1
|
Boehm E, Gill AJ, Clifton-Bligh R, Tothill RW. Recent progress in molecular classification of phaeochromocytoma and paraganglioma. Best Pract Res Clin Endocrinol Metab 2024; 38:101939. [PMID: 39271378 DOI: 10.1016/j.beem.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Phaeochromocytomas (PC) and paragangliomas (PG) are neural crest cancers with high heritability. Recent advances in molecular profiling, including multi-omics and single cell genomics has identified up to seven distinct molecular subtypes. These subtypes are defined by mutations involving hypoxia-inducible factors (HIFs), Krebs cycle, kinase and WNT signalling, but are also defined by chromaffin differentiation states. PCPG have a dominant proangiogenic microenvironment linked to HIF pathway activity and are generally considered "immune cold" tumours with a high number of macrophages. PCPG subtypes can indicate increased metastatic risk but secondary mutations in telomere maintenance genes TERT or ATRX are required to drive the metastatic phenotype. Molecular profiling can identify molecular therapeutic (e.g. RET and EPAS1) and radiopharmaceutical targets while also helping to support variant pathogenicity and familial risk. Molecular profiling and subtyping of PCPG therefore confers the possibility of nuanced prognostication and individual treatment stratification but this still requires large-scale prospective validation.
Collapse
Affiliation(s)
- Emma Boehm
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Anthony J Gill
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Roderick Clifton-Bligh
- Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney NSW, Australia.
| | - Richard W Tothill
- Centre for Cancer Research and Department of Clinical Pathology, University of Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Khatami F, Reis LO, Ebrahimi M, Nasiri S, Tavangar SM, Pishkuhi MA, Shafiee G, Heshmat R, Aghamir SMK. The role of methylation quantification of circulating tumor DNA (ctDNA) as a diagnostic biomarker of Pheochromocytomas (PCCs) and Paragangliomas (PGLs). J Diabetes Metab Disord 2024; 23:2065-2072. [PMID: 39610555 PMCID: PMC11599490 DOI: 10.1007/s40200-024-01466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/26/2024]
Abstract
Objectives Circulating tumor DNAs (ctDNAs) are fragments of malignant tissue DNA that can simply signify the real time genetic change and epigenetic modification of a solid tumor tissue. Pheochromocytomas (PCCs) and Paragangliomas (PGLs) are malinancy of adrenal gland tissue that have the possible diagnosis by ctDNAs. In this study the methylation quanifcation of three target genes RDBP, SDHB, and SDHC in the ctDNA of PCCs/PGLs patients were measured as a diagnostic biomarker. Methods The biological samples include blood and fresh frozen tissue of twelve PCCs/PGLs patients and blood of 12 non tumoral patients as controls were recruited. Semi quantification methylation status of RDBP, SDHB, and SDHC (two CpG lslands of each gene named 1 and 2) was assesed between PCCs/PGLs patients and controls by Methylation specific-high resolution melting (MS-HRM) technique. Results Between six candidate CpG island of RDBP, SDHB, and SDHC, promoter methylation quantification of SDHC1 and RDBP2 was expressively unsimilar in PCCs/PGLs compare to the controls. SDHC1 was hypermethylated in 49.93% of PCCs/PGLs cases vs. 8.33% of control samples, p-value: 0.026, area under curve AUC = 0.757, and RDBP2 in 74.9% of PCCs/PGLs cases vs. 25.0% of control samples, p-value: 0.032, AUC = 0.750. Conclusions Our result shows that the ctDNA hypermethylation of SDHC1 and RDBP2 have role in tumorgenesis of adrenal gland and can consider for diagnosis of PCCs/PGLs. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01466-8.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Sina Hospital, Hassan Abad Sq., Imam Khomeini Ave, Tehran, Iran
| | - Leonardo Oliveira Reis
- UroScience and Department of Surgery (Urology), School of Medical Sciences, University of Campinas, Unicamp, and Pontifical Catholic University of Campinas, PUC-Campinas, Campinas, São Paulo, Brazil
