai R is the most co-cited author. The top journal and co-cited journal are both Investigative Ophthalmology & Visual Science. In the keyword co-occurrence network, except gut microbiota, inflammation becomes the keyword with the highest frequency. Co-citation analyses reveal that gut dysbiosis is involved in common immune- and inflammation-mediated eye diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, dry eye, and Graves' orbitopathy, and the study of microbiomes is no longer limited to the bacterial populations. Therapeutic strategies that target the gut microbiota, such as probiotics, healthy diet patterns, and fecal microbial transplantation, are effective and critical to future research. Conclusions In conclusion, the bibliometric analysis displays the research hotspots and developmental directions of the involvement of gut microbiota in the pathogenesis and treatment of some ocular diseases. It provides an overview of this field's dynamic evolution and structural relationships.
Collapse
Affiliation(s)
- Xiangyu Fu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Haishan Tan
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Huang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyue Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Danian Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Johansen VBI, Færø D, Buschard K, Kristiansen K, Pociot F, Kiilerich P, Josefsen K, Haupt-Jorgensen M, Antvorskov JC. A Gluten-Free Diet during Pregnancy and Early Life Increases Short Chain Fatty Acid-Producing Bacteria and Regulatory T Cells in Prediabetic NOD Mice. Cells 2023; 12:1567. [PMID: 37371037 PMCID: PMC10297205 DOI: 10.3390/cells12121567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The incidence of the autoimmune disease type 1 diabetes is increasing, likely caused by environmental factors. A gluten-free diet has previously been shown to ameliorate autoimmune diabetes in non-obese diabetic (NOD) mice and humans. Although the exact mechanisms are not understood, interventions influencing the intestinal microbiota early in life affect the risk of type 1 diabetes. Here, we characterize how NOD mice that are fed a gluten-free (GF) diet differ from NOD mice that are fed a gluten-containing standard (STD) diet in terms of their microbiota composition by 16S rRNA gene amplicon sequencing and pancreatic immune environment by real-time quantitative PCR at the prediabetic stage at 6 and 13 weeks of age. Gut microbiota analysis revealed highly distinct microbiota compositions in both the cecum and the colon of GF-fed mice compared with STD-fed mice. The microbiotas of the GF-fed mice were characterized by an increased Firmicutes/Bacteroidetes ratio, an increased abundance of short chain fatty acid (particularly butyrate)-producing bacteria, and a reduced abundance of Lactobacilli compared with STD mice. We found that the insulitis score in the GF mice was significantly reduced compared with the STD mice and that the markers for regulatory T cells and T helper 2 cells were upregulated in the pancreas of the GF mice. In conclusion, a GF diet during pre- and early post-natal life induces shifts in the cecal and colonic microbiota compatible with a less inflammatory environment, providing a likely mechanism for the protective effect of a GF diet in humans.
Collapse
Affiliation(s)
| | - Daisy Færø
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Karsten Buschard
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark; (K.K.); (P.K.)
| | - Flemming Pociot
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark;
| | - Pia Kiilerich
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, 2200 Copenhagen, Denmark; (K.K.); (P.K.)
- Department for Congenital Disorders, Danish Center for Neonatal Screening, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Knud Josefsen
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Martin Haupt-Jorgensen
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
| | - Julie Christine Antvorskov
- Department of Pathology, Bartholin Institute, Rigshospitalet, 2100 Copenhagen, Denmark; (D.F.); (K.B.); (K.J.); (M.H.-J.)
- Steno Diabetes Center, Borgmester Ib Juuls Vej 83, 2730 Herlev, Denmark;
| |
Collapse
|
19
|
Hansen M, Cheever A, Weber KS, O’Neill KL. Characterizing the Interplay of Lymphocytes in Graves' Disease. Int J Mol Sci 2023; 24:6835. [PMID: 37047805 PMCID: PMC10094834 DOI: 10.3390/ijms24076835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023] Open
Abstract
Graves' disease (GD) is a thyroid-specific autoimmune disease with a high prevalence worldwide. The disease is primarily mediated by B cells, which produce autoantibodies against the thyroid-stimulating hormone receptor (TSHR), chronically stimulating it and leading to high levels of thyroid hormones in the body. Interest in characterizing the immune response in GD has motivated many phenotyping studies. The immunophenotype of the cells involved and the interplay between them and their secreted factors are crucial to understanding disease progression and future treatment options. T cell populations are markedly distinct, including increased levels of Th17 and follicular helper T cells (Tfh), while Treg cells appear to be impaired. Some B cells subsets are autoreactive, and anti-TSHR antibodies are the key disease-causing outcome of this interplay. Though some consensus across phenotyping studies will be discussed here, there are also complexities that are yet to be resolved. A better understanding of the immunophenotype of Graves' disease can lead to improved treatment strategies and novel drug targets.
Collapse
Affiliation(s)
| | | | | | - Kim L. O’Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (M.H.); (A.C.); (K.S.W.)
| |
Collapse
|