1
|
Raj S, Sifuentes CJ, Kyono Y, Denver RJ. Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain. PLoS One 2023; 18:e0287858. [PMID: 37384728 PMCID: PMC10310023 DOI: 10.1371/journal.pone.0287858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Amphibian metamorphosis is controlled by thyroid hormone (TH), which binds TH receptors (TRs) to regulate gene expression programs that underlie morphogenesis. Gene expression screens using tissues from premetamorphic tadpoles treated with TH identified some TH target genes, but few studies have analyzed genome-wide changes in gene regulation during spontaneous metamorphosis. We analyzed RNA sequencing data at four developmental stages from the beginning to the end of spontaneous metamorphosis, conducted on the neuroendocrine centers of Xenopus tropicalis tadpole brain. We also conducted chromatin immunoprecipitation sequencing (ChIP-seq) for TRs, and we compared gene expression changes during metamorphosis with those induced by exogenous TH. The mRNA levels of 26% of protein coding genes changed during metamorphosis; about half were upregulated and half downregulated. Twenty four percent of genes whose mRNA levels changed during metamorphosis had TR ChIP-seq peaks. Genes involved with neural cell differentiation, cell physiology, synaptogenesis and cell-cell signaling were upregulated, while genes involved with cell cycle, protein synthesis, and neural stem/progenitor cell homeostasis were downregulated. There is a shift from building neural structures early in the metamorphic process, to the differentiation and maturation of neural cells and neural signaling pathways characteristic of the adult frog brain. Only half of the genes modulated by treatment of premetamorphic tadpoles with TH for 16 h changed expression during metamorphosis; these represented 33% of the genes whose mRNA levels changed during metamorphosis. Taken together, our results provide a foundation for understanding the molecular basis for metamorphosis of tadpole brain, and they highlight potential caveats for interpreting gene regulation changes in premetamorphic tadpoles induced by exogenous TH.
Collapse
Affiliation(s)
- Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher J. Sifuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yasuhiro Kyono
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Weihs A, Chaker L, Martin TC, Braun KV, Campbell PJ, Cox SR, Fornage M, Gieger C, Grabe HJ, Grallert H, Harris SE, Kühnel B, Marioni RE, Martin NG, McCartney DL, McRae AF, Meisinger C, van Meurs JB, Nano J, Nauck M, Peters A, Prokisch H, Roden M, Selvin E, Beekman M, van Heemst D, Slagboom EP, Swenson BR, Tin A, Tsai PC, Uitterlinden A, Visser WE, Völzke H, Waldenberger M, Walsh JP, Köttgen A, Wilson SG, Peeters RP, Bell JT, Medici M, Teumer A. Epigenome-Wide Association Study Reveals CpG Sites Associated with Thyroid Function and Regulatory Effects on KLF9. Thyroid 2023; 33:301-311. [PMID: 36719767 PMCID: PMC10024591 DOI: 10.1089/thy.2022.0373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background: Thyroid hormones play a key role in differentiation and metabolism and are known regulators of gene expression through both genomic and epigenetic processes including DNA methylation. The aim of this study was to examine associations between thyroid hormones and DNA methylation. Methods: We carried out a fixed-effect meta-analysis of epigenome-wide association study (EWAS) of blood DNA methylation sites from 8 cohorts from the ThyroidOmics Consortium, incorporating up to 7073 participants of both European and African ancestry, implementing a discovery and replication stage. Statistical analyses were conducted using normalized beta CpG values as dependent and log-transformed thyrotropin (TSH), free thyroxine, and free triiodothyronine levels, respectively, as independent variable in a linear model. The replicated findings were correlated with gene expression levels in whole blood and tested for causal influence of TSH and free thyroxine by two-sample Mendelian randomization (MR). Results: Epigenome-wide significant associations (p-value <1.1E-7) of three CpGs for free thyroxine, five for free triiodothyronine, and two for TSH concentrations were discovered and replicated (combined p-values = 1.5E-9 to 4.3E-28). The associations included CpG sites annotated to KLF9 (cg00049440) and DOT1L (cg04173586) that overlap with all three traits, consistent with hypothalamic-pituitary-thyroid axis physiology. Significant associations were also found for CpGs in FKBP5 for free thyroxine, and at CSNK1D/LINCO1970 and LRRC8D for free triiodothyronine. MR analyses supported a causal effect of thyroid status on DNA methylation of KLF9. DNA methylation of cg00049440 in KLF9 was inversely correlated with KLF9 gene expression in blood. The CpG at CSNK1D/LINC01970 overlapped with thyroid hormone receptor alpha binding peaks in liver cells. The total additive heritability of the methylation levels of the six significant CpG sites was between 25% and 57%. Significant methylation QTLs were identified for CpGs at KLF9, FKBP5, LRRC8D, and CSNK1D/LINC01970. Conclusions: We report novel associations between TSH, thyroid hormones, and blood-based DNA methylation. This study advances our understanding of thyroid hormone action particularly related to KLF9 and serves as a proof-of-concept that integrations of EWAS with other -omics data can provide a valuable tool for unraveling thyroid hormone signaling in humans by complementing and feeding classical in vitro and animal studies.
Collapse
Affiliation(s)
- Antoine Weihs
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Layal Chaker
- Erasmus MC Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus MC Academic Center for Thyroid Diseases, Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tiphaine C. Martin
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Twin Research and Genetic Epidemiology, St Thomas' Hospital Campus, King's College London, London, United Kingdom
| | - Kim V.E. Braun
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Purdey J. Campbell
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Simon R. Cox
- Lothian Birth Cohorts, Department of Psychology; Institute of Genetics and Cancer; University of Edinburgh, Edinburgh, United Kingdom
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Institute of Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hans J. Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Site Rostock, Greifswald, Germany
| | - Harald Grallert
- Research Unit Molecular Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Institute of Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Sarah E. Harris
- Lothian Birth Cohorts, Department of Psychology; Institute of Genetics and Cancer; University of Edinburgh, Edinburgh, United Kingdom
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Institute of Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer; University of Edinburgh, Edinburgh, United Kingdom
| | | | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer; University of Edinburgh, Edinburgh, United Kingdom
| | - Allan F. McRae
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Australia
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Joyce B.J. van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopeadics and Sports Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jana Nano
- Institute of Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Annette Peters
- Research Unit Molecular Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Institute of Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Holger Prokisch
- Institute of Neurogenomics, Computational Health Center; Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Medical Faculty; Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty; Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Marian Beekman
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Diana van Heemst
- Section of Gerontology and Geriatrics, Department of Internal Medicine; Leiden University Medical Center, Leiden, Netherlands
| | - Eline P. Slagboom
- Section of Molecular Epidemiology, Department of Biomedical Data Sciences, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Brenton R. Swenson
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, USA
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, St Thomas' Hospital Campus, King's College London, London, United Kingdom
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Andre Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - W. Edward Visser
- Erasmus MC Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Henry Völzke
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine; University Medicine Greifswald, Greifswald, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- Institute of Epidemiology, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
- Medical School, University of Western Australia, Crawley, Australia
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Scott G. Wilson
- Department of Twin Research and Genetic Epidemiology, St Thomas' Hospital Campus, King's College London, London, United Kingdom
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
- School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Robin P. Peeters
- Erasmus MC Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, St Thomas' Hospital Campus, King's College London, London, United Kingdom
| | - Marco Medici
- Erasmus MC Academic Center for Thyroid Diseases, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine; University Medicine Greifswald, Greifswald, Germany
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Liu L, Liu Q, Zou X, Chen Q, Wang X, Gao Z, Jiang J. Identification of thyroid hormone response genes in the remodeling of dorsal muscle during Microhyla fissipes metamorphosis. Front Endocrinol (Lausanne) 2023; 14:1099130. [PMID: 36817577 PMCID: PMC9937655 DOI: 10.3389/fendo.2023.1099130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/02/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Extensive morphological, biochemical, and cellular changes occur during anuran metamorphosis, which is triggered by a single hormone, thyroid hormone (TH). The function of TH is mainly mediated through thyroid receptor (TR) by binding to the specific thyroid response elements (TREs) of direct response genes, in turn regulating the downstream genes in the cascade. The remodeling of dorsal skeletal muscle during anuran metamorphosis provides the perfect model to identify the immediate early and direct response genes that are important during apoptosis, proliferation, and differentiation of the muscle. Methods In our current study, we performed Illumina sequencing combined with single-molecule real-time (SMRT) sequencing in the dorsal muscle of Microhyla fissipes after TH, cycloheximide (CHX), and TH_CHX treatment. Results and Discussion We first identified 1,245 differentially expressed transcripts (DETs) after TH exposure, many of which were involved in DNA replication, protein processing in the endoplasmic reticulum, cell cycle, apoptosis, p53 signaling pathway, and protein digestion and absorption. In the comparison of the TH group vs. control group and TH_CHX group vs. CHX group overlapping gene, 39 upregulated and 6 downregulated genes were identified as the TH directly induced genes. Further analysis indicated that AGGTCAnnTnAGGTCA is the optimal target sequence of target genes for TR/RXR heterodimers in M. fissipes. Future investigations on the function and regulation of these genes and pathways should help to reveal the mechanisms governing amphibian dorsal muscle remodeling. These full-length and high-quality transcriptomes in this study also provide an important foundation for future studies in M. fissipes metamorphosis.
