1
|
Rizky D, Byun JH, Mahardini A, Fukunaga K, Udagawa S, Pringgenies D, Takemura A. Two pathways regulate insulin-like growth factor genes in the brain and liver of the tropical damselfish Chrysiptera cyanea: A possible role for melatonin in the actions of growth and thyroid hormones. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111679. [PMID: 38876439 DOI: 10.1016/j.cbpa.2024.111679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
External and internal factors are involved in controlling the growth of fishes. However, little is known about the mechanisms by which external factors trigger stimulus signals. This study explored the physiological roles of melatonin in the transcription of growth-related genes in the brain and liver of Chrysiptera cyanea, a tropical damselfish with long-day preference. In brain samples of this species collected at 4-h intervals, the transcript levels of arylalkylamine N-acetyltransferase2 (aanat2), the rate-limiting enzyme of melatonin synthesis, and growth hormone (gh) peaked at 20:00 and 00:00, respectively. Concomitantly, the transcript levels of insulin-like growth factors (igf1 and igf2) in the brain and liver were upregulated during the scotophase. Levels of iodothyronine deiodinases (dio2 and dio3), enzymes that convert thyroxine (T4) to triiodothyronine (T3) and reverse T3, respectively, increased in the brain (dio2 and dio3) and liver (dio2) during the photophase, whereas dio3 levels in the liver showed the opposite trend. Fish reared in melatonin-containing water exhibited significant increases in the transcription levels of gh and igf1 in the brain and igf1 in the liver, suggesting that growth in this fish is positively regulated by the GH/IGF pathway on a daily basis. Melatonin treatment also stimulated the transcript levels of dio2 and dio3 in the liver, but not in the brain. Fish consuming pellets containing T3, but not T4, showed significant increases in gh and igf1 in the brain and igf1 and igf2 in the liver, suggesting that the intercellular actions of the TH/IGF pathway have an impact on growth on a daily basis. In summary, IGF synthesis and action in the brain and liver undergo dual regulation by distinct hormone networks, which may also be affected by daily, seasonal, or nutritional factors.
Collapse
Affiliation(s)
- Dinda Rizky
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Jun-Hwan Byun
- Department of Fisheries Biology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Republic of Korea
| | - Angka Mahardini
- Marine Science Study Program, Faculty of Science and Agricultural Technology, Universitas Muhammadiyah Semarang, Jl. Kedungmundu No.18, Semarang 50273, Indonesia
| | - Kodai Fukunaga
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Shingo Udagawa
- Organization for Research Promotion, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Delianis Pringgenies
- Department of Marine Science, Universitas Diponegoro, Jl. Prof. Soedarto S.H., Tembalang, Semarang 50275, Indonesia
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
2
|
Ogunwole GA, Adeyemi JA, Saliu JK, Olorundare KE. A computational analysis of the molecular mechanisms underlying the effects of ibuprofen and dibutyl phthalate on gene expression in fish. Heliyon 2024; 10:e31880. [PMID: 38845962 PMCID: PMC11153241 DOI: 10.1016/j.heliyon.2024.e31880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
The impact of emerging pollutants such as ibuprofen and dibutyl phthalate on aquatic species is a growing concern and the need for proper assessment and evaluation of these toxicants is imperative. The objective of this study was to examine the toxicogenomic impacts of ibuprofen and dibutyl phthalate on Clarias gariepinus, a widely distributed African catfish species. Results showed that exposure to the test compounds caused significant changes in gene expression, including upregulation of growth hormone, interleukin, melatonin receptors, 17β-Hydroxysteroid Dehydrogenase, heat shock protein, doublesex, and mab-3 related transcription factor. On the other hand, expression of forkhead Box Protein L2 and cytochrome P450 was downregulated, revealing a potential to induce female to male sex reversal. The binding affinities and hydrophobic interactions of the test compounds with the reference genes were also studied, showing that ibuprofen had the lowest binding energy and the highest affinity for the docked genes. Both compounds revealed a mutual molecular interaction with amino acids residues within the catalytic cavity of the docked genes. These results provide new insights into the toxic effects of ibuprofen and dibutyl phthalate on Clarias gariepinus, contributing to a better understanding of the environmental impact of these pollutants.
Collapse
Affiliation(s)
- Germaine Akinola Ogunwole
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| | - Joseph Adewuyi Adeyemi
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| | - Joseph Kayode Saliu
- Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Kayode Emmanuel Olorundare
- Department of Biology, School of Science, Federal University of Technology, Akure. P.M.B 704, Ondo, Nigeria
| |
Collapse
|
3
|
Lv W, Li M, Mao Y, Huang W, Yuan Q, Li M, Zhou Q, Yang H, Zhou W. Effects of dietary melatonin supplementation on growth performance and intestinal health of rice field eel (Monopterus albus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101273. [PMID: 38870552 DOI: 10.1016/j.cbd.2024.101273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
The objective was to assess the impact of melatonin supplementation on the growth performance and intestinal health of rice field eel, Monopterus albus. Three hundred and sixty fish (28.46 ± 0.24 g) were fed five diets supplemented with melatonin of 0, 30, 60, 120, and 240 mg/kg for 70 days. The study found that the variables FBW, WGR, SGR, and FCR exhibited a statistically significant quadratic relationship (P < 0.05) with the dietary melatonin concentrations, and the highest FBW, WGR and SGR as well as lowest FCR were observed in the 120 mg/kg melatonin group, digestive enzymes activities (such as amylase, trypsin, and lipase) also had significant quadratic relationship (P < 0.05), and the highest intestinal villus height and goblet cells were found in the 120 mg/kg diet (P < 0.01), melatonin in diets significantly increased SOD and CAT activities in serum, up-regulated the expression of anti-inflammatory factors (IL-10) and tight junction protein (ZO-1), and down-regulated the expression of pro-inflammatory factors (IL-1β, IL-8, IL-15, and TNF-α) in the gut, dietary melatonin improved the intestinal microflora compositions, in the group that supplementation a dosage of 120 mg/kg, there was a noticeable rise in the abundance of Firmicutes and the ratio of Firmicutes/Bacteroidota, compared with control group (P < 0.1). Conclusively, dietary supplementation of melatonin promoted growth performance, enhanced intestinal immune capacity and serum antioxidant level, and improved intestinal morphology properties and intestinal flora composition in M. albus. In conclusion, based on quadratic broken-line regression analysis of WGR and FCR, the optimal concentration of melatonin to be supplied is predicted to be 146-148 mg/kg.
Collapse
Affiliation(s)
- Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Muyan Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Yifan Mao
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Weiwei Huang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Quan Yuan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Mingyou Li
- Key Laboratory of Integrated Rice-Fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Qiubai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hang Yang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Wenzong Zhou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
4
|
Sancho Santos ME, Horký P, Grabicová K, Steinbach C, Hubená P, Šálková E, Slavík O, Grabic R, Randák T. From metabolism to behaviour - Multilevel effects of environmental methamphetamine concentrations on fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163167. [PMID: 37003339 DOI: 10.1016/j.scitotenv.2023.163167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
Methamphetamine (METH) is a concerning drug of abuse that produces strong psychostimulant effects. The use of this substance, along with the insufficient removal in the sewage treatment plants, leads to its occurrence in the environment at low concentrations. In this study, brown trout (Salmo trutta fario) were exposed to 1 μg/L of METH as environmental relevant concentration for 28 days in order to elucidate the complex effects resulting from the drug, including behaviour, energetics, brain and gonad histology, brain metabolomics, and their relations. Trout exposed to METH displayed lowered activity as well as metabolic rate (MR), an altered morphology of brain and gonads as well as changes in brain metabolome when compared to controls. Increased activity and MR were correlated to an increased incidence of histopathology in gonads (females - vascular fluid and gonad staging; males - apoptotic spermatozoa and peritubular cells) in exposed trout compared to controls. Higher amounts of melatonin in brain were detected in exposed fish compared to controls. Tyrosine hydroxylase expression in locus coeruleus was related to the MR in exposed fish, but not in the control. Brain metabolomics indicated significant differences in 115 brain signals between control and METH exposed individuals, described by the coordinates within the principal component analyses (PCA) axes. These coordinates were subsequently used as indicators of a direct link between brain metabolomics, physiology, and behaviour - as activity and MR varied according to their values. Exposed fish showed an increased MR correlated with the metabolite position in PC1 axes, whereas the control had proportionately lower MR and PC1 coordinates. Our findings emphasize the possible complex disturbances in aquatic fauna on multiple interconnected levels (metabolism, physiology, behaviour) as a result of the presence of METH in aquatic environments. Thus, these outcomes can be useful in the development of AOP's (Adverse Outcome Pathways).