| | - Mehdi Ebrahimi
- Department of Internal Medicine, Faculty of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirzad Nasiri
- Departments of Surgery, Tehran University of Medical Sciences, Shariati Hospital, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Dr. Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahin Ahmadi Pishkuhi
- Urology Research Center, Tehran University of Medical Sciences, Sina Hospital, Hassan Abad Sq., Imam Khomeini Ave, Tehran, Iran
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, University of Medical Science, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Kazem Aghamir
- Urology Research Center, Tehran University of Medical Sciences, Sina Hospital, Hassan Abad Sq., Imam Khomeini Ave, Tehran, Iran
| |
Collapse
|
3
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
4
|
Lopez AG, Duparc C, Renouf S, Machevin E, Le Guillou V, Sabourin JC, Defortescu G, Buffet A, Gimenez-Roqueplo AP, Dubessy C, Louiset E, Lefebvre H. Expression of LHCGR (Luteinizing Hormone/Chorionic Gonadotrophin Receptor) in Pheochromocytomas Unveils an Endocrine Mechanism Connecting Pregnancy and Epinephrine Overproduction. Hypertension 2022; 79:1006-1016. [PMID: 35189708 DOI: 10.1161/hypertensionaha.121.18864] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanisms by which pregnancy may unmask pheochromocytomas and paragangliomas are not totally understood. We hypothesized that gestational hormones may participate in the pathophysiology of catecholamine excess during pregnancy. We report a case of silent pheochromocytoma revealed in a pregnant woman by life-threatening adrenergic myocarditis. METHODS In vitro studies were conducted to investigate the effect of estradiol and the pregnancy hormone hCG (human chorionic gonadotropin) on epinephrine secretion by cultured cells derived from the patient's tumor. Expression of LHCG (luteinizing hormone/chorionic gonadotropin) receptor was searched for in the patient's tumor, and a series of 12 additional pheochromocytoma by RT-Q-PCR and immunohistochemistry. LHCGR expression was also analyzed in silico in the pheochromocytomas and paragangliomas cohorts of the Cortico et Médullosurrénale: les Tumeurs Endocrines and The Cancer Genome Atlas databases. RESULTS hCG stimulated epinephrine secretion by cultured cells derived from the patient's pheochromocytoma. The patient's tumor expressed the LHCG receptor, which was colocalized with catecholamine-producing enzymes. A similar expression pattern of the LHCG receptor was also observed in 5 out of our series of pheochromocytoma. Moreover, in silico studies revealed that pheochromocytomas and paragangliomas display the highest expression levels of LHCG receptor mRNA among the 32 solid tumor types of The Cancer Genome Atlas cohort. CONCLUSIONS Pregnancy may thus favor surges in plasma catecholamine and hypertensive crises through hCG-induced stimulation of epinephrine production by pheochromocytomas.
Collapse
Affiliation(s)
- Antoine-Guy Lopez
- Normandie University, UNIROUEN, INSERM U1239, NorDIC, Rouen, France (A.-G.L., C. Duparc, S.R., C. Dubessy, E.L., H.L.).,Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen University Hospital, France. (A.-G.L., H.L.)
| | - Céline Duparc
- Normandie University, UNIROUEN, INSERM U1239, NorDIC, Rouen, France (A.-G.L., C. Duparc, S.R., C. Dubessy, E.L., H.L.)
| | - Sylvie Renouf
- Normandie University, UNIROUEN, INSERM U1239, NorDIC, Rouen, France (A.-G.L., C. Duparc, S.R., C. Dubessy, E.L., H.L.)
| | - Elise Machevin
- Department of Gynaecology-Obstetrics, Evreux Hospital Centre, France (E.M.)
| | - Vincent Le Guillou
- Department of Thoracic and Cardiovascular Surgery, Rouen University Hospital, France. (V.L.G.)
| | - Jean-Christophe Sabourin
- Department of Pathology and INSERM 1245, Rouen University Hospital, France. (J.-C.S,).,Tumor BioBank-Centre for Biological Resources, Rouen University Hospital, France. (J.-C.S., H.L.)