Collapse
Affiliation(s)
- Lusha Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qi Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xue Zou
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qiheng Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zexia Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
4
|
Han DT, Zhao W, Powell WH. Dioxin Disrupts Thyroid Hormone and Glucocorticoid Induction of klf9, a Master Regulator of Frog Metamorphosis. Toxicol Sci 2022; 187:150-161. [PMID: 35172007 PMCID: PMC9041550 DOI: 10.1093/toxsci/kfac017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frog metamorphosis, the development of an air-breathing froglet from an aquatic tadpole, is controlled by thyroid hormone (TH) and glucocorticoids (GC). Metamorphosis is susceptible to disruption by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AHR) agonist. Krüppel-like factor 9 (klf9), an immediate early gene in the endocrine-controlled cascade of expression changes governing metamorphosis, can be synergistically induced by both hormones. This process is mediated by an upstream enhancer cluster, the klf9 synergy module (KSM). klf9 is also an AHR target. We measured klf9 mRNA following exposures to triiodothyronine (T3), corticosterone (CORT), and TCDD in the Xenopus laevis cell line XLK-WG. klf9 was induced 6-fold by 50 nM T3, 4-fold by 100 nM CORT, and 3-fold by 175 nM TCDD. Cotreatments of CORT and TCDD or T3 and TCDD induced klf9 7- and 11-fold, respectively, whereas treatment with all 3 agents induced a 15-fold increase. Transactivation assays examined enhancers from the Xenopus tropicalis klf9 upstream region. KSM-containing segments mediated a strong T3 response and a larger T3/CORT response, whereas induction by TCDD was mediated by a region ∼1 kb farther upstream containing 5 AHR response elements (AHREs). This region also supported a CORT response in the absence of readily identifiable GC responsive elements, suggesting mediation by protein-protein interactions. A functional AHRE cluster is positionally conserved in the human genome, and klf9 was induced by TCDD and TH in HepG2 cells. These results indicate that AHR binding to upstream AHREs represents an early key event in TCDD's disruption of endocrine-regulated klf9 expression and metamorphosis.
Collapse
Affiliation(s)
| | | | - Wade H Powell
- To whom correspondence should be addressed at Biology Department, Kenyon College, 202 N College Rd, Gambier, OH 43022. E-mail:
| |
Collapse
|
5
|
Martínez-Guitarte JL, Beltrán EM, González-Doncel M, García-Hortigüela P, Fernández A, Pablos MV. Effect assessment of reclaimed waters and carbamazepine exposure on the thyroid axis of Xenopus laevis: Gene expression modifications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118226. [PMID: 34563849 DOI: 10.1016/j.envpol.2021.118226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Reclaimed water (RW) obtained from wastewater treatment plants (WWTP) is used for irrigation, groundwater recharge, among other potential uses. Although most pollutants are removed, traces of them are frequently found, which can affect organisms and alter the environment. The presence of a myriad of contaminants in RW makes it a complex mixture with very diverse effects and interactions. A previous study, in which tadpoles were exposed to RW and RW spiked with Carbamazepine (CBZ), presented slight thyroid gland stimulation, as suggested by the development acceleration of tadpoles and histological findings in the gland provoked by RW, regardless of the CBZ concentration. To complement this study, the present work analysed the putative molecular working mechanism by selecting six genes coding for the thyroid-stimulating hormone (TSHβ), thyroid hormone metabolising enzymes (DIO2, DIO3), thyroid receptors (THRA, THRB), and a thyroid hormone-induced DNA binding protein (Kfl9). Transcriptional activity was studied by Real-Time PCR (RT-PCR) in brains, hind limbs, and tails on exposure days 1, 7, and 21. No significant differences were observed between treatments for each time point, but slight alterations were noted when the time response was analysed. The obtained results indicate that the effects of RW or RW spiked with CBZ are negligible for the genes analysed during the selected exposure periods.
Collapse
Affiliation(s)
- José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040, Madrid, Spain
| | - Eulalia María Beltrán
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Miguel González-Doncel
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Pilar García-Hortigüela
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - Amanda Fernández
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain
| | - María Victoria Pablos
- Laboratory for Ecotoxicology, Department of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology, INIA-CSIC, Crta La Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Raj S, Kyono Y, Sifuentes CJ, Arellanes-Licea EDC, Subramani A, Denver RJ. Thyroid Hormone Induces DNA Demethylation in Xenopus Tadpole Brain. Endocrinology 2020; 161:bqaa155. [PMID: 32865566 PMCID: PMC7947600 DOI: 10.1210/endocr/bqaa155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022]
Abstract
Thyroid hormone (T3) plays pivotal roles in vertebrate development, acting via nuclear T3 receptors (TRs) that regulate gene transcription by promoting post-translational modifications to histones. Methylation of cytosine residues in deoxyribonucleic acid (DNA) also modulates gene transcription, and our recent finding of predominant DNA demethylation in the brain of Xenopus tadpoles at metamorphosis, a T3-dependent developmental process, caused us to hypothesize that T3 induces these changes in vivo. Treatment of premetamorphic tadpoles with T3 for 24 or 48 hours increased immunoreactivity in several brain regions for the DNA demethylation intermediates 5-hydroxymethylcytosine (5-hmC) and 5-carboxylcytosine, and the methylcytosine dioxygenase ten-eleven translocation 3 (TET3). Thyroid hormone treatment induced locus-specific DNA demethylation in proximity to known T3 response elements within the DNA methyltransferase 3a and Krüppel-like factor 9 genes, analyzed by 5-hmC immunoprecipitation and methylation sensitive restriction enzyme digest. Chromatin-immunoprecipitation (ChIP) assay showed that T3 induced TET3 recruitment to these loci. Furthermore, the messenger ribonucleic acid for several genes encoding DNA demethylation enzymes were induced by T3 in a time-dependent manner in tadpole brain. A TR ChIP-sequencing experiment identified putative TR binding sites at several of these genes, and we provide multiple lines of evidence to support that tet2 contains a bona fide T3 response element. Our findings show that T3 can promote DNA demethylation in developing tadpole brain, in part by promoting TET3 recruitment to discrete genomic regions, and by inducing genes that encode DNA demethylation enzymes.
Collapse
Affiliation(s)
- Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yasuhiro Kyono
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Christopher J Sifuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Kyono Y, Raj S, Sifuentes CJ, Buisine N, Sachs L, Denver RJ. DNA methylation dynamics underlie metamorphic gene regulation programs in Xenopus tadpole brain. Dev Biol 2020; 462:180-196. [PMID: 32240642 PMCID: PMC7251973 DOI: 10.1016/j.ydbio.2020.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 01/07/2023]
Abstract
Methylation of cytosine residues in DNA influences chromatin structure and gene transcription, and its regulation is crucial for brain development. There is mounting evidence that DNA methylation can be modulated by hormone signaling. We analyzed genome-wide changes in DNA methylation and their relationship to gene regulation in the brain of Xenopus tadpoles during metamorphosis, a thyroid hormone-dependent developmental process. We studied the region of the tadpole brain containing neurosecretory neurons that control pituitary hormone secretion, a region that is highly responsive to thyroid hormone action. Using Methylated DNA Capture sequencing (MethylCap-seq) we discovered a diverse landscape of DNA methylation across the tadpole neural cell genome, and pairwise stage comparisons identified several thousand differentially methylated regions (DMRs). During the pre-to pro-metamorphic period, the number of DMRs was lowest (1,163), with demethylation predominating. From pre-metamorphosis to metamorphic climax DMRs nearly doubled (2,204), with methylation predominating. The largest changes in DNA methylation were seen from metamorphic climax to the completion of metamorphosis (2960 DMRs), with 80% of the DMRs representing demethylation. Using RNA sequencing, we found negative correlations between differentially expressed genes and DMRs localized to gene bodies and regions upstream of transcription start sites. DNA demethylation at metamorphosis revealed by MethylCap-seq was corroborated by increased immunoreactivity for the DNA demethylation intermediates 5-hydroxymethylcytosine and 5-carboxymethylcytosine, and the methylcytosine dioxygenase ten eleven translocation 3 that catalyzes DNA demethylation. Our findings show that the genome of tadpole neural cells undergoes significant changes in DNA methylation during metamorphosis, and these changes likely influence chromatin architecture, and gene regulation programs occurring during this developmental period.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher J Sifuentes
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Buisine
- UMR-7221, Centre National de la recherche scientifique (CNRS), Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Laurent Sachs
- UMR-7221, Centre National de la recherche scientifique (CNRS), Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
8
|
Shibata Y, Tanizaki Y, Shi YB. Thyroid hormone receptor beta is critical for intestinal remodeling during Xenopus tropicalis metamorphosis. Cell Biosci 2020; 10:46. [PMID: 32231780 PMCID: PMC7099810 DOI: 10.1186/s13578-020-00411-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/18/2020] [Indexed: 12/15/2022] Open
Abstract
Background Thyroid hormone (T3) is critical for development in all vertebrates. The mechanism underlying T3 effect has been difficult to study due to the uterus-enclosed nature of mammalian embryos. Anuran metamorphosis, which is dependent on T3 but independent of maternal influence, is an excellent model to study the roles of T3 and its receptors (TRs) during vertebrate development. We and others have reported various effects of TR knockout (TRα and TRβ) during Xenopus tropicalis development. However, these studies were largely focused on external morphology. Results We have generated TRβ knockout animals containing an out-frame-mutation of 5 base deletion by using the CRISPR/Cas9 system and observed that TRβ knockout does not affect premetamorphic tadpole development. We have found that the basal expression of direct T3-inducible genes is increased but their upregulation by T3 is reduced in the intestine of premetamorphic homozygous TRβ knockout animals, accompanied by reduced target binding by TR. More importantly, we have observed reduced adult stem cell proliferation and larval epithelial apoptosis in the intestine during T3-induced metamorphosis. Conclusions Our data suggest that TRβ plays a critical role in intestinal remodeling during metamorphosis.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yuta Tanizaki
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
9
|
Shibata Y, Wen L, Okada M, Shi YB. Organ-Specific Requirements for Thyroid Hormone Receptor Ensure Temporal Coordination of Tissue-Specific Transformations and Completion of Xenopus Metamorphosis. Thyroid 2020; 30:300-313. [PMID: 31854240 PMCID: PMC7047119 DOI: 10.1089/thy.2019.0366] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Thyroid hormone (triiodothyronine [T3]) is essential for the development throughout vertebrates. Anuran metamorphosis mimics mammalian postembryonic development, a period around birth when plasma T3 level peaks and many organs/tissues mature into their adult forms. Compared with the uterus-enclosed mammalian embryos, tadpoles can be easily manipulated to study the roles of T3 and T3 receptors (TRs) in tissue remodeling and adult organ development. We and others have previously knocked out TRα or TRβ in the diploid anuran Xenopus tropicalis and reported distinct effects of the two receptor knockouts on metamorphosis. However, animals lacking either TRα or TRβ can complete metamorphosis and develop into reproductive adults. Methods: We have generated TRα and TRβ double knockout animals and carried out molecular and morphological analyses to determine if TR is required for Xenopus development. Results: We found that the TR double knockout tadpoles do not respond to T3, supporting the view that there are no other TR genes in X. tropicalis and that TR is essential for mediating the effects of T3 in vivo. Surprisingly, the double knockout tadpoles are able to initiate metamorphosis and accomplish many metamorphic changes, such as limb development. However, all double knockout tadpoles stall and eventually die at stage 61, the climax of metamorphosis, before tail resorption takes place. Analyses of the knockout tadpoles at stage 61 revealed various developmental abnormalities, including precocious ossification and extra vertebrae. Conclusions: Our data indicate that TRs are not required for the initiation of metamorphosis but is essential for the completion of metamorphosis. Furthermore, the differential effects of TR knockout on different organs/tissues suggest tissue-specific roles for TR to control temporal coordination and progression of metamorphosis in various organs.