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Christoph Steinbach
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Behavioural Neuroendocrinology, Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden
| | - Eva Šálková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|
5
|
Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnol Adv 2022; 59:107961. [DOI: 10.1016/j.biotechadv.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
|
6
|
Imamura S, Hur SP, Takeuchi Y, Badruzzaman M, Mahardini A, Rizky D, Takemura A. Effect of short- and long-term melatonin treatments on the reproductive activity of the tropical damselfish Chrysiptera cyanea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:253-262. [PMID: 35099686 DOI: 10.1007/s10695-022-01051-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Photoperiod plays a role in controlling the initiation and termination of reproduction in fish. Melatonin is an internal transducer of environmental photoperiod and is involved in regulating reproduction. The present study aimed to examine how melatonin impacts the transcript levels of kisspeptin (kiss1 and kiss2), gonadotropin-releasing hormones (gnrh1), and the β-subunit of gonadotropins (fshβ and lhβ) in the brain of the sapphire devil, a tropical damselfish with long photoperiod preference. Feeding mature females with melatonin-containing pellets inhibited increases in the transcript levels of kiss1, gnrh1, and lhβ within 3 h. Continuous melatonin treatment for 1 week resulted in oocyte regression and downregulation of kiss2, gnrh1, fshβ, and lhβ. When the transcript levels of kiss1 and gnrh1 were measured at 4-h intervals in the brain of sapphire devil, a day-high/night-low fluctuation was observed. The hypothalamic-pituitary-gonadal (HPG) axis may be influenced by melatonin, exerting a negative effect at night because the transcript levels of aralkylamine N-acetyltransferase (aanat2) increased during the scotophase. The expression of aanat2 was higher under short-day than long-day conditions, suggesting that there is a seasonal change in melatonin levels at night. It was concluded that change in photoperiod becomes a key factor for controlling the hormone synthesis in the HPG axis through melatonin.
Collapse
Affiliation(s)
- Satoshi Imamura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Sung-Pyo Hur
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology, Jeju Special Self-Governing Province, Jeju, 63349, South Korea
| | - Yuki Takeuchi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Okinawa Institute of Science and Technology Graduate School, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Salna, 1706, Bangladesh
| | - Angka Mahardini
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science & Technology, Jeju Special Self-Governing Province, Jeju, 63349, South Korea
| | - Dinda Rizky
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Akihiro Takemura
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan.
| |
Collapse
|
7
|
Falcón J, Herrero MJ, Nisembaum LG, Isorna E, Peyric E, Beauchaud M, Attia J, Covès D, Fuentès M, Delgado MJ, Besseau L. Pituitary Hormones mRNA Abundance in the Mediterranean Sea Bass Dicentrarchus labrax: Seasonal Rhythms, Effects of Melatonin and Water Salinity. Front Physiol 2021; 12:774975. [PMID: 34975529 PMCID: PMC8715012 DOI: 10.3389/fphys.2021.774975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
In fish, most hormonal productions of the pituitary gland display daily and/or seasonal rhythmic patterns under control by upstream regulators, including internal biological clocks. The pineal hormone melatonin, one main output of the clocks, acts at different levels of the neuroendocrine axis. Melatonin rhythmic production is synchronized mainly by photoperiod and temperature. Here we aimed at better understanding the role melatonin plays in regulating the pituitary hormonal productions in a species of scientific and economical interest, the euryhaline European sea bass Dicentrarchus labrax. We investigated the seasonal variations in mRNA abundance of pituitary hormones in two groups of fish raised one in sea water (SW fish), and one in brackish water (BW fish). The mRNA abundance of three melatonin receptors was also studied in the SW fish. Finally, we investigated the in vitro effects of melatonin or analogs on the mRNA abundance of pituitary hormones at two times of the year and after adaptation to different salinities. We found that (1) the reproductive hormones displayed similar mRNA seasonal profiles regardless of the fish origin, while (2) the other hormones exhibited different patterns in the SW vs. the BW fish. (3) The melatonin receptors mRNA abundance displayed seasonal variations in the SW fish. (4) Melatonin affected mRNA abundance of most of the pituitary hormones in vitro; (5) the responses to melatonin depended on its concentration, the month investigated and the salinity at which the fish were previously adapted. Our results suggest that the productions of the pituitary are a response to multiple factors from internal and external origin including melatonin. The variety of the responses described might reflect a high plasticity of the pituitary in a fish that faces multiple external conditions along its life characterized by marked daily and seasonal changes in photoperiod, temperature and salinity.
Collapse
Affiliation(s)
- Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS UMR 8067, SU, IRD 207, UCN, UA, Paris, France
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Maria Jesus Herrero
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Elodie Peyric
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Marilyn Beauchaud
- Equipe de Neuro-Ethologie Sensorielle, ENES/CRNL, CNRS UMR 5292, UMR-S 1028, Faculté des Sciences et Techniques, Université Jean-Monnet (UJM), Saint-Étienne, France
| | - Joël Attia
- Equipe de Neuro-Ethologie Sensorielle, ENES/CRNL, CNRS UMR 5292, UMR-S 1028, Faculté des Sciences et Techniques, Université Jean-Monnet (UJM), Saint-Étienne, France
| | - Denis Covès
- Station Ifremer de Palavas, Palavas-les-Flots, Nantes, France
| | - Michael Fuentès
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Maria Jesus Delgado
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| |
Collapse
|
8
|
Gopal RN, Kumar D, Singh VK, Pati AK, Lal B. Sexual dimorphism in ultradian and 24h rhythms in plasma levels of growth hormone in Indian walking catfish, Clarias batrachus. Chronobiol Int 2021; 38:858-870. [PMID: 33820463 DOI: 10.1080/07420528.2021.1896533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Growth hormone (GH), a key regulator of somatic and reproductive growth in vertebrates, has been extensively studied, although primarily in female fish. Despite numerous reports about sex- and species-specific growth patterns in fish, to our knowledge, there is no report about the 24 h rhythm of plasma GH in male fish. Thus, we aimed to investigate temporal variations in plasma GH levels and the existence of any rhythms therein during the reproductively active months of March to August in the male walking catfish, Clarias batrachus. We also aimed to compare the secretory temporal patterns of GH in male-female specimens of C. batrachus to decipher sexual dimorphism in GH secretions in fish. After 14 days of acclimation to the natural environment, male catfish (N = 240 in total) were sorted and randomly divided into eight groups for study at ZT0 (sunrise ~06:00 h), 3, 6, 9, 12, 15, 18, and 21. During each month, physical parameters like duration of photoperiod and water temperature were measured. Male catfish (n = 40/month) in all eight groups were sampled (n = 5/group) at each time point under the natural time-of-year 24 h light-dark (LD) cycle. Male catfish were anesthetized and blood was collected through a caudal puncture, centrifuged, and plasma isolated. Plasma GH was measured using a competitive homologous enzyme-linked immunosorbent assay. Further, testes were removed, weighed, and the gonadosomatic index (GSI) was calculated. A significant effect of time and season (p ˂ 0.05, two-way ANOVA) on plasma GH level was detected. Cosinor analyses verified the existence of statistically significant (p ˂ 0.05) ultradian (12 h) and 24 h rhythms of plasma GH in male C. batrachus, with the higher values of Mesor (time series mean) and amplitude (one-half peak-to-trough difference) of the periodicities from March to July. Mapping of the acrophases (peak times) showed two ultradian and one 24 h acrophase of GH during the early photophase and early scotophase from March to August. Distinct sexual-dimorphism in plasma GH Mesors and acrophases was noticed between male and female catfish. GSI values of male catfish indicate males mature a little earlier than females in terms of size and reproductive activity. The findings that plasma GH show 24 h and seasonal fluctuations in a sex-specific manner collectively demonstrate the importance of considering the effect of biological 24 h and seasonal time and sex on the GH level in regulating the physiology of somatic growth and reproduction in catfish.