| | - Guillaume Defortescu
- Normandie University, UNIROUEN, INSERM U1239, NorDIC, Rouen, France (A.-G.L., C. Duparc, S.R., C. Dubessy, E.L., H.L.).,Department of Urology, Rouen University Hospital, France. (G.D.)
| | - Alexandre Buffet
- Université de Paris, PARCC, INSERM, Paris, France (A.B., A.-P.G.-R.).,Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France (A.B., A.-P.G.-R.)
| | - Anne-Paule Gimenez-Roqueplo
- Université de Paris, PARCC, INSERM, Paris, France (A.B., A.-P.G.-R.).,Service de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital européen Georges Pompidou, Paris, France (A.B., A.-P.G.-R.)
| | - Christophe Dubessy
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France (C. Dubessy)
| | - Estelle Louiset
- Normandie University, UNIROUEN, INSERM U1239, NorDIC, Rouen, France (A.-G.L., C. Duparc, S.R., C. Dubessy, E.L., H.L.)
| | - Hervé Lefebvre
- Normandie University, UNIROUEN, INSERM U1239, NorDIC, Rouen, France (A.-G.L., C. Duparc, S.R., C. Dubessy, E.L., H.L.).,Department of Endocrinology, Diabetes and Metabolic Diseases, Rouen University Hospital, France. (A.-G.L., H.L.).,Tumor BioBank-Centre for Biological Resources, Rouen University Hospital, France. (J.-C.S., H.L.)
| |
Collapse
|
5
|
The Role of the Metabolome and Non-Coding RNA on Pheochromocytomas and Paragangliomas: An Update. Metabolites 2022; 12:metabo12020131. [PMID: 35208206 PMCID: PMC8880811 DOI: 10.3390/metabo12020131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Pheochromocytoma and paragangliomas (PPGL) are rare neuroendocrine tumors. In some patients they exhibit malignant behavior characterized by the presence of metastases, limiting treatment options and survival rates. Therapeutic options are limited to surgery, localized radiotherapy, and a few systemic therapies. However, in several recent studies, non-coding RNA molecules are gaining increasing attention as markers of malignancy for PPGL. The understanding of PPGL development molecular mechanisms has improved in the last years, with some of the epigenetic regulatory mechanisms such as DNA and histones methylation, being better understood than RNA-based mechanisms. Metabolome deregulation in PPGL, with increased synthesis of molecules that facilitated tumor growth, results from the activation of hypoxia signaling pathways, affecting tumorigenesis. In addition, the assessment of these metabolites can be useful for the management of these tumors. This review summarizes recent discoveries linking metabolome and non-coding RNA to PPGL and their relevance for diagnosis and therapeutics.
Collapse
|
6
|
Jhawar S, Arakawa Y, Kumar S, Varghese D, Kim YS, Roper N, Elloumi F, Pommier Y, Pacak K, Del Rivero J. New Insights on the Genetics of Pheochromocytoma and Paraganglioma and Its Clinical Implications. Cancers (Basel) 2022; 14:cancers14030594. [PMID: 35158861 PMCID: PMC8833412 DOI: 10.3390/cancers14030594] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pheochromocytoma and paraganglioma (together PPGL) are rare neuroendocrine tumors that arise from chromaffin tissue and produce catecholamines. Approximately 40% of cases of PPGL carry a germline mutation, suggesting that they have a high degree of heritability. The underlying mutation influences the PPGL clinical presentation such as cell differentiation, specific catecholamine production, tumor location, malignant potential and genetic anticipation, which helps to better understand the clinical course and tailor treatment accordingly. Genetic testing for pheochromocytoma and paraganglioma allows an early detection of hereditary syndromes and facilitates a close follow-up of high-risk patients. In this review article, we present the most recent advances in the field of genetics and we discuss the latest guidelines on the surveillance of asymptomatic SDHx mutation carriers. Abstract Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are rare neuroendocrine tumors that arise from chromaffin cells. PHEOs arise from the adrenal medulla, whereas PGLs arise from the neural crest localized outside the adrenal gland. Approximately 40% of all cases of PPGLs (pheochromocytomas/paragangliomas) are associated with germline mutations and 30–40% display somatic driver mutations. The mutations associated with PPGLs can be classified into three groups. The pseudohypoxic group or cluster I includes the following genes: SDHA, SDHB, SDHC, SDHD, SDHAF2, FH, VHL, IDH1/2, MHD2, EGLN1/2 and HIF2/EPAS; the kinase group or cluster II includes RET, NF1, TMEM127, MAX and HRAS; and the Wnt signaling group or cluster III includes CSDE1 and MAML3. Underlying mutations can help understand the clinical presentation, overall prognosis and surveillance follow-up. Here we are discussing the new genetic insights of PPGLs.