Collapse
Affiliation(s)
- Yuki Shibata
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Luan Wen
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Morihiro Okada
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
- Address correspondence to: Yun-Bo Shi, PhD, Section on Molecular Morphogenesis, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
10
|
Wen L, He C, Sifuentes CJ, Denver RJ. Thyroid Hormone Receptor Alpha Is Required for Thyroid Hormone-Dependent Neural Cell Proliferation During Tadpole Metamorphosis. Front Endocrinol (Lausanne) 2019; 10:396. [PMID: 31316462 PMCID: PMC6610206 DOI: 10.3389/fendo.2019.00396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormone (T3) plays several key roles in development of the nervous system in vertebrates, controlling diverse processes such as neurogenesis, cell migration, apoptosis, differentiation, and maturation. In anuran amphibians, the hormone exerts its actions on the tadpole brain during metamorphosis, a developmental period dependent on T3. Thyroid hormone regulates gene transcription by binding to two nuclear receptors, TRα and TRβ. Our previous findings using pharmacological and other approaches supported that TRα plays a pivotal role in mediating T3 actions on neural cell proliferation in Xenopus tadpole brain. Here we used Xenopus tropicalis (X. tropicalis) tadpoles with an inactivating mutation in the gene that encodes TRα to investigate roles for TRα in mitosis and gene regulation in tadpole brain. Gross morphological analysis showed that mutant tadpoles had proportionally smaller brains, corrected for body size, compared with wildtype, both during prometamorphosis and at the completion of metamorphosis. This was reflected in a large reduction in phosphorylated histone 3 (pH3; a mitosis marker) immunoreactive (ir) nuclei in prometamorphic tadpole brain, when T3-dependent cell proliferation is maximal. Treatment of wild type premetamorphic tadpoles with T3 for 48 h induced gross morphological changes in the brain, and strongly increased pH3-ir, but had no effect in mutant tadpoles. Thyroid hormone induction of the direct TR target genes thrb, klf9, and thibz was dysregulated in mutant tadpoles. Analysis of gene expression by RNA sequencing in the brain of premetamorphic tadpoles treated with or without T3 for 16 h showed that the TRα accounts for 95% of the gene regulation responses to T3.
Collapse
Affiliation(s)
| | | | | | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
11
|
Laslo M, Denver RJ, Hanken J. Evolutionary Conservation of Thyroid Hormone Receptor and Deiodinase Expression Dynamics in ovo in a Direct-Developing Frog, Eleutherodactylus coqui. Front Endocrinol (Lausanne) 2019; 10:307. [PMID: 31178826 PMCID: PMC6542950 DOI: 10.3389/fendo.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
Direct development is a reproductive mode in amphibians that has evolved independently from the ancestral biphasic life history in at least a dozen anuran lineages. Most direct-developing frogs, including the Puerto Rican coquí, Eleutherodactylus coqui, lack a free-living aquatic larva and instead hatch from terrestrial eggs as miniature adults. Their embryonic development includes the transient formation of many larval-specific features and the formation of adult-specific features that typically form postembryonically-during metamorphosis-in indirect-developing frogs. We found that pre-hatching developmental patterns of thyroid hormone receptors alpha (thra) and beta (thrb) and deiodinases type II (dio2) and type III (dio3) mRNAs in E. coqui limb and tail are conserved relative to those seen during metamorphosis in indirect-developing frogs. Additionally, thra, thrb, and dio2 mRNAs are expressed in the limb before formation of the embryonic thyroid gland. Liquid-chromatography mass-spectrometry revealed that maternally derived thyroid hormone is present throughout early embryogenesis, including stages of digit formation that occur prior to the increase in embryonically produced thyroid hormone. Eleutherodactylus coqui embryos take up much less 3,5,3'-triiodothyronine (T3) from the environment compared with X. tropicalis tadpoles. However, E. coqui tissue explants mount robust and direct gene expression responses to exogenous T3 similar to those seen in metamorphosing species. The presence of key components of the thyroid axis in the limb and the ability of limb tissue to respond to T3 suggest that thyroid hormone-mediated limb development may begin prior to thyroid gland formation. Thyroid hormone-dependent limb development and tail resorption characteristic of metamorphosis in indirect-developing anurans are evolutionarily conserved, but they occur instead in ovo in E. coqui.
Collapse
Affiliation(s)
- Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
- *Correspondence: Mara Laslo
| | - Robert J. Denver
- Departments of Molecular, Cellular and Developmental Biology, and Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, United States
| |
Collapse
|
12
|
Taft JD, Colonnetta MM, Schafer RE, Plick N, Powell WH. Dioxin Exposure Alters Molecular and Morphological Responses to Thyroid Hormone in Xenopus laevis Cultured Cells and Prometamorphic Tadpoles. Toxicol Sci 2018; 161:196-206. [PMID: 29294139 PMCID: PMC5837452 DOI: 10.1093/toxsci/kfx213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amphibian metamorphosis is driven by thyroid hormone (TH). We used prometamorphic tadpoles and a cell line of the African clawed frog (Xenopus laevis) to examine immediate effects of dioxin exposure on TH. Gene expression patterns suggest cross-talk between the thyroid hormone receptor (TR) and aryl hydrocarbon receptor (AHR) signaling pathways. In XLK-WG cells, expression of Cytochrome P450 1A6 (cyp1A6), an AHR target, was induced 1000-fold by 100 nM TCDD (2, 3, 7, 8 tetrachlorodibenzo-p-dioxin). Krüppel-Like Factor 9 (klf9), the first gene induced in a cascade of TH responses tied to metamorphosis, was upregulated over 5-fold by 50 nM triiodothyronine (T3) and 2-fold by dioxin. Co-exposure to T3 and TCDD boosted both responses, further inducing cyp1A6 by 75% and klf9 about 60%. Additional canonical targets of each receptor, including trβa and trβb (TR) and udpgt1a (AHR) responded similarly. Induction of TH targets by TCDD in XLK-WG cells predicts that exposure could speed metamorphosis. We tested this hypothesis in two remodeling events: tail resorption and hind limb growth. Resorption of ex vivo cultured tails was accelerated by 10 nM T3, while a modest increase in resorption by 100 nM TCDD lacked statistical significance. Hind limbs doubled in length over four days following 1 nM T3 treatment, but limb length was unaffected by 100 nM TCDD. TCDD co-exposure reduced the T3 effect by nearly 40%, despite TCDD induction of klf9 in whole tadpoles, alone or with T3. These results suggest that tissue-specific TCDD effects limit or reverse the increased metamorphosis rate predicted by klf9 induction.
Collapse
Affiliation(s)
- Justin D Taft
- Biology Department, Kenyon College, Gambier, Ohio 43022
| | | | | | - Natalie Plick
- Biology Department, Kenyon College, Gambier, Ohio 43022
| | - Wade H Powell
- Biology Department, Kenyon College, Gambier, Ohio 43022
| |
Collapse
|
13
|
Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis. Sci Rep 2017; 7:6414. [PMID: 28743885 PMCID: PMC5527017 DOI: 10.1038/s41598-017-06679-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/16/2017] [Indexed: 12/26/2022] Open
Abstract
Thyroid hormone (T3) affects development and metabolism in vertebrates. We have been studying intestinal remodeling during T3-dependent Xenopus metamorphosis as a model for organ maturation and formation of adult organ-specific stem cells during vertebrate postembryonic development, a period characterized by high levels of plasma T3. T3 is believed to affect development by regulating target gene transcription through T3 receptors (TRs). While many T3 response genes have been identified in different animal species, few have been shown to be direct target genes in vivo, especially during development. Here we generated a set of genomic microarray chips covering about 8000 bp flanking the predicted transcription start sites in Xenopus tropicalis for genome wide identification of TR binding sites. By using the intestine of premetamorphic tadpoles treated with or without T3 and for chromatin immunoprecipitation assays with these chips, we determined the genome-wide binding of TR in the control and T3-treated tadpole intestine. We further validated TR binding in vivo and analyzed the regulation of selected genes. We thus identified 278 candidate direct TR target genes. We further provided evidence that these genes are regulated by T3 and likely involved in the T3-induced formation of adult intestinal stem cells during metamorphosis.