Collapse
Affiliation(s)
- Raj Naresh Gopal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Dhanananajay Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | | | - Atanu Kumar Pati
- School of Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Bechan Lal
- Fish Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
9
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
10
|
Takahashi T, Ogiwara K. Roles of melatonin in the teleost ovary: A review of the current status. Comp Biochem Physiol A Mol Integr Physiol 2021; 254:110907. [PMID: 33482340 DOI: 10.1016/j.cbpa.2021.110907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Melatonin, the neurohormone mainly synthesized in and secreted from the pineal gland of vertebrates following a circadian rhythm, is an important factor regulating various physiological processes, including reproduction. Recent data indicate that melatonin is also synthesized in the ovary and that it acts directly at the level of the ovary to modulate ovarian physiology. In some teleosts, melatonin is reported to affect ovarian steroidogenesis. The direct action of melatonin on the ovary could be a possible factor promoting oocyte maturation in teleosts. A role for melatonin in follicle rupture during ovulation in the teleost medaka has recently emerged. In addition, melatonin is suggested to affect oocyte maturation by its antioxidant activity. However, the molecular mechanisms underlying these direct effects of melatonin are largely unknown.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
11
|
Nisembaum LG, Martin P, Fuentes M, Besseau L, Magnanou E, McCormick SD, Falcón J. Effects of a temperature rise on melatonin and thyroid hormones during smoltification of Atlantic salmon, Salmo salar. J Comp Physiol B 2020; 190:731-748. [PMID: 32880666 DOI: 10.1007/s00360-020-01304-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 11/28/2022]
Abstract
Smoltification prepares juvenile Atlantic salmon (Salmo salar) for downstream migration. Dramatic changes characterize this crucial event in the salmon's life cycle, including increased gill Na+/K+-ATPase activity (NKA) and plasma hormone levels. The triggering of smoltification relies on photoperiod and is modulated by temperature. Both provide reliable information, to which fish have adapted for thousands of years, that allows deciphering daily and calendar time. Here we studied the impact of different photoperiod (natural, sustained winter solstice) and temperature (natural, ~ + 4° C) combinations, on gill NKA, plasma free triiodothyronine (T3) and thyroxine (T4), and melatonin (MEL; the time-keeping hormone), throughout smoltification. We also studied the impact of temperature history on pineal gland MEL production in vitro. The spring increase in gill NKA was less pronounced in smolts kept under sustained winter photoperiod and/or elevated temperature. Plasma thyroid hormone levels displayed day-night variations, which were affected by elevated temperature, either independently from photoperiod (decrease in T3 levels) or under natural photoperiod exclusively (increase in T4 nocturnal levels). Nocturnal MEL secretion was potentiated by the elevated temperature, which also altered the MEL profile under sustained winter photoperiod. Temperature also affected pineal MEL production in vitro, a response that depended on previous environmental acclimation of the organ. The results support the view that the salmon pineal is a photoperiod and temperature sensor, highlight the complexity of the interaction of these environmental factors on the endocrine system of S. salar, and indicate that climate change might compromise salmon's time "deciphering" during smoltification, downstream migration and seawater residence.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, 43300, Chanteuges, France
| | - Michael Fuentes
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Laurence Besseau
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Elodie Magnanou
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France
| | - Stephen D McCormick
- S.O. Conte Anadromous Fish Research Laboratory, U.S. Geological Survey, Leetown Science Center, Turners Falls, MA, USA
| | - Jack Falcón
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, 66650, Banyuls-sur-Mer, France.,Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS 7208, UPMC, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris Cedex, France
| |
Collapse
|
12
|
Galal-Khallaf A, Mohammed-Geba K, Yúfera M, Martínez-Rodríguez G, Mancera JM, López-Olmeda JF. Daily rhythms in endocrine factors of the somatotropic axis and their receptors in gilthead sea bream (Sparus aurata) larvae. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110793. [PMID: 32805414 DOI: 10.1016/j.cbpa.2020.110793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Living organisms have adapted to environmental oscillations in light and temperature through evolving biological clocks. Biological rhythms are pervasive at all levels of the endocrine system, including the somatotropic (growth) axis. The objective of the present research was to study the existence of daily rhythms on the somatotropic axis of a marine teleost species, specifically, the gilthead sea bream (Sparus aurata). Larvae of S. aurata at 30 dph (days post hatching), kept under a 9 L:15D (light-dark) photoperiod, were collected every 3 h throughout a 36 h cycle. The expression of the following somatotropic axis genes was analyzed by quantitative PCR: pituitary adenylate cyclase-activating polypeptide 1 (adcyap1), prepro-somatostatin-1 (pss1), growth hormone (gh), growth hormone receptor types 1 and 2 (ghr1 and ghr2, respectively), insulin-like growth factor 1 (igf1) and igf1 receptor a (igf1ra). All genes displayed significant differences among time points and, with the exception of adcyap1, all showed statistically significant daily rhythms. The acrophases of gh, ghr1, ghr2, igf1 and igf1ra were located around the end of the dark phase, between ZT19:44 and ZT0:48 h, whereas the highest expression levels of adcyap1 occurred at ZT18 h. On the other hand, the acrophase of pss1, an inhibitor of Gh secretion, was located at ZT10:16 h, hence it was shifted by several hours with respect to the other genes. The present results provide the first thorough description of somatotropic axis rhythms in gilthead sea bream. Such knowledge provides insights into the role of rhythmic regulation of the Gh/Igf1 axis system in larval growth and metabolism, and it can also improve the implementation of more species-specific feeding regimes.
Collapse
Affiliation(s)
- Asmaa Galal-Khallaf
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Khaled Mohammed-Geba
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain; Molecular Biology and Biotechnology Lab, Department of Zoology, College of Science, Menoufia University, Shebin El- Kom, Menoufia, Egypt; Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain.
| | - Manuel Yúfera
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Marine Sciences Institute of Andalusia, Spanish National Research Council (CSIC), E-11510 Puerto Real (Cádiz), Spain
| | - Juan Miguel Mancera
- Department of Biology, College of Marine and Environmental Sciences, University Institute of Marine Research (INMAR), University of Cádiz, Campus of International Excellence of the Sea (CEI·MAR), E-11510 Puerto Real, Cádiz, Spain
| | - Jose F López-Olmeda
- Department of Physiology, College of Biology, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
13
|
|
14
|
Ciani E, Haug TM, Maugars G, Weltzien FA, Falcón J, Fontaine R. Effects of Melatonin on Anterior Pituitary Plasticity: A Comparison Between Mammals and Teleosts. Front Endocrinol (Lausanne) 2020; 11:605111. [PMID: 33505357 PMCID: PMC7831660 DOI: 10.3389/fendo.2020.605111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Melatonin is a key hormone involved in the photoperiodic signaling pathway. In both teleosts and mammals, melatonin produced in the pineal gland at night is released into the blood and cerebrospinal fluid, providing rhythmic information to the whole organism. Melatonin acts via specific receptors, allowing the synchronization of daily and annual physiological rhythms to environmental conditions. The pituitary gland, which produces several hormones involved in a variety of physiological processes such as growth, metabolism, stress and reproduction, is an important target of melatonin. Melatonin modulates pituitary cellular activities, adjusting the synthesis and release of the different pituitary hormones to the functional demands, which changes during the day, seasons and life stages. It is, however, not always clear whether melatonin acts directly or indirectly on the pituitary. Indeed, melatonin also acts both upstream, on brain centers that control the pituitary hormone production and release, as well as downstream, on the tissues targeted by the pituitary hormones, which provide positive and negative feedback to the pituitary gland. In this review, we describe the known pathways through which melatonin modulates anterior pituitary hormonal production, distinguishing indirect effects mediated by brain centers from direct effects on the anterior pituitary. We also highlight similarities and differences between teleosts and mammals, drawing attention to knowledge gaps, and suggesting aims for future research.
Collapse
Affiliation(s)
- Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Trude M. Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gersende Maugars
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Jack Falcón
- Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France
| | - Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- *Correspondence: Romain Fontaine,
| |
Collapse
|
15
|
Ciani E, Fontaine R, Maugars G, Mizrahi N, Mayer I, Levavi-Sivan B, Weltzien FA. Melatonin receptors in Atlantic salmon stimulate cAMP levels in heterologous cell lines and show season-dependent daily variations in pituitary expression levels. J Pineal Res 2019; 67:e12590. [PMID: 31169933 DOI: 10.1111/jpi.12590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/07/2019] [Accepted: 05/26/2019] [Indexed: 01/13/2023]
Abstract
The hormone melatonin connects environmental cues, such as photoperiod and temperature, with a number of physiological and behavioural processes, including seasonal reproduction, through binding to their cognate receptors. This study reports the structural, functional and physiological characterization of five high-affinity melatonin receptors (Mtnr1aaα, Mtnr1aaβ, Mtnr1ab, Mtnr1al, Mtnr1b) in Atlantic salmon. Phylogenetic analysis clustered salmon melatonin receptors into three monophyletic groups, Mtnr1A, Mtnr1Al and Mtnr1B, but no functional representative of the Mtnr1C group. Contrary to previous studies in vertebrates, pharmacological characterization of four receptors in COS-7, CHO and SH-SY5Y cell lines (Mtnr1Aaα, Mtnr1Aaβ, Mtnr1Ab, Mtnr1B) showed induction of intracellular cAMP levels following 2-iodomelatonin or melatonin exposure. No consistent response was measured after N-acetyl-serotonin or serotonin exposure. Melatonin receptor genes were expressed at all levels of the hypothalamo-pituitary-gonad axis, with three genes (mtnr1aaβ, mtnr1ab and mtnr1b) detected in the pituitary. Pituitary receptors displayed daily fluctuations in mRNA levels during spring, prior to the onset of gonadal maturation, but not in autumn, strongly implying a direct involvement of melatonin in seasonal processes regulated by the pituitary. To the best of our knowledge, this is the first report of cAMP induction mediated via melatonin receptors in a teleost species.
Collapse
Affiliation(s)
- Elia Ciani
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Gersende Maugars
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Naama Mizrahi
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
16
|
Baekelandt S, Mandiki SNM, Kestemont P. Are cortisol and melatonin involved in the immune modulation by the light environment in pike perch Sander lucioperca? J Pineal Res 2019; 67:e12573. [PMID: 30924977 DOI: 10.1111/jpi.12573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/08/2019] [Accepted: 03/21/2019] [Indexed: 12/29/2022]
Abstract
The pineal gland is the main organ involved in the transduction process converting environmental light information into a melatonin response. Since light environment was described as an important factor that could affect physiology of teleosts, and because melatonin is a crucial hormone regulating numerous physiological processes, we hypothesized that environmental light may act on both stress and circadian axes which in turn could influence the immune status of pike perch. Therefore, we investigated the effects of two light spectra (red and white) and two light intensities (10 and 100 lx) with a constant photoperiod 12L(8:00-20:00) /12D on pike perch physiological and immune responses. Samples were collected at 04:00 and 16:00 at days 1 and 30 of the experiment. Stress markers, plasma melatonin levels, humoral innate immune markers, and expression of key immune genes in the head kidney were assessed. Light intensity clearly affected pike perch physiology. This included negative growth performances, increase in stress status, decrease in plasma melatonin levels, and immune depression. Light spectrum had only little influences. These results demonstrate that high stress status may have impacted melatonin production and secretion by the pineal organ. The drop in circulating melatonin and the increase in stress status may both be involved in the immune suppression.