Collapse
Affiliation(s)
- Sakshi Jhawar
- Life Bridge Health Center, Internal Medicine Program, Sinai Hospital of Baltimore, Baltimore, MD 21215, USA
| | - Yasuhiro Arakawa
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Diana Varghese
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Li H, Hardin H, Zaeem M, Huang W, Hu R, Lloyd RV. LncRNA expression and SDHB mutations in pheochromocytomas and paragangliomas. Ann Diagn Pathol 2021; 55:151801. [PMID: 34461576 DOI: 10.1016/j.anndiagpath.2021.151801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
Although pheochromocytomas and paragangliomas (PPGLs) are usual low-grade neoplasms, the metastatic forms of these lesions are associated with high morbidity and mortality. Recent studies have discovered multiple aberrantly expressed long non-coding RNAs (lncRNAs) in cancers that may have regulatory roles in tumor pathogenesis and metastasis; however, the roles of some lncRNAs in PPGLs are still unknown. The expression levels of lncRNAs including metastasis-associated lung adenocarcinoma transcript (MALAT1), prostate cancer antigen 3 (PCA3), and HOX transcript antisense intergenic RNA (HOTAIR) in PPGLs were analyzed by in situ hybridization, using two tissue microarrays (TMAs). The pheochromocytoma (PCC) TMA consisted of normal adrenal medulla (N = 25), non-metastatic PCCs (N = 76) and metastatic PCCs (N = 5) while the paraganglioma (PGL) TMA had 73 non-metastatic PGLs and 5 metastatic PGLs. Immunohistochemical staining was performed on all samples with an anti-SDHB antibody. The correlations between lncRNA expression, loss of SDHB expression and clinical characteristics including tumor progression and disease prognosis were investigated. The expression levels of MALAT1 and PCA3 were significantly elevated (2.5-3.9 folds) in both non-metastatic and metastatic PCCs compared to normal adrenal medulla, although there were no significant differences between the non-metastatic and metastatic neoplasms. In contrast to non-metastatic PGLs, metastatic PGLs had significantly upregulated expression of MALAT1, PCA3, and HOTAIR. SDHB loss was more frequently observed in PGLs (25 of 78), especially in metastatic PGLs (5 of 5), compared to PCCs (2 of 81) and in 0 of 5 metastatic PCCs. Patients with SDHB loss, in contrast to SDHB retained, were younger at diagnosis, had higher rates of tumor recurrence, metastatic disease, and mortality. In addition, PGLs with SDHB loss had significantly increased expression of PCA3 compared to tumors with intact SDHB expression. Our findings suggest that specific lncRNAs may be involved in the SDHx signaling pathways in the tumorigenesis and in the development of PPGL.