Collapse
|
14
|
Wen L, Fu L, Shi YB. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J 2017; 31:4821-4831. [PMID: 28739643 DOI: 10.1096/fj.201700131r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Histone modifications are associated with transcriptional regulation by diverse transcription factors. Genome-wide correlation studies have revealed that histone activation marks and repression marks are associated with activated and repressed gene expression, respectively. Among the histone activation marks is histone H3 K79 methylation, which is carried out by only a single methyltransferase, disruptor of telomeric silencing-1-like (DOT1L). We have been studying thyroid hormone (T3)-dependent amphibian metamorphosis in two highly related species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, as a model for postembryonic development, a period around birth in mammals that is difficult to study. We previously showed that H3K79 methylation levels are induced at T3 target genes during natural and T3-induced metamorphosis and that Dot1L is itself a T3 target gene. These suggest that T3 induces Dot1L expression, and Dot1L in turn functions as a T3 receptor (TR) coactivator to promote vertebrate development. We show here that in cotransfection studies or in the reconstituted frog oocyte in vivo transcription system, overexpression of Dot1L enhances gene activation by TR in the presence of T3. Furthermore, making use of the ability to carry out transgenesis in X. laevis and gene knockdown in X. tropicalis, we demonstrate that endogenous Dot1L is critical for T3-induced activation of endogenous TR target genes while transgenic Dot1L enhances endogenous TR function in premetamorphic tadpoles in the presence of T3. Our studies thus for the first time provide complementary gain- and loss-of functional evidence in vivo for a cofactor, Dot1L, in gene activation by TR during vertebrate development.-Wen, L., Fu, L., Shi, Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Wen L, Shibata Y, Su D, Fu L, Luu N, Shi YB. Thyroid Hormone Receptor α Controls Developmental Timing and Regulates the Rate and Coordination of Tissue-Specific Metamorphosis in Xenopus tropicalis. Endocrinology 2017; 158:1985-1998. [PMID: 28324024 PMCID: PMC5460924 DOI: 10.1210/en.2016-1953] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/09/2017] [Indexed: 12/25/2022]
Abstract
Thyroid hormone (T3) receptors (TRs) mediate the effects of T3 on organ metabolism and animal development. There are two TR genes, TRα and TRβ, in all vertebrates. During animal development, TRα expression is activated earlier than zygotic T3 synthesis and secretion into the plasma, implicating a developmental role of TRα both in the presence and absence of T3. Using T3-dependent amphibian metamorphosis as a model, we previously proposed a dual-function model for TRs, in particular TRα, during development. That is, unliganded TR represses the expression of T3-inducible genes during premetamorphosis to ensure proper animal growth and prevent premature metamorphosis, whereas during metamorphosis, liganded TR activates target gene transcription to promote the transformation of the tadpole into a frog. To determine if TRα has such a dual function, we generated homozygous TRα-knockout animal lines. We show that, indeed, TRα knockout affects both premetamorphic animal development and metamorphosis. Surprisingly, we observed that TRα is not essential for amphibian metamorphosis, given that homozygous knockout animals complete metamorphosis within a similar time period after fertilization as their wild-type siblings. On the other hand, the timing of metamorphosis for different organs is altered by the knockout; limb metamorphosis occurs earlier, whereas intestinal metamorphosis is completed later than in wild-type siblings. Thus, our studies have demonstrated a critical role of endogenous TRα, not only in regulating both the timing and rate of metamorphosis, but also in coordinating temporal metamorphosis of different organs.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yuki Shibata
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Dan Su
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Nga Luu
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
16
|
Knoedler JR, Subramani A, Denver RJ. The Krüppel-like factor 9 cistrome in mouse hippocampal neurons reveals predominant transcriptional repression via proximal promoter binding. BMC Genomics 2017; 18:299. [PMID: 28407733 PMCID: PMC5390390 DOI: 10.1186/s12864-017-3640-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Background Krüppel-like factor 9 (Klf9) is a zinc finger transcription factor that functions in neural cell differentiation, but little is known about its genomic targets or mechanism of action in neurons. Results We used the mouse hippocampus-derived neuronal cell line HT22 to identify genes regulated by Klf9, and we validated our findings in mouse hippocampus. We engineered HT22 cells to express a Klf9 transgene under control of the tetracycline repressor, and used RNA sequencing to identify genes modulated by Klf9. We found 217 genes repressed and 21 induced by Klf9. We also engineered HT22 cells to co-express biotin ligase and a Klf9 fusion protein containing an N-terminal biotin ligase recognition peptide. Using chromatin-streptavidin precipitation (ChSP) sequencing we identified 3,514 genomic regions where Klf9 associated. Seventy-five percent of these were within 1 kb of transcription start sites, and Klf9 associated in chromatin with 60% of the repressed genes. We analyzed the promoters of several repressed genes containing Klf9 ChSP peaks using transient transfection reporter assays and found that Klf9 repressed promoter activity, which was abolished after mutation of Sp/Klf-like motifs. Knockdown or knockout of Klf9 in HT22 cells caused dysregulation of Klf9 target genes. Chromatin immunoprecipitation assays showed that Klf9 associated in chromatin from mouse hippocampus with genes identified by ChSP sequencing on HT22 cells, and expression of Klf9 target genes was dysregulated in the hippocampus of neonatal Klf9-null mice. Gene ontology analysis revealed that Klf9 genomic targets include genes involved in cystokeletal remodeling, Wnt signaling and inflammation. Conclusions We have identified genomic targets of Klf9 in hippocampal neurons and created a foundation for future studies on how it functions in chromatin, and regulates neuronal morphology and survival across the lifespan. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3640-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA.,Current address: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA
| | - Robert J Denver
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Molecular, Cellular and Developmental Biology, The University of Michigan, 3065C Kraus Natural Science Building, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
17
|
Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, Reinhard R, Clark MS, Rønnestad I, Power DM. The transcriptome of metamorphosing flatfish. BMC Genomics 2016; 17:413. [PMID: 27233904 PMCID: PMC4884423 DOI: 10.1186/s12864-016-2699-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. RESULTS De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. CONCLUSIONS A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana S Gomes
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Kurt Stueber
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Mbaye Tine
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.,Current address: Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Richard Reinhard
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
18
|
Hu F, Knoedler JR, Denver RJ. A Mechanism to Enhance Cellular Responsivity to Hormone Action: Krüppel-Like Factor 9 Promotes Thyroid Hormone Receptor-β Autoinduction During Postembryonic Brain Development. Endocrinology 2016; 157:1683-93. [PMID: 26886257 PMCID: PMC4816725 DOI: 10.1210/en.2015-1980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thyroid hormone (TH) receptor (TR)-β (trb) is induced by TH (autoinduced) in Xenopus tadpoles during metamorphosis. We previously showed that Krüppel-like factor 9 (Klf9) is rapidly induced by TH in the tadpole brain, associates in chromatin with the trb upstream region in a developmental stage and TH-dependent manner, and forced expression of Klf9 in the Xenopus laevis cell line XTC-2 accelerates and enhances trb autoinduction. Here we investigated whether Klf9 can promote trb autoinduction in tadpole brain in vivo. Using electroporation-mediated gene transfer, we transfected plasmids into premetamorphic tadpole brain to express wild-type or mutant forms of Klf9. Forced expression of Klf9 increased baseline trb mRNA levels in thyroid-intact but not in goitrogen-treated tadpoles, supporting that Klf9 enhances liganded TR action. As in XTC-2 cells, forced expression of Klf9 enhanced trb autoinduction in tadpole brain in vivo and also increased TH-dependent induction of the TR target genes klf9 and thbzip. Consistent with our previous mutagenesis experiments conducted in XTC-2 cells, the actions of Klf9 in vivo required an intact N-terminal region but not a functional DNA binding domain. Forced expression of TRβ in tadpole brain by electroporation-mediated gene transfer increased baseline and TH-induced TR target gene transcription, supporting a role for trb autoinduction during metamorphosis. Our findings support that Klf9 acts as an accessory transcription factor for TR at the trb locus during tadpole metamorphosis, enhancing trb autoinduction and transcription of other TR target genes, which increases cellular responsivity to further TH action on developmental gene regulation programs.
Collapse
Affiliation(s)
- Fang Hu
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| | - Joseph R Knoedler
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| | - Robert J Denver
- Department of Molecular, Cellular, and Developmental Biology (F.H., R.J.D.) and Neuroscience Graduate Program (J.R.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
19
|
Thyroid Hormone Potentially Benefits Multiple Sclerosis via Facilitating Remyelination. Mol Neurobiol 2015; 53:4406-16. [PMID: 26243185 DOI: 10.1007/s12035-015-9375-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/22/2015] [Indexed: 01/23/2023]
Abstract
Myelin destruction due to inflammatory damage of oligodendrocytes (OLs) in conjunction with axonal degeneration is one of the major histopathological hallmarks of multiple sclerosis (MS), a common autoimmune disorder affecting the central nervous system (CNS). Therapies over the last 20 years mainly focus on the immune system and, more specifically, on the modulation of immune cell behavior. It seems to be effective in MS with relapse, while it is of little benefit to progressive MS in which neurodegeneration following demyelination outweighs inflammation. Otherwise, remyelination, as a result of oligodendrocyte production from oligodendrocyte precursor cells (OPCs), is considered to be a potential target for the treatment of progressive MS. In this review, positive effects of remyelination on MS will be discussed in view of the critical role played by thyroid hormone (TH), focusing on the following points: (1) promising treatment of TH on MS that potentially targets to remyelination; (2) the active role of TH that is able to promote remyelination; (3) the regulative role of TH that works on endogenous stem and precursor cells; (4) the effect of TH on gene transcription; and (5) a working hypothesis which is developed that TH can alleviate MS by promoting remyelination, and the mechanism of which is its regulative role in gene transcription of OPCs.