Collapse
Affiliation(s)
- Sébastien Baekelandt
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| | - Syaghalirwa N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Namur, Belgium
| |
Collapse
|
17
|
Sakai K, Yamamoto Y, Ikeuchi T. Vertebrates originally possess four functional subtypes of G protein-coupled melatonin receptor. Sci Rep 2019; 9:9465. [PMID: 31263128 PMCID: PMC6602942 DOI: 10.1038/s41598-019-45925-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
Melatonin receptors (MTNRs) belonging to the G protein-coupled receptor family are considered to consist of three subtypes in vertebrates: MTNR1a, MTNR1b and MTNR1c. Additionally, MTNR1a-like genes have been identified in teleostean species as a fish-specific subtype of MTNR1a. However, similar molecules to this MTNR1a-like gene can be found in some reptiles upon searching the DNA database. We hypothesized that a vertebrate can essentially have four functional subtypes of MTNR as ohnologs. Thus, in the present study we examined the molecular phylogeny, expression patterns and pharmacological profile(s) using the teleost medaka (Oryzias latipes). The four conserved subtypes of MTNR (MTNR1a, MTNR1b, MTNR1c and MTNR1a-like) in vertebrates were classified based on synteny and phylogenetic analysis. The fourth MTNR, termed MTNR1a-like, could be classified as MTNR1d. It was observed by using RT-qPCR that expression patterns differed amongst these subtypes. Moreover, mtnr1a, mtnr1c and mtnr1a-like/mtnr1d expression was elevated during short days compared to long days in diencephalons. All the subtypes were activated by melatonin and transduced signals into the Gi pathway, to perform a cAMP-responsive reporter gene assay. It was shown that MTNR originally consisted of four subtypes: MTNR1a, MTNR1b, MTNR1c and MTNR1d. These subtypes were functional, at least in fish, although some organisms, including mammals, have lost one or two subtypes.
Collapse
Affiliation(s)
- Kotowa Sakai
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, 1266, Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Yuya Yamamoto
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, 1266, Tamura, Nagahama, Shiga, 526-0829, Japan
| | - Toshitaka Ikeuchi
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, 1266, Tamura, Nagahama, Shiga, 526-0829, Japan.
| |
Collapse
|
18
|
Kim BH, Lee CH, Choi SH, Lee YD. Changes in Body Growth and Growth-Related Genes under Different Photoperiods in Olive Flounder, Paralichthys olivaceus. Dev Reprod 2019; 23:149-160. [PMID: 31321355 PMCID: PMC6635610 DOI: 10.12717/dr.2019.23.2.149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 11/26/2022]
Abstract
This study examined the effects of different photoperiod conditions on olive
flounder (Paralichthys olivaceus), a commercially important
species in Korea. Daily variations in the expression of mRNA for the
growth-related genes arylalkylamine N-acetyltransferase2 (AANAT2),
preprosomatostatin1 (PSS1), and growth hormone (GH) were examined under a 12 h
light:12 h dark photoperiod. All the genes were expressed at higher level during
the dark period. Melatonin injections increased the expression of GH, but did
not significantly affect the expression of PSS. Under short-day conditions (10
h:14 h), the fish gained more weight than under long-day conditions (14 h:10 h).
A long nighttime induced melatonin secretion and increased the expression of GH
mRNA, promoting weight gain in this species. Therefore, we thought that the long
day condition in raising olive flounder may be effective in inducing body
growth.
Collapse
Affiliation(s)
- Byeong-Hoon Kim
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Chi-Hoon Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea.,CR Co., Ltd., Jeju 63333, Korea
| | - Song-Hee Choi
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
19
|
Chi L, Li X, Liu Q, Liu Y. Photoperiod may regulate growth via leptin receptor A1 in the hypothalamus and saccus vasculosus of Atlantic salmon ( Salmo salar). Anim Cells Syst (Seoul) 2019; 23:200-208. [PMID: 31231584 PMCID: PMC6566995 DOI: 10.1080/19768354.2019.1595138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022] Open
Abstract
Photoperiod is believed to regulate growth in fish, although the mechanism involved is still unclear. In this paper, we report a relationship between leptin-receptor A1 (AsLRa1), melatonin-receptor (AsMR) and photoperiod in Atlantic salmon. Atlantic salmon (mean weight 1071.70 ± 155.54 g) were reared under six photoperiod regimes, four constant light regimes 24L:0D, 18L:6D, 12L:12D and 8L:16D, hours of light (L) and dark (D) and two varying light regimes, LL-SL = 24L:0D-8L:16D, and SL-LL = 8L:16D-24L:0D over a period of seven months. The results showed that AsLRa1 transcripts were mainly existed in the hypothalamus and saccus vasculosus (SV), AsMR was mainly expressed in the hypothalamus. Long photoperiod inhibited the expression of AsLRa1 and AsMR transcripts in the Atlantic salmon brain. The expression pattern of AsLRa1 was similar to the expression pattern of AsMR in the hypothalamus. Food intake was higher in fish with lower AsLRa1 transcript levels. This demonstrated that photoperiod influenced somatic growth by changing expression of AsLRa1 in the hypothalamus and SV to affect appetite. In addition, we found that the SV appears to act as a seasonal sensor regulating reproduction in a similar way to the hypothalamus.
Collapse
Affiliation(s)
- Liang Chi
- Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Xian Li
- Institute of Oceanology Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Qinghua Liu
- Institute of Oceanology Chinese Academy of Sciences, Qingdao, People’s Republic of China
| | - Ying Liu
- Institute of Oceanology Chinese Academy of Sciences, Qingdao, People’s Republic of China
| |
Collapse
|
20
|
Karagic N, Härer A, Meyer A, Torres‐Dowdall J. Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: Possible role of thyroid hormone signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:202-214. [DOI: 10.1002/jez.b.22806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Nidal Karagic
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Andreas Härer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
| | - Axel Meyer
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- Radcliffe Institute for Advanced StudyHarvard University Cambridge Massachusetts
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary BiologyDepartment of BiologyUniversity of Konstanz Konstanz Germany
- ZukunftskollegUniversity of Konstanz Konstanz Germany
| |
Collapse
|
21
|
Duroux R, Rami M, Landagaray E, Ettaoussi M, Caignard DH, Delagrange P, Melnyk P, Yous S. Synthesis and biological evaluation of new naphtho- and quinolinocyclopentane derivatives as potent melatoninergic (MT 1 /MT 2 ) and serotoninergic (5-HT 2C ) dual ligands. Eur J Med Chem 2017; 141:552-566. [DOI: 10.1016/j.ejmech.2017.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/02/2023]
|
22
|
Lee CH, Park YJ, Lee YD. Effects of Photoperiod Manipulation on Gonadal Activity of the Damselfish, Chromis notata. Dev Reprod 2017; 21:223-228. [PMID: 28785743 PMCID: PMC5532314 DOI: 10.12717/dr.2017.21.2.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022]
Abstract
This study investigated the effect of different photoperiods (14L: 10D, 12L:12D and 10L:14D) on the gonadal development and GtH mRNA expression in the pituitary of damselfish. The results showed that gonadosomatic index (GSI) was significantly lower in shot photoperiod (10L:14D), in comparison with other photoperiodic group during the spawning season. After 60 days treatment, histological analysis of gonad tissue showed that the gonad of 10L:14D and 12L: 12D treatment groups were resting phase with spermatogonia and perinucleolus stage oocytes but the gonad of 14L:10D treatment group was still ripe phase with spermatozoa and mature stage oocyte. The FSHβ and LHβ mRNA expression in pituitary drastically decreased shot photoperiod treatment from July (spawning period). These results suggest that photoperiod is considered to be the most effective environmental factor in controlling the reproductive cycle of damselfish.
Collapse
Affiliation(s)
- Chi-Hoon Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Young-Ju Park
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Young-Don Lee
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
23
|
Ogura-Ochi K, Fujisawa S, Iwata N, Komatsubara M, Nishiyama Y, Tsukamoto-Yamauchi N, Inagaki K, Wada J, Otsuka F. Regulatory role of melatonin and BMP-4 in prolactin production by rat pituitary lactotrope GH3 cells. Peptides 2017. [PMID: 28627372 DOI: 10.1016/j.peptides.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The effects of melatonin on prolactin production and its regulatory mechanism remain uncertain. We investigated the regulatory role of melatonin in prolactin production using rat pituitary lactotrope GH3 cells by focusing on the bone morphogenetic protein (BMP) system. Melatonin receptor activation, induced by melatonin and its receptor agonist ramelteon, significantly suppressed basal and forskolin-induced prolactin secretion and prolactin mRNA expression in GH3 cells. The melatonin MT2 receptor was predominantly expressed in GH3 cells, and the inhibitory effects of melatonin on prolactin production were reversed by treatment with the receptor antagonist luzindole, suggesting functional involvement of MT2 action in the suppression of prolactin release. Melatonin receptor activation also suppressed BMP-4-induced prolactin expression by inhibiting phosphorylation of Smad and transcription of the BMP-target gene Id-1, while BMP-4 treatment upregulated MT2 expression. Melatonin receptor activation suppressed basal, BMP-4-induced and forskolin-induced cAMP synthesis; however, BtcAMP-induced prolactin mRNA expression was not affected by melatonin or ramelteon, suggesting that MT2 activation leads to inhibition of prolactin production through the suppression of Smad signaling and cAMP synthesis. Experiments using intracellular signal inhibitors revealed that the ERK pathway is, at least in part, involved in prolactin induction by GH3 cells. Thus, a new regulatory role of melatonin involving BMP-4 in prolactin secretion was uncovered in lactotrope GH3 cells.