Collapse
Affiliation(s)
- Huihua Li
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Misbah Zaeem
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, USA.
| |
Collapse
|
8
|
A Critical Appraisal of Contemporary and Novel Biomarkers in Pheochromocytomas and Adrenocortical Tumors. BIOLOGY 2021; 10:biology10070580. [PMID: 34201922 PMCID: PMC8301201 DOI: 10.3390/biology10070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Simple Summary Pheochromocytomas/paragangliomas (PPGLs) and adrenocortical tumors are neoplasms that originate from different regions of the adrenal gland and display significant heterogeneity with respect to their biological and clinical behavior. They may be sporadic or develop in the context of hereditary syndromes. Adrenocortical tumors are mostly benign but less than 2% are carcinomas associated with a poor outcome when diagnosed in advanced disease. The majority of PPGLS are benign, but a subset may develop metastatic disease. In particular, for PPGLs, it is mandatory to identify biomarkers of high sensitivity and specificity that lead to accurate diagnosis and predict patients with a malignant potential that would benefit from aggressive surveillance and administration of early treatment. Current biomarkers include mostly histopathological and genetic parameters but none of them can be considered independent predictive factors. Recent genomic studies have implemented new molecular biomarkers of high accuracy for the diagnosis and management of PPGLs and adrenocortical tumors. In this review, we summarize the current and novel biomarkers that may be considered valuable tools for diagnosis and prediction of malignancy in patients with PPGLs and adrenocortical tumors. Abstract Pheochromocytomas/Paragangliomas (PPGLs) and adrenocortical tumors are rare neoplasms with significant heterogeneity in their biologic and clinical behavior. Current diagnostic and predictive biomarkers include hormone secretion, as well as histopathological and genetic features. PPGL diagnosis is based on biochemical measurement of catecholamines/metanephrines, while histopathological scoring systems have been proposed to predict the risk of malignancy. Adrenocortical tumors are mostly benign, but some can be malignant. Currently, the stage of disease at diagnosis and tumor grade, appear to be the most powerful prognostic factors. However, recent genomic and proteomic studies have identified new genetic and circulating biomarkers, including genes, immunohistochemical markers and micro-RNAs that display high specificity and sensitivity as diagnostic or prognostic tools. In addition, new molecular classifications have been proposed that divide adrenal tumors in distinct subgroups with different clinical outcomes.
Collapse
|
9
|
Brasil S, Neves CJ, Rijoff T, Falcão M, Valadão G, Videira PA, Dos Reis Ferreira V. Artificial Intelligence in Epigenetic Studies: Shedding Light on Rare Diseases. Front Mol Biosci 2021; 8:648012. [PMID: 34026829 PMCID: PMC8131862 DOI: 10.3389/fmolb.2021.648012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
More than 7,000 rare diseases (RDs) exist worldwide, affecting approximately 350 million people, out of which only 5% have treatment. The development of novel genome sequencing techniques has accelerated the discovery and diagnosis in RDs. However, most patients remain undiagnosed. Epigenetics has emerged as a promise for diagnosis and therapies in common disorders (e.g., cancer) with several epimarkers and epidrugs already approved and used in clinical practice. Hence, it may also become an opportunity to uncover new disease mechanisms and therapeutic targets in RDs. In this “big data” age, the amount of information generated, collected, and managed in (bio)medicine is increasing, leading to the need for its rapid and efficient collection, analysis, and characterization. Artificial intelligence (AI), particularly deep learning, is already being successfully applied to analyze genomic information in basic research, diagnosis, and drug discovery and is gaining momentum in the epigenetic field. The application of deep learning to epigenomic studies in RDs could significantly boost discovery and therapy development. This review aims to collect and summarize the application of AI tools in the epigenomic field of RDs. The lower number of studies found, specific for RDs, indicate that this is a field open to expansion, following the results obtained for other more common disorders.