Collapse
|
20
|
Bagamasbad PD, Bonett RM, Sachs L, Buisine N, Raj S, Knoedler JR, Kyono Y, Ruan Y, Ruan X, Denver RJ. Deciphering the regulatory logic of an ancient, ultraconserved nuclear receptor enhancer module. Mol Endocrinol 2015; 29:856-72. [PMID: 25866873 DOI: 10.1210/me.2014-1349] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cooperative, synergistic gene regulation by nuclear hormone receptors can increase sensitivity and amplify cellular responses to hormones. We investigated thyroid hormone (TH) and glucocorticoid (GC) synergy on the Krüppel-like factor 9 (Klf9) gene, which codes for a zinc finger transcription factor involved in development and homeostasis of diverse tissues. We identified regions of the Xenopus and mouse Klf9 genes 5-6 kb upstream of the transcription start sites that supported synergistic transactivation by TH plus GC. Within these regions, we found an orthologous sequence of approximately 180 bp that is highly conserved among tetrapods, but absent in other chordates, and possesses chromatin marks characteristic of an enhancer element. The Xenopus and mouse approximately 180-bp DNA element conferred synergistic transactivation by hormones in transient transfection assays, so we designate this the Klf9 synergy module (KSM). We identified binding sites within the mouse KSM for TH receptor, GC receptor, and nuclear factor κB. TH strongly increased recruitment of liganded GC receptor and serine 5 phosphorylated (initiating) RNA polymerase II to chromatin at the KSM, suggesting a mechanism for transcriptional synergy. The KSM is transcribed to generate long noncoding RNAs, which are also synergistically induced by combined hormone treatment, and the KSM interacts with the Klf9 promoter and a far upstream region through chromosomal looping. Our findings support that the KSM plays a central role in hormone regulation of vertebrate Klf9 genes, it evolved in the tetrapod lineage, and has been maintained by strong stabilizing selection.
Collapse
Affiliation(s)
- Pia D Bagamasbad
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Ronald M Bonett
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Laurent Sachs
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Nicolas Buisine
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Joseph R Knoedler
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Yasuhiro Kyono
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Yijun Ruan
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Xiaoan Ruan
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology (P.D.B., S.R., R.J.D.), University of Michigan, Ann Arbor, Michigan 48109; Department of Biological Science (R.M.B.), The University of Tulsa, Tulsa, Oklahoma 74104; Unité Mixte de Recherche 7221 (L.S., N.B.), Muséum National d'Histoire Naturelle, Centre Nationale de Recherche Scientifique, CP32 Paris, France; Neuroscience Graduate Program (J.R.K., Y.K., R.J.D.), The University of Michigan, Ann Arbor, Michigan 48109; Genome Institute of Singapore (Y.R., X.R.), 138672 Singapore; The Jackson Laboratory of Genomic Medicine (Y.R., X.R.), Farmington, Connecticut 06030; and Department of Genetics and Developmental Biology (Y.R., X.R.), University of Connecticut, Storrs, Connecticut 06269
| |
Collapse
|
21
|
Abstract
Thyroid hormone (T3) affects adult metabolism and postembryonic development in vertebrates. T3 functions mainly via binding to its receptors (TRs) to regulate gene expression. There are 2 TR genes, TRα and TRβ, with TRα more ubiquitously expressed. During development, TRα expression appears earlier than T3 synthesis and secretion into the plasma. This and the ability of TRs to regulate gene expression both in the presence and absence of T3 have indicated a role for unliganded TR during vertebrate development. On the other hand, it has been difficult to study the role of unliganded TR during development in mammals because of the difficulty to manipulate the uterus-enclosed, late-stage embryos. Here we use amphibian development as a model to address this question. We have designed transcriptional activator-like effector nucleases (TALENs) to mutate the TRα gene in Xenopus tropicalis. We show that knockdown of TRα enhances tadpole growth in premetamorphic tadpoles, in part because of increased growth hormone gene expression. More importantly, the knockdown also accelerates animal development, with the knockdown animals initiating metamorphosis at a younger age and with a smaller body size. On the other hand, such tadpoles are resistant to exogenous T3 treatment and have delayed natural metamorphosis. Thus, our studies not only have directly demonstrated a critical role of endogenous TRα in mediating the metamorphic effect of T3 but also revealed novel functions of unliganded TRα during postembryonic development, that is, regulating both tadpole growth rate and the timing of metamorphosis.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program on Cell Regulation and Metabolism, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
22
|
Knoedler JR, Denver RJ. Krüppel-like factors are effectors of nuclear receptor signaling. Gen Comp Endocrinol 2014; 203:49-59. [PMID: 24642391 PMCID: PMC4339045 DOI: 10.1016/j.ygcen.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/09/2023]
Abstract
Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs (1) act as accessory transcription factors for NR actions, (2) regulate expression of NR genes, and (3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
23
|
Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS One 2014; 9:e91692. [PMID: 24618783 PMCID: PMC3950245 DOI: 10.1371/journal.pone.0091692] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/14/2014] [Indexed: 01/17/2023] Open
Abstract
The effects of thyroid hormone on brain development and function are largely mediated by the binding of 3,5,3'-triiodo-L-thyronine (T3) to its nuclear receptors (TR) to regulate positively or negatively gene expression. We have analyzed by quantitative polymerase chain reaction the effect of T3 on primary cultured cells from the embryonic mouse cerebral cortex, on the expression of Hr, Klf9, Shh, Dio3, Aldh1a1, and Aldh1a3. In particular we focused on T3 receptor specificity, and on the crosstalk between T3, retinoic acid and dexamethasone. To check for receptor subtype specificity we used cerebrocortical cells derived from wild type mice and from mice deficient in thyroid hormone receptor subtypes. Receptor subtype specificity was found for Dio3 and Aldh1a1, which were induced by T3 only in cells expressing the T3 receptor alpha 1 subtype. Interactions of T3 with retinoic acid signaling through the control of retinoic acid metabolism are likely to be important during development. T3 had opposing influences on retinoic acid synthesizing enzymes, increasing the expression of Aldh1a1, and decreasing Aldh1a3, while increasing the retinoic acid degrading enzyme Cyp26b1. Dexamethasone increased Klf9 and Aldh1a1 expression. The effects of T3 and dexamethasone on Aldh1a1 were highly synergistic, with mRNA increments of up to 20 fold. The results provide new data on thyroid hormone regulation of gene expression and underscore the importance of thyroid hormone interactions with retinoic acid and glucocorticoids during neural development.
Collapse
|
24
|
Bagamasbad P, Ziera T, Borden SA, Bonett RM, Rozeboom AM, Seasholtz A, Denver RJ. Molecular basis for glucocorticoid induction of the Kruppel-like factor 9 gene in hippocampal neurons. Endocrinology 2012; 153:5334-45. [PMID: 22962255 PMCID: PMC3473204 DOI: 10.1210/en.2012-1303] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/08/2012] [Indexed: 01/31/2023]
Abstract
Stress has complex effects on hippocampal structure and function, which consequently affects learning and memory. These effects are mediated in part by circulating glucocorticoids (GC) acting via the intracellular GC receptor (GR) and mineralocorticoid receptor (MR). Here, we investigated GC regulation of Krüppel-like factor 9 (KLF9), a transcription factor implicated in neuronal development and plasticity. Injection of corticosterone (CORT) in postnatal d 6 and 30 mice increased Klf9 mRNA and heteronuclear RNA by 1 h in the hippocampal region. Treatment of the mouse hippocampal cell line HT-22 with CORT caused a time- and dose-dependent increase in Klf9 mRNA. The CORT induction of Klf9 was resistant to protein synthesis inhibition, suggesting that Klf9 is a direct CORT-response gene. In support of this hypothesis, we identified two GR/MR response elements (GRE/MRE) located -6.1 and -5.3 kb relative to the transcription start site, and we verified their functionality by enhancer-reporter, gel shift, and chromatin immunoprecipitation assays. The -5.3-kb GRE/MRE is largely conserved across tetrapods, but conserved orthologs of the -6.1-kb GRE/MRE were only detected in therian mammals. GC treatment caused recruitment of the GR, histone hyperacetylation, and nucleosome removal at Klf9 upstream regions. Our findings support a predominant role for GR, with a minor contribution of MR, in the direct regulation of Klf9 acting via two GRE/MRE located in the 5'-flanking region of the gene. KLF9 may play a key role in GC actions on hippocampal development and plasticity.
Collapse
Affiliation(s)
- Pia Bagamasbad
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Chatonnet F, Guyot R, Picou F, Bondesson M, Flamant F. Genome-wide search reveals the existence of a limited number of thyroid hormone receptor alpha target genes in cerebellar neurons. PLoS One 2012; 7:e30703. [PMID: 22586439 PMCID: PMC3346809 DOI: 10.1371/journal.pone.0030703] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/28/2011] [Indexed: 01/21/2023] Open
Abstract
Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development.