Collapse
Affiliation(s)
| | | | - Nahoko Iwata
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Yuki Nishiyama
- Department of Medicine and Clinical Science, Okayama, Japan
| | | | | | - Jun Wada
- Department of Medicine and Clinical Science, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
24
|
Boutin JA, Bonnaud A, Brasseur C, Bruno O, Lepretre N, Oosting P, Coumailleau S, Delagrange P, Nosjean O, Legros C. New MT₂ Melatonin Receptor-Selective Ligands: Agonists and Partial Agonists. Int J Mol Sci 2017; 18:E1347. [PMID: 28644418 PMCID: PMC5535840 DOI: 10.3390/ijms18071347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 12/28/2022] Open
Abstract
The search for melatonin receptor agonists and antagonists specific towards one of the receptor subtypes will extend our understanding of the role of this system in relaying circadian information to the body. A series of compounds derived from a hit compound discovered in a screening process led to powerful agonists specific for one of the isoform of the melatonin receptor namely, MT₂. The compounds are based on a poorly explored skeleton in the molecular pharmacology of melatonin. By changing the steric hindrance of one substituent (i.e., from a hydrogen atom to a tributylstannyl group), we identified a possible partial agonist that could lead to antagonist analogues. The functionalities of these compounds were measured with a series of assays, including the binding of GTPγS, the inhibition of the cyclic AMP production, the β-arrestin recruitment, and the cell shape changes as determined by cellular dielectric spectroscopy (CellKey®). The variations between the compounds are discussed.
Collapse
Affiliation(s)
- Jean A Boutin
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
- Pôle d'Expertise Recherches & BioPharmacie, Institut de Recherches Internationales SERVIER, 92150 Suresnes, France.
| | - Anne Bonnaud
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | - Chantal Brasseur
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | - Olivier Bruno
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | | | | | - Sophie Coumailleau
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| | - Philippe Delagrange
- Pôle d'Innovations Thérapeutiques en Neurosciences, Institut de Recherches, SERVIER, 78290 Croissy-sur-Seine, France.
| | - Olivier Nosjean
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
- Pôle d'Expertise Recherches & BioPharmacie, Institut de Recherches Internationales SERVIER, 92150 Suresnes, France.
| | - Céline Legros
- Pôle d'Expertise Biotechnologie, Chimie, Biologie, Institut de Recherches SERVIER, 78290 Croissy-sur-Seine, France.
| |
Collapse
|
25
|
Landagaray E, Ettaoussi M, Rami M, Boutin JA, Caignard DH, Delagrange P, Melnyk P, Berthelot P, Yous S. New quinolinic derivatives as melatonergic ligands: Synthesis and pharmacological evaluation. Eur J Med Chem 2017; 127:621-631. [DOI: 10.1016/j.ejmech.2016.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 01/03/2023]
|
26
|
White SL, Volkoff H, Devlin RH. Regulation of feeding behavior and food intake by appetite-regulating peptides in wild-type and growth hormone-transgenic coho salmon. Horm Behav 2016; 84:18-28. [PMID: 27149948 DOI: 10.1016/j.yhbeh.2016.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 04/01/2016] [Accepted: 04/16/2016] [Indexed: 12/17/2022]
Abstract
Survival, competition, growth and reproductive success in fishes are highly dependent on food intake, food availability and feeding behavior and are all influenced by a complex set of metabolic and neuroendocrine mechanisms. Overexpression of growth hormone (GH) in transgenic fish can result in greatly enhanced growth rates, feed conversion, feeding motivation and food intake. The objectives of this study were to compare seasonal feeding behavior of non-transgenic wild-type (NT) and GH-transgenic (T) coho salmon (Oncorhynchus kisutch), and to examine the effects of intraperitoneal injections of the appetite-regulating peptides cholecystokinin (CCK-8), bombesin (BBS), glucagon-like peptide-1 (GLP-1), and alpha-melanocyte-stimulating hormone (α-MSH) on feeding behavior. T salmon fed consistently across all seasons, whereas NT dramatically reduced their food intake in winter, indicating the seasonal regulation of appetite can be altered by overexpression of GH in T fish. Intraperitoneal injections of CCK-8 and BBS caused a significant and rapid decrease in food intake for both genotypes. Treatment with either GLP-1 or α-MSH resulted in a significant suppression of food intake for NT but had no effect in T coho salmon. The differential response of T and NT fish to α-MSH is consistent with the melanocortin-4 receptor system being a significant pathway by which GH acts to stimulate appetite. Taken together, these results suggest that chronically increased levels of GH alter feeding regulatory pathways to different extents for individual peptides, and that altered feeding behavior in transgenic coho salmon may arise, in part, from changes in sensitivity to peripheral appetite-regulating signals.
Collapse
Affiliation(s)
- Samantha L White
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| | - Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John's, NL A1B 3X9, Canada.
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada.
| |
Collapse
|
27
|
Landagaray E, Ettaoussi M, Duroux R, Boutin JA, Caignard DH, Delagrange P, Melnyk P, Berthelot P, Yous S. Melatonergic ligands: Design, synthesis and pharmacological evaluation of novel series of naphthofuranic derivatives. Eur J Med Chem 2016; 109:360-70. [DOI: 10.1016/j.ejmech.2015.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 12/23/2022]
|
28
|
McKinney GJ, Hale MC, Goetz G, Gribskov M, Thrower FP, Nichols KM. Ontogenetic changes in embryonic and brain gene expression in progeny produced from migratory and residentOncorhynchus mykiss. Mol Ecol 2015; 24:1792-809. [DOI: 10.1111/mec.13143] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Garrett J. McKinney
- Department of Biological Sciences; Purdue University; West Lafayette IN 47907 USA
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA 98195-5020 USA
| | - Matthew C. Hale
- Department of Biological Sciences; Purdue University; West Lafayette IN 47907 USA
| | - Giles Goetz
- Conservation Biology Division; Northwest Fisheries Science Center; National Marine Fisheries Service; National Oceanic and Atmospheric Administration; Seattle WA 98112 USA
| | - Michael Gribskov
- Department of Biological Sciences; Purdue University; West Lafayette IN 47907 USA
| | - Frank P. Thrower
- Ted Stevens Marine Research Institute; Alaska Fisheries Science Center; National Marine Fisheries Service; National Oceanic and Atmospheric Administration; Juneau AK 99801 USA
| | - Krista M. Nichols
- Department of Biological Sciences; Purdue University; West Lafayette IN 47907 USA
- Conservation Biology Division; Northwest Fisheries Science Center; National Marine Fisheries Service; National Oceanic and Atmospheric Administration; Seattle WA 98112 USA
| |
Collapse
|
29
|
Ibáñez-Costa A, Córdoba-Chacón J, Gahete MD, Kineman RD, Castaño JP, Luque RM. Melatonin regulates somatotrope and lactotrope function through common and distinct signaling pathways in cultured primary pituitary cells from female primates. Endocrinology 2015; 156:1100-10. [PMID: 25545385 PMCID: PMC4330310 DOI: 10.1210/en.2014-1819] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Melatonin (MT) is secreted by the pineal gland and exhibits a striking circadian rhythm in its release. Depending on the species studied, some pituitary hormones also display marked circadian/seasonal patterns and rhythms of secretion. However, the precise relationship between MT and pituitary function remains controversial, and studies focusing on the direct role of MT in normal pituitary cells are limited to nonprimate species. Here, adult normal primate (baboons) primary pituitary cell cultures were used to determine the direct impact of MT on the functioning of all pituitary cell types from the pars distalis. MT increased GH and prolactin (PRL) expression/release in a dose- and time-dependent fashion, a response that was blocked by somatostatin. However, MT did not significantly affect ACTH, FSH, LH, or TSH expression/release. MT did not alter GHRH- or ghrelin-induced GH and/or PRL secretions, suggesting that MT may activate similar signaling pathways as ghrelin/GHRH. The effects of MT on GH/PRL release, which are likely mediated through MT1 receptor, involve both common (adenylyl cyclase/protein kinase A/extracellular calcium-channels) and distinct (phospholipase C/intracellular calcium-channels) signaling pathways. Actions of MT on pituitary cells also included regulation of the expression of other key components for the control of somatotrope/lactotrope function (GHRH, ghrelin, and somatostatin receptors). These results show, for the first time in a primate model, that MT directly regulates somatotrope/lactotrope function, thereby lending support to the notion that the actions of MT on these cells might substantially contribute to the define daily patterns of GH and PRL observed in primates and perhaps in humans.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Department of Cell Biology, Physiology, and Immunology (A.I.-C., J.C.-C., M.D.G., J.P.C., R.M.L.), University of Cordoba, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición; and Campus de Excelencia Internacional Agroalimentario (ceiA3), E-14014 Córdoba, Spain; and Department of Medicine (J.C.-C., R.D.K.), Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago and Research and Development Division, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | | | | | | | | | | |
Collapse
|
30
|
Herrero MJ, Lepesant JMJ. Daily and seasonal expression of clock genes in the pituitary of the European sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2014; 208:30-8. [PMID: 25148807 DOI: 10.1016/j.ygcen.2014.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/27/2014] [Accepted: 08/04/2014] [Indexed: 11/20/2022]
Abstract
The expression of select clock genes (clock, bmal, per1, per2, cry1, cry2) was investigated throughout the day and across the four seasons for two consecutive years in the pituitary of adult sea bass (Dicentrarchus labrax). A rhythmic pattern of daily expression was consistently observed in summer and autumn, while arrhythmicity was observed for some clock genes during spring and winter, concomitant with low water temperatures. The expression of clock and bmal showed highest values at the end of the day and during the night, while that of per and cry was mostly antiphasic, with high values during the day. Melatonin affects clock-gene expression in the pituitary of mammals. We therefore sought to test the effect of melatonin on clock-gene expression in the pituitary of sea bass both in vivo and in vitro. Melatonin modestly affected the expression of some clock genes (in particular cry genes) when added to the fish diet or the culture medium of pituitary glands. Our data show that clock genes display rhythmic daily expression in the pituitary of adult sea bass, which are profoundly modified according to the season. We suggest that the effect of photoperiod on clock gene expression may be mediated, at least in part, by melatonin, and that temperature may have a key role adjusting seasonal variations.