Collapse
Affiliation(s)
- Sandra Brasil
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Cátia José Neves
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Tatiana Rijoff
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Marta Falcão
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Gonçalo Valadão
- Instituto de Telecomunicações, Lisbon, Portugal.,Departamento de Ciências e Tecnologias, Autónoma Techlab - Universidade Autónoma de Lisboa, Lisbon, Portugal.,Electronics, Telecommunications and Computers Engineering Department, Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal.,UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal.,CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| |
Collapse
|
10
|
MicroRNAs, Long Non-Coding RNAs, and Circular RNAs: Potential Biomarkers and Therapeutic Targets in Pheochromocytoma/Paraganglioma. Cancers (Basel) 2021; 13:cancers13071522. [PMID: 33810219 PMCID: PMC8036642 DOI: 10.3390/cancers13071522] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Around 40% of pheochromocytomas/paragangliomas (PPGL) harbor germline mutations, representing the highest heritability among human tumors. All PPGL have metastatic potential, but metastatic PPGL is overall rare. There is no available molecular marker for the metastatic potential of these tumors, and the diagnosis of metastatic PPGL can only be established if metastases are found at "extra-chromaffin" sites. In the era of precision medicine with individually targeted therapies and advanced care of patients, the treatment options for metastatic pheochromocytoma/paraganglioma are still limited. With this review we would like to nurture the idea of the quest for non-coding ribonucleic acids as an area to be further investigated in tumor biology. Non-coding RNA molecules encompassing microRNAs, long non-coding RNAs, and circular RNAs have been implicated in the pathogenesis of various tumors, and were also proposed as valuable diagnostic, prognostic factors, and even potential treatment targets. Given the fact that the pathogenesis of tumors including pheochromocytomas/paragangliomas is linked to epigenetic dysregulation, it is reasonable to conduct studies related to their epigenetic expression profiles and in this brief review we present a synopsis of currently available findings on the relevance of these molecules in these tumors highlighting their diagnostic potential.
Collapse
|
11
|
Papathomas TG, Suurd DPD, Pacak K, Tischler AS, Vriens MR, Lam AK, de Krijger RR. What Have We Learned from Molecular Biology of Paragangliomas and Pheochromocytomas? Endocr Pathol 2021; 32:134-153. [PMID: 33433885 DOI: 10.1007/s12022-020-09658-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/13/2022]
Abstract
Recent advances in molecular genetics and genomics have led to increased understanding of the aetiopathogenesis of pheochromocytomas and paragangliomas (PPGLs). Thus, pan-genomic studies now provide a comprehensive integrated genomic analysis of PPGLs into distinct molecularly defined subtypes concordant with tumour genotypes. In addition, new embryological discoveries have refined the concept of how normal paraganglia develop, potentially establishing a developmental basis for genotype-phenotype correlations for PPGLs. The challenge for modern pathology is to translate these scientific discoveries into routine practice, which will be based largely on histopathology for the foreseeable future. Here, we review recent progress concerning the cell of origin and molecular pathogenesis of PPGLs, including pathogenetic mechanisms, genetic susceptibility and molecular classification. The current roles and tools of pathologists are considered from a histopathological perspective, including differential diagnoses, genotype-phenotype correlations and the use of immunohistochemistry in identifying hereditary predisposition and validating genetic variants of unknown significance. Current and potential molecular prognosticators are also presented with the hope that predictive molecular biomarkers will be integrated into risk stratification scoring systems to assess the metastatic potential of these intriguing neoplasms and identify potential drug targets.
Collapse
Affiliation(s)
- Thomas G Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Gloucestershire Cellular Pathology Laboratory, Cheltenham General Hospital, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham, UK
| | - Diederik P D Suurd
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston Massachusetts, USA
| | - Menno R Vriens
- Department of Surgical Oncology and Endocrine Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alfred K Lam
- School of Medicine, Griffith University, Gold Coast, QLD, Australia.