Collapse
Affiliation(s)
- Fabrice Chatonnet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | - Romain Guyot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | - Frédéric Picou
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
| | | | - Frederic Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, École Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
26
|
Dugas JC, Ibrahim A, Barres BA. The T3-induced gene KLF9 regulates oligodendrocyte differentiation and myelin regeneration. Mol Cell Neurosci 2012; 50:45-57. [PMID: 22472204 DOI: 10.1016/j.mcn.2012.03.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/17/2012] [Accepted: 03/17/2012] [Indexed: 12/13/2022] Open
Abstract
Hypothyroidism is a well-described cause of hypomyelination. In addition, thyroid hormone (T3) has recently been shown to enhance remyelination in various animal models of CNS demyelination. What are the ways in which T3 promotes the development and regeneration of healthy myelin? To begin to understand the mechanisms by which T3 drives myelination, we have identified genes regulated specifically by T3 in purified oligodendrocyte precursor cells (OPCs). Among the genes identified by genomic expression analyses were four transcription factors, Kruppel-like factor 9 (KLF9), basic helix-loop-helix family member e22 (BHLHe22), Hairless (Hr), and Albumin D box-binding protein (DBP), all of which were induced in OPCs by both brief and long term exposure to T3. To begin to investigate the role of these genes in myelination, we focused on the most rapidly and robustly induced of these, KLF9, and found it is both necessary and sufficient to promote oligodendrocyte differentiation in vitro. Surprisingly, we found that loss of KLF9 in vivo negligibly affects the formation of CNS myelin during development, but does significantly delay remyelination in cuprizone-induced demyelinated lesions. These experiments indicate that KLF9 is likely a novel integral component of the T3-driven signaling cascade that promotes the regeneration of lost myelin. Future analyses of the roles of KLF9 and other identified T3-induced genes in myelination may lead to novel insights into how to enhance the regeneration of myelin in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Jason C Dugas
- Stanford Univ. School of Medicine, Department of Neurobiology, Fairchild Building Room D235, 299 Campus Drive, Stanford, CA 94305-5125, USA.
| | | | | |
Collapse
|
27
|
Cheng Y, Cui Y, Chen HM, Xie WP. Thyroid disruption effects of environmental level perfluorooctane sulfonates (PFOS) in Xenopus laevis. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:2069-78. [PMID: 21809121 DOI: 10.1007/s10646-011-0749-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2011] [Indexed: 05/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS), one of the emerging persistent organic pollutants (POPs), has caused growing international concern especially related to the potential disruption in the development and function of thyroid system. Xenopus laevis is an amphibian species widely used as a suitable amphibian model for thyroid disruption research. To study the thyroid disruption effects related to PFOS exposure at environmental low levels, X. laevis tadpoles were exposed to 0.1, 1, 10 and 100 μg/l PFOS in water respectively from stage 46/47 to stage 62. The results showed that the time to metamorphosis (presented by forelimb emergence, FLE) did not significantly change with PFOS exposure, but exhibited an increasing trend (except for 10 μg/l exposure). Partial colloid depletion was observed for PFOS exposure, but no significant histological abnormality was observed in treatment groups. In addition, PFOS exposure resulted in up-regulation of thyroid hormone-regulated genes-thyroid receptor beta A (TRβA), basic transcription element-binding protein (BTEB) and type II deiodinase (DI2) mRNA expression, presented as an inverted U-shaped dose response pattern. However, the mRNA expression of type III deiodinase (DI3) remained unaffected compared with the control. These results demonstrated that PFOS might disrupt the thyroid system in X. laevis tadpoles regarding FLE changes and regulation alternation of thyroid hormone-regulated genes. Our study has raised new concerns for possible thyroid disruption of PFOS in amphibians at environmental relevant levels.
Collapse
Affiliation(s)
- Yan Cheng
- Research Center for Import-Export Chemicals Safety of General Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China, Chinese Academy of Inspection and Quarantine, Chaoyang District, Beijing, 100123, China
| | | | | | | |
Collapse
|
28
|
Bagamasbad P, Denver RJ. Mechanisms and significance of nuclear receptor auto- and cross-regulation. Gen Comp Endocrinol 2011; 170:3-17. [PMID: 20338175 PMCID: PMC2911511 DOI: 10.1016/j.ygcen.2010.03.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/02/2010] [Accepted: 03/19/2010] [Indexed: 12/14/2022]
Abstract
The number of functional hormone receptors expressed by a cell in large part determines its responsiveness to the hormonal signal. The regulation of hormone receptor gene expression is therefore a central component of hormone action. Vertebrate steroid and thyroid hormones act by binding to nuclear receptors (NR) that function as ligand-activated transcription factors. Nuclear receptor genes are regulated by diverse and interacting intracellular signaling pathways. Nuclear receptor ligands can regulate the expression of the gene for the NR that mediates the hormone's action (autoregulation), thus influencing how a cell responds to the hormone. Autoregulation can be either positive or negative, the hormone increasing or decreasing, respectively, the expression of its own NR. Positive autoregulation (autoinduction) is often observed during postembryonic development, and during the ovarian cycle, where it enhances cellular sensitivity to the hormonal signal to drive the developmental process. By contrast, negative autoregulation (autorepression) may become important in the juvenile and adult for homeostatic negative feedback responses. In addition to autoregulation, a NR can influence the expression other types of NRs (cross-regulation), thus modifying how a cell responds to a different hormone. Cross-regulation by NRs is an important means to temporally coordinate cell responses to a subsequent (different) hormonal signal, or to allow for crosstalk between hormone signaling pathways.
Collapse
Affiliation(s)
- Pia Bagamasbad
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109, U.S.A
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109, U.S.A
| |
Collapse
|
29
|
Bonett RM, Hoopfer ED, Denver RJ. Molecular mechanisms of corticosteroid synergy with thyroid hormone during tadpole metamorphosis. Gen Comp Endocrinol 2010; 168:209-19. [PMID: 20338173 PMCID: PMC2912948 DOI: 10.1016/j.ygcen.2010.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/18/2010] [Indexed: 11/25/2022]
Abstract
Corticosteroids (CS) act synergistically with thyroid hormone (TH) to accelerate amphibian metamorphosis. Earlier studies showed that CS increase nuclear 3,5,3'-triiodothyronine (T(3)) binding capacity in tadpole tail, and 5' deiodinase activity in tadpole tissues, increasing the generation of T(3) from thyroxine (T(4)). In the present study we investigated CS synergy with TH by analyzing expression of key genes involved in TH and CS signaling using tadpole tail explant cultures, prometamorphic tadpoles, and frog tissue culture cells (XTC-2 and XLT-15). Treatment of tail explants with T(3) at 100 nM, but not at 10 nM caused tail regression. Corticosterone (CORT) at three doses (100, 500 and 3400 nM) had no effect or increased tail size. T(3) at 10 nM plus CORT caused tails to regress similar to 100 nM T(3). Thyroid hormone receptor beta (TRbeta) mRNA was synergistically upregulated by T(3) plus CORT in tail explants, tail and brain in vivo, and tissue culture cells. The activating 5' deiodinase type 2 (D2) mRNA was induced by T(3) and CORT in tail explants and tail in vivo. Thyroid hormone increased expression of glucocorticoid (GR) and mineralocorticoid receptor (MR) mRNAs. Our findings support that the synergistic actions of TH and CS in metamorphosis occur at the level of expression of genes for TRbeta and D2, enhancing tissue sensitivity to TH. Concurrently, TH enhances tissue sensitivity to CS by upregulating GR and MR. Environmental stressors can modulate the timing of tadpole metamorphosis in part by CS enhancing the response of tadpole tissues to the actions of TH.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
30
|
Das B, Heimeier RA, Buchholz DR, Shi YB. Identification of direct thyroid hormone response genes reveals the earliest gene regulation programs during frog metamorphosis. J Biol Chem 2009; 284:34167-78. [PMID: 19801647 PMCID: PMC2797187 DOI: 10.1074/jbc.m109.066084] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 09/25/2009] [Indexed: 11/06/2022] Open
Abstract
Thyroid hormone (T3) is essential for normal development and organ function throughout vertebrates. Its effects are mainly mediated through transcriptional regulation by T3 receptor (TR). The identification and characterization of the immediate early, direct target genes are thus of critical importance in understanding the molecular pathways induced by T3. Unfortunately, this has been hampered by the difficulty to study gene regulation by T3 in uterus-enclosed mammalian embryos. Here we used Xenopus metamorphosis as a model for vertebrate postembryonic development to identify direct T3 response genes in vivo. We took advantage of the ability to easily induce metamorphosis with physiological levels of T3 and to carry out microarray analysis in Xenopus laevis and genome-wide sequence analysis in Xenopus tropicalis. This allowed us to identify 188 up-regulated and 249 down-regulated genes by T3 in the absence of new protein synthesis in whole animals. We further provide evidence to show that these genes contain functional TREs that are bound by TR in tadpoles and that their promoters are regulated by TR in vivo. More importantly, gene ontology analysis showed that the direct up-regulated genes are enriched in categories important for transcriptional regulation and protein degradation-dependent signaling processes but not DNA replication. Our findings thus revealed the existence of interesting pathways induced by T3 at the earliest step of metamorphosis.
Collapse
Affiliation(s)
- Biswajit Das
- From the Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Rachel A. Heimeier
- From the Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| | - Daniel R. Buchholz
- the Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio 45221-0006
| | - Yun-Bo Shi
- From the Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892 and
| |
Collapse
|
31
|
Denver RJ, Williamson KE. Identification of a thyroid hormone response element in the mouse Kruppel-like factor 9 gene to explain its postnatal expression in the brain. Endocrinology 2009; 150:3935-43. [PMID: 19359381 PMCID: PMC2717889 DOI: 10.1210/en.2009-0050] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain development is critically dependent on thyroid hormone (T(3)). Krüppel-like factor 9 (Klf9) is a T(3)-inducible gene in developing rat brain, and several lines of evidence support that KLF9 plays a key role in neuronal morphogenesis. Here we extend our findings to the mouse and demonstrate the presence of a functional T(3) response element (T(3)RE) in the 5' flanking region of the mouse Klf9 gene. Klf9 mRNA is strongly induced in the mouse hippocampus and cerebellum in a developmental stage- and T(3)-dependent manner. Computer analysis identified a near optimal direct repeat 4 (DR-4) T(3)RE 3.8 kb upstream of the Klf9 transcription start site, and EMSAs showed that T(3) receptor (TR)-retinoid X receptor heterodimers bound to the T(3)RE with high affinity. The T(3)RE acts as a strong positive response element in transfection assays using a minimal heterologous promoter. In the mouse neuroblastoma cell line N2a[TRbeta1], T(3) caused a dose-dependent up-regulation of Klf9 mRNA. Chromatin immunoprecipitation assays conducted with N2a[TRbeta1] cells showed that TRs associated with the Klf9 T(3)RE, and this association was promoted by T(3). Treatment of N2a[TRbeta1] cells with T(3) led to hyperacetylation of histones 3 and 4 at the T(3)RE site. Furthermore, TRs associated with the DR-4 T(3)RE in postnatal d 4 mouse brain, and histone 4 acetylation was greater at this site compared with other regions of the Klf9 gene. Our study identifies a functional DR-4 T(3)RE located in the mouse Klf9 gene to explain its regulation by T(3) during mammalian brain development.