Collapse
Affiliation(s)
- María Jesús Herrero
- CNRS, UMR7232 BIOM, Laboratoire Arago, Banyuls-sur-Mer, France; Université Pierre et Marie Curie-Paris6, UMR7232, Laboratoire Arago, Banyuls-sur-Mer, France.
| | - Julie M J Lepesant
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Université Paul Sabatier Toulouse III, Toulouse, France
| |
Collapse
|
31
|
Song JA, Choi JY, Kim NN, Choi YJ, Park MA, Choi CY. Effect of LED light spectra on exogenous prolactin-regulated circadian rhythm in goldfish,Carassius auratus. BIOL RHYTHM RES 2014. [DOI: 10.1080/09291016.2014.963947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Wang L, Zhuo ZY, Shi WQ, Tan DX, Gao C, Tian XZ, Zhang L, Zhou GB, Zhu SE, Yun P, Liu GS. Melatonin promotes superovulation in sika deer (Cervus nippon). Int J Mol Sci 2014; 15:12107-18. [PMID: 25007067 PMCID: PMC4139832 DOI: 10.3390/ijms150712107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 06/19/2014] [Accepted: 06/30/2014] [Indexed: 12/31/2022] Open
Abstract
In this study, the effects of melatonin (MT) on superovulation and reproductive hormones (melatonin, follicle-stimulating hormone (FSH), luteinizing hormone (LH) and PRL) were investigated in female sika deer. Different doses (40 or 80 mg/animal) of melatonin were subcutaneously implanted into deer before the breeding season. Exogenous melatonin administration significantly elevated the serum FSH levels at the time of insemination compared with levels in control animals. During superovulation, the serum LH levels in donor sika deer reached their highest values (7.1 ± 2.04 ng/mL) at the point of insemination, compared with the baseline levels (4.98 ± 0.07 ng/mL) in control animals. This high level of LH was sustained until the day of embryo recovery. In contrast, the serum levels of PRL in the 80 mg of melatonin-treated group were significantly lower than those of control deer. The average number of corpora lutea in melatonin-treated deer was significantly higher than that of the control (p < 0.05). The average number of embryos in the deer treated with 40 mg of melatonin was higher than that of the control; however, this increase did not reach significant difference (p > 0.05), which may be related to the relatively small sample size. In addition, embryonic development in melatonin-treated groups was delayed.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Zhi-Yong Zhuo
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Wen-Qing Shi
- Animal Husbandry Station of Beijing, Beijing 100101, China.
| | - Dun-Xian Tan
- Department of Cellular & Structural Biology, the UT Health Science Center, San Antonio, TX 78229, USA.
| | - Chao Gao
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Xiu-Zhi Tian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Lu Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Guang-Bin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University (Chengdu Campus), Chengdu 611130, China.
| | - Shi-En Zhu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| | - Peng Yun
- Animal Husbandry Station of Beijing, Beijing 100101, China.
| | - Guo-Shi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100091, China.
| |
Collapse
|
33
|
Ultrastructure of Intervertebral Disc and Vertebra-Disc Junctions Zones as a Link in Etiopathogenesis of Idiopathic Scoliosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/850594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Context. There is no general accepted theory on the etiology of idiopathic scoliosis (IS). An important role of the vertebrae endplate physes (VEPh) and intervertebral discs (IVD) in spinal curve progression is acknowledged, but ultrastructural mechanisms are not well understood. Purpose. To analyze the current literature on ultrastructural characteristics of VEPh and IVD in the context of IS etiology. Study Design/Setting. A literature review. Results. There is strong evidence for multifactorial etiology of IS. Early wedging of vertebra bodies is likely due to laterally directed appositional bone growth at the concave side, caused by a combination of increased cell proliferation at the vertebrae endplate and altered mechanical properties of the outer annulus fibrosus of the adjacent IVD. Genetic defects in bending proteins necessary for IVD lamellar organization underlie altered mechanical properties. Asymmetrical ligaments, muscular stretch, and spine instability may also play roles in curve formation. Conclusions. Development of a reliable, cost effective method for identifying patients at high risk for curve progression is needed and could lead to a paradigm shift in treatment options. Unnecessary anxiety, bracing, and radiation could potentially be minimized and high risk patient could receive surgery earlier, rendering better outcomes with fewer fused segments needed to mitigate curve progression.
Collapse
|
34
|
Besseau L, Fuentès M, Sauzet S, Beauchaud M, Chatain B, Covès D, Boeuf G, Falcón J. Somatotropic axis genes are expressed before pituitary onset during zebrafish and sea bass development. Gen Comp Endocrinol 2013; 194:133-41. [PMID: 24055560 DOI: 10.1016/j.ygcen.2013.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 11/16/2022]
Abstract
The somatotropic axis, or growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, of fish is involved in numerous physiological process including regulation of ionic and osmotic balance, lipid, carbohydrate and protein metabolism, growth, reproduction, immune function and behavior. It is thought that GH plays a role in fish development but conflicting results have been obtained concerning the ontogeny of the somatotropic axis. Here we investigated the developmental expression of GH, GH-receptor (GHR) and IGF-1 genes and of a GH-like protein from fertilization until early stages of larval development in two Teleosts species, Danio rerio and Dicentrarchus labrax, by PCR, in situ hybridization and Western blotting. GH, GHR and IGF-1 mRNA were present in unfertilized eggs and at all stages of embryonic development, all three displaying a similar distribution in the two species. First located in the whole embryo (until 12 hpf in zebrafish and 76 hpf in sea bass), the mRNAs appeared then distributed in the head and tail, from where they disappeared progressively to concentrate in the forming pituitary gland. Proteins immunoreactive with a specific sea bass anti-GH antibody were also detected at all stages in this species. Differences in intensity and number of bands suggest that protein processing varies from early to later stages of development. The data show that all actors of the somatotropic axis are present from fertilization in these two species, suggesting they plays a role in early development, perhaps in an autocrine/paracrine mode as all three elements displayed a similar distribution at each stage investigated.
Collapse
Affiliation(s)
- Laurence Besseau
- Université Pierre & Marie Curie-Paris 6, Laboratoire Arago, Avenue de Fontaulé, 66650 Banyuls-sur-Mer, France; CNRS UMR 7232, Biologie Intégrative des Organismes Marins, Avenue de Fontaulé, 66650 Banyuls-sur-Mer, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Piccinetti CC, Migliarini B, Olivotto I, Simoniello MP, Giorgini E, Carnevali O. Melatonin and peripheral circuitries: insights on appetite and metabolism in Danio rerio. Zebrafish 2013; 10:275-82. [PMID: 23682835 PMCID: PMC3760084 DOI: 10.1089/zeb.2012.0844] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Melatonin is a neuroendocrine transducer of circadian/circannual rhythms able to synchronize organism's physiological activity. On the basis of our recent findings on appetite regulation by melatonin in the zebrafish brain, the aim of this study was to evaluate melatonin's role in peripheral circuitries regulating food intake, growth, and lipid metabolism. For this purpose, the effect of two melatonin doses (100 nM and 1 μM) administered for 10 days, via water, to adult zebrafish was evaluated at both physiological and molecular levels. The major signals controlling energy homeostasis were analyzed together. Additionally, the effect of melatonin doses on muscle metabolic resources was evaluated. The results obtained indicate that melatonin reduces food intake by stimulating molecules involved in appetite inhibition, such as leptin (LPT), in the liver and intestine and MC4R, a melanocortin system receptor, in the liver. Moreover, melatonin decreases hepatic insulin-like growth factor-I (IGF-I) gene expression, involved in growth process and other signals involved in lipid metabolism such as proliferator-activated receptors (PPARα, β, and γ) and sterol regulatory element-binding protein (SREBP). These results were correlated with lower levels of lipids in the muscles as evidenced by the macromolecular pools analyses. The findings obtained in this study could be of great interest for a better understanding of the molecular mechanisms as the basis of food intake control and, in turn, can be a useful tool for medical and aquaculture applications.