- Pathology Queensland, Gold Coast University Hospital, Gold Coast, QLD, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Dariane C, Goncalves J, Timsit MO, Favier J. An update on adult forms of hereditary pheochromocytomas and paragangliomas. Curr Opin Oncol 2021; 33:23-32. [PMID: 33186184 DOI: 10.1097/cco.0000000000000694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Pheochromocytomas and paragangliomas (PPGL) display a strong genetic determinism with 40% of inherited forms. The purpose of this review is to provide an update on current knowledge on adult forms of hereditary PPGL and their management. RECENT FINDINGS PPGL are genetically-driven in 70% of cases, with germline and/or somatic mutations identified in more than 20 genes. Although eight new susceptibility genes have recently emerged, mutations on SDHx genes remain the most frequent. In addition to SDHB, mutations in SLC25A11, FH and MDH2 may predispose to a metastatic disease and somatic alterations including TERT and ATRX mutations, and the differential expression on noncoding RNAs are also associated with the occurrence of metastases.The biochemical diagnosis remains the mainstay of functional PPGL and does not differ between hereditary PPGL while the choice of the best nuclear imaging approach is dictated by the tumor type and can be influenced by the presence of a germline mutation (18F-DOPA PET/CT for cluster 2 mutation and Ga-DOTATATE PET/CT for cluster 1 mutation). SUMMARY A systematic genetic testing and counselling is recommended for all PPGL patients and should lead to conservative surgery and an adapted follow up, in case of hereditary form.
Collapse
Affiliation(s)
- Charles Dariane
- Service d'urologie, Hôpital européen Georges-Pompidou, Université de Paris
| | - Judith Goncalves
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Marc-Olivier Timsit
- Service d'urologie, Hôpital européen Georges-Pompidou, Université de Paris
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| |
Collapse
|
13
|
Wang Z, Li Y, Zhong Y, Wang Y, Peng M. Comprehensive Analysis of Aberrantly Expressed Competitive Endogenous RNA Network and Identification of Prognostic Biomarkers in Pheochromocytoma and Paraganglioma. Onco Targets Ther 2020; 13:11377-11395. [PMID: 33192072 PMCID: PMC7654541 DOI: 10.2147/ott.s271417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) functions as a competitive endogenous RNA (ceRNA) and plays an important role in the biological processes underlying tumorigenesis. However, studies describing the function of lncRNA in pheochromocytoma and paraganglioma (PCPG) remain largely unknown. Our study aims to construct a regulatory ceRNA network and explore prognostic biomarkers for PCPG through a comprehensive analysis. Methods PCPG data from The Cancer Genome Atlas (TCGA) were utilized to obtain differentially expressed lncRNAs (DElncRNAs), microRNAs (DEmiRNAs), and mRNAs (DEmRNAs). Kaplan–Meier analysis was used to detect prognostic biomarkers and Cytoscape was utilized to construct a regulatory network of ceRNA. Potential lncRNA–miRNA–mRNA axes were inferred by correlation analysis. GO and KEGG pathways were constructed using “clusterProfiler” and “DOSE” R-packages. Immunohistochemistry (IHC) staining was performed to validate differential protein expression levels of genes in the axes. Finally, the GSE19422 dataset and Pan-Cancer data were applied to validate the expression pattern and survival status of mRNAs, respectively. Results A total of 334 DElncRNAs, 116 DEmiRNAs, and 3496 DEmRNAs were identified and mainly enriched in hormone secretion, metabolism signaling, metastatic and proliferative pathways. Among these differentially expressed genes, 16 mRNAs, six lncRNAs, and two miRNAs were associated with overall survival of patients with PCPG and sequentially enrolled in the ceRNA network. Two lncRNA–miRNA–mRNA regulatory axes were predicted: AP001486.2/hsa-miR-195-5p/RCAN3 and AP006333.2/hsa-miR-34a-5p/PTPRJ. The GSE19422 dataset and IHC analysis validated that mRNA and protein levels of RCAN3 and PTPRJ were upregulated in PCPG tissues compared with adjacent adrenal gland medulla tissues. Pan-Cancer data showed that the upregulated expression of RCAN3 and PTPRJ was associated with favorable overall survival and disease-free survival. Conclusion A regulatory lncRNA–miRNA–mRNA ceRNA network was successfully constructed and 24 prognostic biomarkers were identified for PCPG patients. These findings may contribute toward a better understanding of the biological mechanism of tumorigenesis and enable further evaluation of the prognosis of patients with PCPG.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yijian Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Yanjun Zhong
- ICU Center, The Second Xiangya Hospital, Central South University, Hunan, Hunan 410011, People's Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|