Collapse
Affiliation(s)
- Robert J Denver
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | |
Collapse
|
32
|
Bonett RM, Hu F, Bagamasbad P, Denver RJ. Stressor and glucocorticoid-dependent induction of the immediate early gene kruppel-like factor 9: implications for neural development and plasticity. Endocrinology 2009; 150:1757-65. [PMID: 19036875 PMCID: PMC2659263 DOI: 10.1210/en.2008-1441] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Krüppel-like factor 9 (KLF9) is a thyroid hormone-induced, immediate early gene implicated in neural development in vertebrates. We analyzed stressor and glucocorticoid (GC)-dependent regulation of KLF9 expression in the brain of the frog Xenopus laevis, and investigated a possible role for KLF9 in neuronal differentiation. Exposure to shaking/confinement stressor increased plasma corticosterone (CORT) concentration, and KLF9 immunoreactivity in several brain regions, which included the medial amygdala and bed nucleus of the stria terminalis, anterior preoptic area (homologous to the mammalian paraventricular nucleus), and optic tectum (homologous to the mammalian superior colliculus). The stressor-induced KLF9 mRNA expression in the brain was blocked by pretreatment with the GC receptor antagonist RU486, or mimicked by injection of CORT. Treatment with CORT also caused a rapid and dose-dependent increase in KLF9 mRNA in X. laevis XTC-2 cells that was resistant to inhibition of protein synthesis. The action of CORT on KLF9 expression in XTC-2 cells was blocked by RU486, but not by the mineralocorticoid receptor antagonist spironolactone. To test for functional consequences of up-regulation of KLF9, we introduced a KLF9 expression plasmid into living tadpole brain by electroporation-mediated gene transfer. Forced expression of KLF9 in tadpole brain caused an increase in Golgi-stained cells, reflective of neuronal differentiation/maturation. Our results support that KLF9 is a direct, GC receptor target gene that is induced by stress, and functions as an intermediary in the actions of GCs on brain gene expression and neuronal structure.
Collapse
Affiliation(s)
- Ronald M Bonett
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | |
Collapse
|
33
|
Suzuki KI, Machiyama F, Nishino S, Watanabe Y, Kashiwagi K, Kashiwagi A, Yoshizato K. Molecular features of thyroid hormone-regulated skin remodeling in Xenopus laevis during metamorphosis. Dev Growth Differ 2009; 51:411-27. [DOI: 10.1111/j.1440-169x.2009.01100.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Lema SC, Dickey JT, Schultz IR, Swanson P. Dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) alters thyroid status and thyroid hormone-regulated gene transcription in the pituitary and brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1694-9. [PMID: 19079722 PMCID: PMC2599765 DOI: 10.1289/ehp.11570] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/01/2008] [Indexed: 05/05/2023]
Abstract
BACKGROUND Polybrominated diphenyl ether (PBDE) flame retardants have been implicated as disruptors of the hypothalamic-pituitary-thyroid axis. Animals exposed to PBDEs may show reduced plasma thyroid hormone (TH), but it is not known whether PBDEs impact TH-regulated pathways in target tissues. OBJECTIVE We examined the effects of dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47)-commonly the highest concentrated PBDE in human tissues-on plasma TH levels and on gene transcripts for glycoprotein hormone alpha-subunit (GPHalpha) and thyrotropin beta-subunit (TSHbeta) in the pituitary gland, the auto-induced TH receptors alpha and beta in the brain and liver, and the TH-responsive transcription factor basic transcription element-binding protein (BTEB) in the brain. METHODS Breeding pairs of adult fathead minnows (Pimephales promelas) were given dietary PBDE-47 at two doses (2.4 microg/pair/day or 12.3 microg/pair/day) for 21 days. RESULTS Minnows exposed to PBDE-47 had depressed plasma thyroxine (T(4)), but not 3,5,3'-triiodothyronine (T(3)). This decline in T(4) was accompanied by elevated mRNA levels for TStHbeta (low dose only) in the pituitary. PBDE-47 intake elevated transcript for TH receptor alpha in the brain of females and decreased mRNA for TH receptor beta in the brain of both sexes, without altering these transcripts in the liver. In males, PBDE-47 exposure also reduced brain transcripts for BTEB. CONCLUSIONS Our results indicate that dietary exposure to PBDE-47 alters TH signaling at multiple levels of the hypothalamic-pituitary-thyroid axis and provide evidence that TH-responsive pathways in the brain may be particularly sensitive to disruption by PBDE flame retardants.
Collapse
Affiliation(s)
- Sean C. Lema
- Physiology Program, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
- Address correspondence to S.C. Lema, Biology and Marine Biology, University of North Carolina-Wilmington, 601 S. College Rd., Wilmington, NC 28403 USA. Telephone: (910) 962–2514. Fax: (910) 962-4066. E-mail:
| | - Jon T. Dickey
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Irvin R. Schultz
- Marine Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, Sequim, Washington, USA
| | - Penny Swanson
- Physiology Program, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| |
Collapse
|
35
|
Mengeling BJ, Lee S, Privalsky ML. Coactivator recruitment is enhanced by thyroid hormone receptor trimers. Mol Cell Endocrinol 2008; 280:47-62. [PMID: 18006144 PMCID: PMC2197157 DOI: 10.1016/j.mce.2007.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/27/2007] [Accepted: 09/28/2007] [Indexed: 12/23/2022]
Abstract
Thyroid hormone receptors (TRs) are hormone-regulated transcription factors. TRs are generally thought to bind to their DNA target sites as homodimers or as TR/retinoid X receptor (RXR) heterodimers. However, we have shown that certain TR isoforms, such as TRbeta0, can bind as trimers to a subset of naturally occurring DNA elements. We report here that this trimeric mode of DNA recognition by TRbeta0 also results in an enhanced recruitment of coactivators in vitro and increased transcriptional activation in cells compared to TRbeta0 dimers. At least part of this enhanced coactivator recruitment reflects a selectively enhanced avidity of the TRbeta0 trimer for a specific LXXLL interaction motif within the p160 coactivators. TRbeta0 trimers also recruit certain coactivators at lower concentrations of T3 hormone and exhibit distinct coactivator stoichiometries than do TRbeta0 dimers. We conclude that trimer formation confers isoform-specific DNA recognition and transcriptional regulatory properties that are not observed for TR dimers.
Collapse
Affiliation(s)
| | | | - Martin L. Privalsky
- *Address correspondence to : Martin L. Privalsky, Ph.D., Section of Microbiology, 1 Shields Ave., University of California, Davis 95616. Phone: 530 752-3013. FAX: 530 752-9014. E-mail:
| |
Collapse
|
36
|
Bagamasbad P, Howdeshell KL, Sachs LM, Demeneix BA, Denver RJ. A Role for Basic Transcription Element-binding Protein 1 (BTEB1) in the Autoinduction of Thyroid Hormone Receptor β. J Biol Chem 2008; 283:2275-85. [DOI: 10.1074/jbc.m709306200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
37
|
Fujimoto K, Nakajima K, Yaoita Y. Expression of matrix metalloproteinase genes in regressing or remodeling organs during amphibian metamorphosis. Dev Growth Differ 2007; 49:131-43. [PMID: 17335434 DOI: 10.1111/j.1440-169x.2007.00916.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Several matrix metalloproteinases (MMP) are induced by thyroid hormone (TH) during the climax of amphibian metamorphosis and play a pivotal role in the remodeling of the intestine and the regressing tail and gills by degrading the extracellular matrix (ECM). We compared MMP gene expression levels precisely by quantitative real-time reverse transcription-polymerase chain reaction. The expression of MMP genes increases prominently at Nieuwkoop and Faber (NF) stages 60, 60-61 and 62 in the intestine, gills and tail, respectively, when the drastic morphological changes start in each organ. Gene expression analysis in the TH-treated tadpoles and cell line revealed that MMP mRNAs are upregulated in response to TH quickly within several hours to low levels and then increase in a day to high levels. All TH-induced MMP genes have TH response elements (TREs). The presence of high affinity TREs in MMP genes correlates with early TH-induction. Based on these results, we propose that TH stimulates the transcription of MMP genes through TREs within several hours to low levels and then brings about the main increase of mRNAs by TH-induced transcriptional factors, including TH receptor beta, in a cell type-specific transcriptional environment.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
38
|
Amphibian metamorphosis. Dev Biol 2007; 306:20-33. [PMID: 17449026 DOI: 10.1016/j.ydbio.2007.03.021] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/09/2007] [Accepted: 03/18/2007] [Indexed: 10/23/2022]
|
39
|
Fujimoto K, Nakajima K, Yaoita Y. One of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis. Dev Growth Differ 2006; 48:223-41. [PMID: 16681648 DOI: 10.1111/j.1440-169x.2006.00859.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The drastic morphological changes of the tadpole are induced during the climax of anuran metamorphosis, when the concentration of endogenous thyroid hormone is maximal. The tadpole tail, which is twice as long as the body, shortens rapidly and disappears completely in several days. We isolated a cDNA clone, designated as Xl MMP-9TH, similar to the previously reported Xenopus laevis MMP-9 gene, and showed that their Xenopus tropicalis counterparts are located tandemly about 9 kb apart from each other in the genome. The Xenopus MMP-9TH gene was expressed in the regressing tail and gills and the remodeling intestine and central nervous system, and induced in thyroid hormone-treated tail-derived myoblastic cultured cells, while MMP-9 mRNA was detected in embryos. Three thyroid hormone response elements in the distal promoter and the first intron were involved in the upregulation of the Xl MMP-9TH gene by thyroid hormone in transient expression assays, and their relative positions are conserved between X. laevis and X. tropicalis promoters. These data strongly suggest that the MMP-9 gene was duplicated, and differentiated into two genes, one of which was specialized in a common ancestor of X. laevis and X. tropicalis to be expressed in degenerating and remodeling organs as a response to thyroid hormone during metamorphosis.