Collapse
Affiliation(s)
- Chiara Carla Piccinetti
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Beatrice Migliarini
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Ike Olivotto
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Pasquale Simoniello
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Giorgini
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Oliana Carnevali
- Dipartimento di Scienze della vita e dell'ambiente, Università Politecnica delle Marche, Ancona, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| |
Collapse
|
36
|
Chai K, Liu X, Zhang Y, Lin H. Day-night and reproductive cycle profiles of melatonin receptor, kiss
, and gnrh
expression in orange-spotted grouper (Epinephelus coioides
). Mol Reprod Dev 2013; 80:535-48. [DOI: 10.1002/mrd.22191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/02/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Ke Chai
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; School of Life Sciences, Sun Yat-Sen University; Guangzhou China
- Material and Chemical Engineering College, Hainan University; Haikou China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; School of Life Sciences, Sun Yat-Sen University; Guangzhou China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; School of Life Sciences, Sun Yat-Sen University; Guangzhou China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals; School of Life Sciences, Sun Yat-Sen University; Guangzhou China
- College of Ocean, Hainan University; Haikou China
| |
Collapse
|
37
|
Servili A, Herrera-Pérez P, del Carmen Rendón M, Muñoz-Cueto JA. Melatonin inhibits GnRH-1, GnRH-3 and GnRH receptor expression in the brain of the European Sea Bass, Dicentrarchus labrax. Int J Mol Sci 2013; 14:7603-16. [PMID: 23567273 PMCID: PMC3645706 DOI: 10.3390/ijms14047603] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/11/2022] Open
Abstract
Several evidences supported the existence of melatonin effects on reproductive system in fish. In order to investigate whether melatonin is involved in the modulation of GnRH systems in the European sea bass, we have injected melatonin (0.5 μg/g body mass) in male specimens. The brain mRNA transcript levels of the three GnRH forms and the five GnRH receptors present in this species were determined by real time quantitative PCR. Our findings revealed day–night variations in the brain expression of GnRH-1, GnRH-3 and several GnRH receptors (dlGnRHR-II-1c, -2a), which exhibited higher transcript levels at mid-light compared to mid-dark phase of the photocycle. Moreover, an inhibitory effect of melatonin on the nocturnal expression of GnRH-1, GnRH-3, and GnRH receptors subtypes 1c, 2a and 2b was also demonstrated. Interestingly, the inhibitory effect of melatonin affected the expression of hypophysiotrophic GnRH forms and GnRH receptors that exhibit day–night fluctuations, suggesting that exogenous melatonin reinforce physiological mechanisms already established. These interactions between melatoninergic and GnRH systems could be mediating photoperiod effects on reproductive and other rhythmic physiological events in the European sea bass.
Collapse
Affiliation(s)
- Arianna Servili
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
| | - Patricia Herrera-Pérez
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
- Andalusian Center of Marine Sciences and Technologies (CACYTMAR), Research Institutes, University Campus of Puerto Real, Puerto Real E-11510, Spain
| | - María del Carmen Rendón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
| | - José Antonio Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cadiz, Marine International Campus of Excellence (CEI·MAR), University Campus of Puerto Real, Puerto Real E-11510, Spain; E-Mails: (P.H.-P.); (M.C.R.)
- Andalusian Center of Marine Sciences and Technologies (CACYTMAR), Research Institutes, University Campus of Puerto Real, Puerto Real E-11510, Spain
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +34-956-016-023; Fax: +34-956-016-019
| |
Collapse
|
38
|
Watanabe N, Itoh K, Mogi M, Fujinami Y, Shimizu D, Hashimoto H, Uji S, Yokoi H, Suzuki T. Circadian pacemaker in the suprachiasmatic nuclei of teleost fish revealed by rhythmic period2 expression. Gen Comp Endocrinol 2012; 178:400-7. [PMID: 22732079 DOI: 10.1016/j.ygcen.2012.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 01/06/2023]
Abstract
In mammals, the role of the suprachiasmatic nucleus (SCN) as the primary circadian clock that coordinates the biological rhythms of peripheral oscillators is well known. However, in teleosts, it remains unclear whether the SCN also functions as a circadian pacemaker. We used in situ hybridization (ISH) techniques to demonstrate that the molecular clock gene, per2, is expressed in the SCN of flounder (Paralichthys olivaceus) larvae during the day and down-regulated at night, demonstrating that a circadian pacemaker exists in the SCN of this teleost. The finding that per2 expression in the SCN was also observed in the amberjack (Seriola dumerili), but not in medaka (Oryzias latipes), implies that interspecific variation exists in the extent to which the SCN controls the circadian rhythms of fish species, presumably reflecting their lifestyle. Rhythmic per2 expression was also detected in the pineal gland and pituitary, and aperiodic per2 expression was observed in the habenula, which is known to exhibit circadian rhythms in rodents. Since the ontogeny of per2 expression in the brain of early flounder larvae can be monitored by whole mount ISH, it is possible to investigate the effects of drugs and environmental conditions on the functional development of circadian clocks in the brain of fish larvae. In addition, flounder would be a good model for understanding the rhythmicity of marine fish. Our findings open a new frontier for investigating the role of the SCN in teleost circadian rhythms.
Collapse
Affiliation(s)
- Nanako Watanabe
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Organisms exposed to altered salinity must be able to perceive osmolality change because metabolism has evolved to function optimally at specific intracellular ionic strength and composition. Such osmosensing comprises a complex physiological process involving many elements at organismal and cellular levels of organization. Input from numerous osmosensors is integrated to encode magnitude, direction, and ionic basis of osmolality change. This combinatorial nature of osmosensing is discussed with emphasis on fishes.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, Physiological Genomics Group, University of California, Davis, Davis, California
| |
Collapse
|
40
|
Conde-Sieira M, Librán-Pérez M, López Patiño MA, Soengas JL, Míguez JM. Melatonin treatment alters glucosensing capacity and mRNA expression levels of peptides related to food intake control in rainbow trout hypothalamus. Gen Comp Endocrinol 2012; 178:131-8. [PMID: 22569117 DOI: 10.1016/j.ygcen.2012.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023]
Abstract
As demonstrated in previous studies, the functioning of brain glucosensing systems in rainbow trout is altered under stress conditions in a way that they are unable to respond properly to changes in glucose levels. Melatonin has been postulated as necessary for homeostatic control of energy metabolism in several vertebrate groups, and in fish it has been suggested as an anti-stress molecule. To evaluate the possible effects of melatonin on glucosensing, we have incubated hypothalamus and hindbrains of rainbow trout at different glucose concentrations in the presence of increased doses (0.01, 1, and 100nM) of melatonin assessing whether or not the responses to changes in glucose levels of parameters related to glucosensing (glucose, glycogen and glucose 6-phosphate levels, activities of GK, GSase and PK, and mRNA content of GK, GLUT2, Kir6.x-like, and SUR-like) are modified in the presence of melatonin. While no effects of melatonin were observed in hindbrain, in hypothalamus melatonin treatment up-regulated glucosensing parameters, especially under hypo- and normo-glycaemic conditions. The effects of melatonin in hypothalamus occurred apparently through MT(1) receptors since most effects were counteracted by the presence of luzindole but not by the presence of 4-P-PDOT. Moreover, melatonin treatment induced in hypothalamus increased mRNA expression levels of NPY and decreased mRNA levels of POMC, CART, and CRF. A role of the hormone in daily re-adjustment of hypothalamic glucosensor machinery is discussed.
Collapse
Affiliation(s)
- Marta Conde-Sieira
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | | | | | | | | |
Collapse
|
41
|
Effects of growth hormone on the salmon pituitary proteome. J Proteomics 2012; 75:1718-31. [DOI: 10.1016/j.jprot.2011.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 01/02/2023]
|
42
|
Confente F, Rendón MC, Besseau L, Falcón J, Muñoz-Cueto JA. Melatonin receptors in a pleuronectiform species, Solea senegalensis: Cloning, tissue expression, day-night and seasonal variations. Gen Comp Endocrinol 2010; 167:202-14. [PMID: 20227412 DOI: 10.1016/j.ygcen.2010.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 01/22/2023]
Abstract
Melatonin receptors are expressed in neural and peripheral tissues and mediate melatonin actions on the synchronization of circadian and circannual rhythms. In this study we have cloned three melatonin receptor subtypes (MT1, MT2 and Mel1c) in the Senegalese sole and analyzed their central and peripheral tissue distribution. The full-length MT1 (1452 nt), MT2 (1728 nt) and Mel1c (1980 nt) cDNAs encode different proteins of 345, 373, 355 amino acids, respectively. They were mainly expressed in retina, brain and pituitary, but MT1 was also expressed in gill, liver, intestine, kidney, spleen, heart and skin. At peripheral level, MT2 expression was only evident in gill, kidney and skin whereas Mel1c expression was restricted to the muscle and skin. This pattern of expression was not markedly different between sexes or among the times of day analyzed. The real-time quantitative PCR analyses showed that MT1 displayed higher expression at night than during the day in the retina and optic tectum. Seasonal MT1 expression was characterized by higher mRNA levels in spring and autumn equinoxes for the retina, and in winter and summer solstices for the optic tectum. An almost similar expression profile was found for MT2, but differences were less conspicuous. No day-night differences in MT1 and MT2 expression were observed in the pituitary but a seasonal variation was detected, being mRNA levels higher in summer for both receptors. Mel1c expression did not exhibit significant day-night variation in retina and optic tectum but showed seasonal variations, with higher transcript levels in summer (optic tectum) and autumn (retina). Our results suggest that day-night and seasonal variations in melatonin receptor expression could also be mediating circadian and circannual rhythms in sole.
Collapse
Affiliation(s)
- Francesca Confente
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, E-11510 Puerto Real, Spain
| | | | | | | | | |
Collapse
|
43
|
Benedet S, Andersson E, Mittelholzer C, Taranger GL, Björnsson BT. Pituitary and plasma growth hormone dynamics during sexual maturation of female Atlantic salmon. Gen Comp Endocrinol 2010; 167:77-85. [PMID: 20171221 DOI: 10.1016/j.ygcen.2010.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
Abstract
Growth hormone in fish regulates many important physiological processes including growth, metabolism and potentially reproduction. In salmonid fish, GH secretion is episodic with irregularly spaced GH peaks. Plasma GH reflects secretion episodes as well as the clearance rate of the hormone, and plasma levels may thus not always reflect the level of activation of the GH axis. This study measured the production dynamics of GH over a 17-month period in sexually maturing female Atlantic salmon which included final maturation and spawning. For the first time, the level of pituitary GH mRNA, pituitary GH protein and plasma GH protein were analyzed concurrently in the same individuals. mRNA and protein were extracted in parallel from the same samples with subsequent real time quantitative PCR to measure mRNA transcripts and radioimmunoassay to measure pituitary and plasma GH protein. Further, the effects of photoperiod manipulation on these parameters were studied. The results show no correlation between mRNA and protein levels except at some time points, and indicate that it is inappropriate to correlate pooled temporal data and averages in time series unless the relationship among the variables is stable over time. The results indicate complex and shifting relationships between pituitary GH mRNA expression, pituitary GH content and plasma GH levels, which could result from changes in clearance rather than secretion rate at different times and its episodic secretion. The study also suggests that there is a functionally important activation of the GH system during spring leading up to maturation and spawning.
Collapse
Affiliation(s)
- Susana Benedet
- Fish Endocrinology Laboratory, Department of Zoology/Zoophysiology, University of Gothenburg, Box 463, SE 40530 Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Pavlikova N, Kortner TM, Arukwe A. Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin. Chem Biol Interact 2010; 185:119-27. [PMID: 20211155 DOI: 10.1016/j.cbi.2010.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 02/24/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
There are uncertainties regarding the role of sex steroids in sexual development and reproduction of gastropods, leading to the recent doubts as to whether organotin compounds do inhibit steroidogenic enzymes in these species. These doubts have led us to suspect that organotin compounds may affect other target molecules, particularly signal transduction molecules or secondary mediators of steroid hormone and lipid synthesis/metabolism. Therefore, we have studied the effects of TBT exposure through food on acute steroidogenesis, PPARs and CYP3A responses in the presence and absence of a cyclic AMP (cAMP) activator, forskolin. Two experiments were performed. Firstly, juvenile salmon were force-fed once with diet containing TBT doses (0.1, 1 and 10mg/kg fish) dissolved in ethanol and sampled after 72h. Secondly, fish exposed to solvent control and 10mg/kg TBT for 72h were transferred to new tanks and exposed to waterborne forskolin (200microg/L) for 2 and 4h. Our data show that juvenile salmon force-fed TBT showed modulations of multiple biological responses in interrenal tissues that include, steroidogenesis (cAMP/PKA activities; StAR and P450scc mRNA, and plasma cortisol), and mRNA for peroxisome proliferator-activated receptor (PPAR) isoforms (alpha, beta, gamma), acyl-CoA oxidase-1 (ACOX1) and CYP3A/PXR (pregnan X receptor). In addition, forskolin produced differential effects on these responses both singly and also in combination with TBT. Overall, combined forskolin and TBT exposure produced higher effects compared with TBT exposure alone, for most of the responses (cortisol, PPARbeta, ACOX1 and CYP3A). Interestingly, forskolin produced PPAR isoform-specific effects when given singly or in combination with TBT. Several TBT mediated toxicity in fish that includes thymus reduction, decrease in numbers of lymphocytes, inhibition of gonad development and masculinization, including the imposex phenomenon have been reported. When these effects are considered with the present findings, it suggests that studies on mechanisms of action or field studies may reveal endocrine, reproductive or other effects of TBT at lower concentrations than those reported to date from subchronic tests of fishes. Since the metabolic fate of organotin compounds may contribute to the toxicity of these chemicals, the present findings may represent some new aspects of TBT toxicity not previously reported.
Collapse
Affiliation(s)
- Nela Pavlikova
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | |
Collapse
|
45
|
Photoperiodic modulation of reproductive physiology and behaviour in the cichlid fish Cichlasoma dimerus. Physiol Behav 2010; 99:425-32. [DOI: 10.1016/j.physbeh.2009.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 11/10/2009] [Accepted: 11/19/2009] [Indexed: 11/16/2022]
|
46
|
Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 2010; 165:469-82. [PMID: 19409900 DOI: 10.1016/j.ygcen.2009.04.026] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 01/27/2023]
Abstract
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes.
Collapse
Affiliation(s)
- J Falcón
- CNRS, FRE3247 et GDR2821, Modèles en Biologie cellulaire et évolutive, Avenue Fontaulé, BP 44, F-66651 Banyuls-sur-Mer, Cedex, France.
| | | | | | | |
Collapse
|
47
|
Effect of cortisol on melatonin production by the pineal organ of tilapia, Oreochromis mossambicus. Comp Biochem Physiol A Mol Integr Physiol 2010; 155:84-90. [DOI: 10.1016/j.cbpa.2009.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/06/2009] [Accepted: 10/06/2009] [Indexed: 11/21/2022]
|
48
|
Claes JM, Mallefet J. Hormonal control of luminescence from lantern shark (Etmopterus spinax) photophores. J Exp Biol 2009; 212:3684-92. [DOI: 10.1242/jeb.034363] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SUMMARY
The velvet belly lantern shark (Etmopterus spinax) emits a blue luminescence from thousands of tiny photophores. In this work, we performed a pharmacological study to determine the physiological control of luminescence from these luminous organs. Isolated photophore-filled skin patches produced light under melatonin (MT) and prolactin (PRL) stimulation in a dose-dependent manner but did not react to classical neurotransmitters. Theα-melanocyte-stimulating hormone (α-MSH) had an inhibitory effect on hormonal-induced luminescence. Because luzindole and 4P-PDOT inhibited MT-induced luminescence, the action of this hormone is likely to be mediated through binding to the MT2 receptor subtype, which probably decreases the intracellular concentration of cyclic AMP (cAMP) because forskolin (a cAMP donor) strongly inhibits the light response to MT. However, PRL seems to achieve its effects via janus kinase 2 (JAK2) after binding to its receptor because a specific JAK2 inhibitor inhibits PRL-induced luminescence. The two stimulating hormones showed different kinetics as well as a seasonal variation of light intensity, which was higher in summer (April) than in winter (December and February). All of these results strongly suggest that,contrary to self-luminescent bony fishes, which harbour a nervous control mechanism of their photophore luminescence, the light emission is under hormonal control in the cartilaginous E. spinax. This clearly highlights the diversity of fish luminescence and confirms its multiple independent apparitions during the course of evolution.
Collapse
Affiliation(s)
- Julien M. Claes
- Laboratory of Marine Biology, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jérôme Mallefet
- Laboratory of Marine Biology, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
49
|
Melatonin implantation during spring and summer does not affect the seasonal rhythm of feeding in anadromous Arctic charr (Salvelinus alpinus). Polar Biol 2009. [DOI: 10.1007/s00300-009-0715-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Gesto M, Tintos A, Rodríguez-Illamola A, Soengas JL, Míguez JM. Effects of naphthalene, beta-naphthoflavone and benzo(a)pyrene on the diurnal and nocturnal indoleamine metabolism and melatonin content in the pineal organ of rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 92:1-8. [PMID: 19185928 DOI: 10.1016/j.aquatox.2008.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/16/2008] [Accepted: 12/21/2008] [Indexed: 05/27/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have deleterious effects on neuroendocrine systems in teleost fish affecting, among other processes, reproductive function or stress responses. The hormone melatonin, mainly produced in the pineal organ of vertebrates, is involved in the regulation of biological rhythms as well as other important functions, and may also act as an antioxidant molecule. The effects of environmental pollutants on the endocrine and metabolic activity of the pineal organ have been studied only in mammals. We here evaluate the effects of the PAHs naphthalene (NAP) and benzo(a)pyrene (BaP) and the flavonoid beta-naphthoflavone (BNF) on the pineal organ of rainbow trout by quantifying the diurnal and nocturnal pineal content of some indoles and methoxyindoles, including melatonin. NAP mainly induced diurnal increases in the pineal content of melatonin and other methoxyindoles like 5-methoxytryptamine (5-MT), 5-methoxyindole-3-acetic acid (5-MIAA) or 5-methoxytryptophol (5-MTOL). Those increases did not occur at night, when even occasional decreases were observed compared with controls. NAP also induced some diurnal and nocturnal decreases in the levels of indolic compounds like serotonin (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA), while pineal content of 5-hydroxytryptophan (5-HTP) was first decreased (few hours after injection) and then increased (few days after injection) during the day. BaP and BNF induced strong increases in diurnal levels of melatonin, whereas other pineal compounds were unaffected. It seems that an increase of the methylation capacity of the pineal organ takes place during the day, and a decrease occurs at night. Those effects could be mediated by changes in the activity of key enzymes involved in pineal melatonin biosynthesis, maybe as a result of the alteration of the cellular phototransduction mechanisms involved in the light-induced inhibition of melatonin synthesis in the pineal photoreceptor cells. These results demonstrate for the first time that environmental pollutants can disrupt the activity of the pineal organ of teleost fish. This disruption could be a threat for the survival of the animals in their natural environment, although the increases observed in melatonin levels could play a relevant role as a toxicity-protection factor.
Collapse
Affiliation(s)
- Manuel Gesto
- Laboratorio de Fisioloxía animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | | |
Collapse
|