Collapse
Affiliation(s)
- Kenta Fujimoto
- Division of Embryology and Genetics, Institute for Amphibian Biology, Graduate School of Science, Hiroshima University, Higashihiroshima 739-8526, Japan
| | | | | |
Collapse
|
40
|
Furlow JD, Neff ES. A developmental switch induced by thyroid hormone: Xenopus laevis metamorphosis. Trends Endocrinol Metab 2006; 17:40-7. [PMID: 16464605 DOI: 10.1016/j.tem.2006.01.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/17/2005] [Accepted: 01/19/2006] [Indexed: 12/19/2022]
Abstract
Thyroid hormone induces the complete metamorphosis of anuran tadpoles into juvenile frogs. Arguably, anuran metamorphosis is the most dramatic effect of a hormone in any vertebrate. Recent advances in pharmacology and molecular biology have made the study of this remarkable process in the frog Xenopus laevis attractive to developmental biologists and endocrinologists alike. In particular, the availability of a straightforward transgenesis assay and the near completion of the Xenopus tropicalis genome are enabling significant advances to be made in our understanding of the major remaining problems of metamorphosis: the extraordinary tissue specificity of responses, the precise timing of morphological changes, the degree of cell autonomy of hormone responses and developmental competence. We argue that X. laevis metamorphosis presents an exciting opportunity for understanding the role of thyroid hormone in vertebrate development.
Collapse
Affiliation(s)
- J David Furlow
- Section of Neurobiology, Physiology, and Behavior, University of California-Davis, One Shields Avenue, Davis, CA 95616-8519, USA.
| | | |
Collapse
|
41
|
Buchholz DR, Paul BD, Fu L, Shi YB. Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen Comp Endocrinol 2006; 145:1-19. [PMID: 16266705 DOI: 10.1016/j.ygcen.2005.07.009] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/23/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
The current review focuses on the molecular mechanisms and developmental roles of thyroid hormone receptors (TRs) in gene regulation and metamorphosis in Xenopus laevis and discusses implications for TR function in vertebrate development and diversity. Questions addressed are: (1) what are the molecular mechanisms of gene regulation by TR, (2) what are the developmental roles of TR in mediating the thyroid hormone (TH) signal, (3) what are the roles of the different TR isoforms, and (4) how do changes in these molecular and developmental mechanisms affect evolution? Even though detailed knowledge of molecular mechanisms of TR-mediated gene regulation is available from in vitro studies, relatively little is known about how TR functions in development in vivo. Studies on TR function during frog metamorphosis are leading the way toward bridging the gap between in vitro and in vivo studies. In particular, a dual function model for the role of TR in metamorphosis has been proposed and investigated. In this model, TRs repress genes allowing tadpole growth in the absence of TH during premetamorphosis and activate genes important for metamorphosis when TH is present. Despite the lack of metamorphosis in most other vertebrates, TR has important functions in development across vertebrates. The underlying molecular mechanisms of TR in gene regulation are conserved through evolution, so other mechanisms involving TH-target genes and TH tissue-sensitivity and dependence underlie differences in role of TR across vertebrates. Continued analysis of molecular and developmental roles of TR in X. laevis will provide the basis for understanding how TR functions in gene regulation in vivo across vertebrates and how TR is involved in the generation of evolutionary diversity.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD/NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA.
| | | | | | | |
Collapse
|
42
|
Buchholz DR, Paul BD, Shi YB. Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation. J Biol Chem 2005; 280:41222-8. [PMID: 16236718 DOI: 10.1074/jbc.m509593200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In all vertebrates, thyroid hormones (TH) affect postembryonic development. The role of the TH receptor (TR) in mediating the TH signal is complex as evidenced by divergent phenotypes in mice lacking TH compared with TR knock-out mice. We have proposed a dual function model for TR during development based on studies of frog metamorphosis. Here we examined an important assumption of this dual function model by using the chromatin immunoprecipitation assay, namely constitutive TR binding to promoters in vivo. We examined two target genes with TH-response elements (TRE) in their promoters, TRbeta itself and TH/bZIP (TH-responsive basic leucine zipper transcription factor). By using an antibody that recognizes both TRalpha and TRbeta, we found that TR binding to the TRbeta promoter is indeed constitutive. Most surprisingly, TR binding to the TH/bZIP promoter increases dramatically after TH treatment of premetamorphic tadpoles and during metamorphosis. By using an antibody specific to TRbeta,TRbeta binding increases at both promoters in response to TH. In vitro biochemical studies showed that TRs bind TH/bZIP TRE with 4-fold lower affinity than to TRbeta TRE. Our data show that only high affinity TRbeta TRE is occupied by limiting levels of TR during premetamorphosis and that lower affinity TH/bZIP TRE becomes occupied only when overall the TR expression is higher during metamorphosis. These data provide the first in vivo evidence to suggest that one mechanism for tissue- and gene-specific regulation of TR target gene expression is through tissue and developmental stage-dependent regulation of TR levels, likely a critical mechanism for coordinating development in different organs during postembryonic development.
Collapse
Affiliation(s)
- Daniel R Buchholz
- Section on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
43
|
Luria A, Furlow JD. Spatiotemporal retinoid-X receptor activation detected in live vertebrate embryos. Proc Natl Acad Sci U S A 2004; 101:8987-92. [PMID: 15178767 PMCID: PMC428459 DOI: 10.1073/pnas.0307053101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Most studies on the nuclear retinoid-X receptor (RXR) have focused on its role as a heterodimeric partner but less about its own activation pattern during development and the distribution of potential endogenous ligands. The aim of this study is to visualize the distribution of activated RXRalpha in live transgenic Xenopus laevis embryos across a wide range of developmental stages. We adopted a nuclear receptor-Gal4 fusion/upstream activation sequence-based reporter system for our assay. Strong activation of the RXRalpha ligand-binding domain was observed in a segment of the spinal cord just posterior to the hindbrain. This activation is first detected in neurula stage embryos and persists up to swimming tadpole stages, after which activation strongly declines. Addition of exogenous ligands, such as 9-cis retinoic acid or all-trans retinoic acid, expands the activation of RXR throughout the spinal cord but not in the brain, whereas the RXR-specific ligand LG268 expanded the Gal4-RXR activation into the brain and olfactory epithelia. Treatment with the RAR-specific ligand 4-(E-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl)benzoic acid or thyroid hormone had no effect on Gal4-RXR activation, whereas these compounds significantly increased their corresponding Gal4/receptor fusion proteins under similar conditions. Embryos expressing a Gal4-RXR fusion protein with a deletion in the ligand-dependent activation domain (AF2) show no reporter gene activation. The results shown in this paper reveal a specific activation pattern for Gal4-RXRalpha specifically in the developing spinal cord and suggest the existence of RXR ligand "hot-spots" in this region.
Collapse
Affiliation(s)
- Ayala Luria
- Section of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616-8519, USA
| | | |
Collapse
|
44
|
Furlow JD, Yang HY, Hsu M, Lim W, Ermio DJ, Chiellini G, Scanlan TS. Induction of larval tissue resorption in Xenopus laevis tadpoles by the thyroid hormone receptor agonist GC-1. J Biol Chem 2004; 279:26555-62. [PMID: 15056670 DOI: 10.1074/jbc.m402847200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A major challenge in understanding nuclear hormone receptor function is to determine how the same ligand can cause very different tissue-specific responses. Tissue specificity may result from the presence of more than one receptor subtype arising from multiple receptor genes or alternative splicing. Recently, high affinity analogs of nuclear receptor ligands have been synthesized that show subtype selectivity. These analogs can greatly facilitate the study of receptor subtype-specific functions in organisms where mutational analysis is problematic or where it is desirable for receptors to be expressed in their normal physiological contexts. We describe here the effects of the synthetic thyroid hormone analog GC-1 on the metamorphosis of the frog Xenopus laevis. The most potent natural thyroid hormone, 3,5,3'-triidothyronine or T3, shows similar binding affinity and transactivation dose-response curves for both thyroid hormone receptor isotypes, designated TRalpha and TRbeta. GC-1, however, binds to and activates TRbeta at least an order of magnitude better than it does TRalpha. GC-1 efficiently induces death and resorption of premetamorphic tadpole tissues such as the gills and the tail, two tissues that strongly induce thyroid hormone receptor beta during metamorphosis. GC-1 has less effect on the growth of adult tissues such as the hindlimbs, which express high TRalpha levels. The effectiveness of GC-1 in inducing tail resorption and tail gene expression correlates with increasing TRbeta levels. These results illustrate the utility of subtype selective ligands as probes of nuclear receptor function in vivo.
Collapse
Affiliation(s)
- J David Furlow
- Section of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616-8519, USA.
| | | | | | | | | | | | | |
Collapse
|