1
|
Binder AK, Burns KA, Rodriguez KF, Hamilton K, Pardo-Manuel de Villena F, Korach KS. Postnatal Ovarian Transdifferentiation in the Absence of Estrogen Receptor Signaling Is Dependent on Genetic Background. Endocrinology 2024; 166:bqae157. [PMID: 39576259 PMCID: PMC11630523 DOI: 10.1210/endocr/bqae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Indexed: 12/12/2024]
Abstract
Normal ovarian function requires the expression of estrogen receptors α (ESR1) and β (ESR2) in distinct cell types within the ovary. The double estrogen receptor knockout (αβERKO) ovary had the appearance of seminiferous tubule-like structures that expressed SOX9; this phenotype was lost when the animals were repeatedly backcrossed to the C57BL/6J genetic background. A new line of ERKO mice, Ex3αβERKO, was developed for targeted disruption on a mixed genetic background. Histological examination of the ovaries in the Ex3αβERKO showed the appearance of seminiferous tubule-like structures in mice aged 6 to 12 months. These dismorphogenic regions have cells that no longer express granulosa cell-specific FOXL2, while other cells express Sertoli cell-specific SOX9 as examined by immunohistochemistry. Whole ovarian gene expression analysis in Ex3αERKO, Ex3βRKO, and Ex3αβERKO found many genes differentially expressed compared to controls with one Esr1 and Esr2 allele. The genes specific to the Ex3αβERKO ovary were compared to other models of postnatal ovarian transdifferentiation, identifying 21 candidate genes. To examine the genetic background contributions, DNA was isolated from αβERKO mice that did not show ovarian transdifferentiation and compared to DNA from Ex3αβERKO using Mouse Diversity Array. A genomic region putatively associated with transdifferentiation was identified on Chr18 (5-15 M) and genes in this region were compared to the genes differentially expressed in models of ovarian transdifferentiation. This work demonstrates the importance of ESRs in maintaining granulosa cell differentiation within the ovary, identifies several potential gene candidates, and suggests that genetic background can be a confounding factor.
Collapse
Affiliation(s)
- April K Binder
- Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Katherine A Burns
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
- Department of Environmental and Public Health Science, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Karina F Rodriguez
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | - Katherine Hamilton
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| | | | - Kenneth S Korach
- Reproductive & Developmental Biology Laboratory, NIEHS, NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
2
|
Carver JJ, Amato CM, Hung-Chang Yao H, Zhu Y. Adamts9 is required for the development of primary ovarian follicles and maintenance of female sex in zebrafish†. Biol Reprod 2024; 111:1107-1128. [PMID: 39180722 PMCID: PMC11565245 DOI: 10.1093/biolre/ioae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Previous studies have suggested that adamts9 (a disintegrin and metalloprotease with thrombospondin type-1 motifs, member 9), an extracellular matrix (ECM) metalloprotease, participates in primordial germ cell (PGC) migration and is necessary for female fertility. In this study, we found that adamts9 knockout (KO) led to reduced body size, and female-to-male sex conversion in late juvenile or adult zebrafish; however, primary sex determination was not affected in early juveniles of adamts9 KO. Overfeeding and lowering the rearing density rescued growth defects in female adamts9 KO fish but did not rescue defects in ovarian development in adamts9 KO. Delayed PGC proliferation, significantly reduced number and size of Stage IB follicles (equivalent to primary follicles) in early juveniles of adamts9 KO, and arrested development at Stage IB follicles in mid- or late-juveniles of adamts9 KO are likely causes of female infertility and sex conversion. Via RNAseq, we found significant enrichment of differentially expressed genes involved in ECM organization during sexual maturation in ovaries of wildtype fish; and significant dysregulation of these genes in adamts9 KO ovaries. RNAseq analysis also showed enrichment of inflammatory transcriptomic signatures in adult ovaries of these adamts9 KO. Taken together, our results indicate that adamts9 is critical for development of primary ovarian follicles and maintenance of female sex, and loss of adamts9 leads to defects in ovarian follicle development, female infertility, and sex conversion in late juveniles and mature adults. These results show that the ECM and extracellular metalloproteases play major roles in maintaining ovarian follicle development in zebrafish.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Ciro M Amato
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | | | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC, USA
| |
Collapse
|
3
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
4
|
Su YQ, Yin Y, Guo J, Gong X, Tian Y, Shi L. MTOR-mediated interaction between the oocyte and granulosa cells regulates the development and function of both compartments in mice. Biol Reprod 2022; 107:76-84. [PMID: 35552649 DOI: 10.1093/biolre/ioac099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Coordinated development of the germline and the somatic compartments within a follicle is an essential prerequisite for creating a functionally normal oocyte. Bi-directional communication between the oocyte and the granulosa cells enables the frequent interchange of metabolites and signals that support the development and functions of both compartments. Mechanistic target of Rapamycin (MTOR), a conserved serine/threonine kinase and a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation, is emerging as a major player that regulates many factes of oocyte and follicle development. Here, we summarized our recent observations on the role of oocyte- and granulosa cell-expressed MTOR in the control of the oocyte's and granulosa cell's own development, as well as the development of one another, and provided new data that further strengthen the role of cumulus cell-expressed MTOR in synchronizing oocyte and follicle development. Inhibition of MTOR induced oocyte meiotic resumption in cultured large antral follicles, as well as cumulus expansion and the expression of cumulus expansion-related transcripts in cumulus-oocyte complexes in vitro. In vivo, the activity of MTOR in cumulus cells was diminished remarkablely by 4 h after hCG administration. These results thus suggest that activation of MTOR in cumulus cells contributes to the maintenance of oocyte meiotic arrest before the LH surge. Based on the observations made by us here and previously, we propose that MTOR is an essential mediator of the bi-directional communication between the oocyte and granulosa cells that regulates the development and function of both compartments.
Collapse
Affiliation(s)
- You-Qiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, PR China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China.,Collaborative Innovation Center of Genetics and Development, Fudan University, Shanghai, PR China
| | - Yaoxue Yin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Jing Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Xuhong Gong
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Yufeng Tian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| | - Lanying Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, PR China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
5
|
Avet C, Paul EN, Garrel G, Grange-Messent V, L'Hôte D, Denoyelle C, Corre R, Dupret JM, Lanone S, Boczkowski J, Simon V, Cohen-Tannoudji J. Carbon Black Nanoparticles Selectively Alter Follicle-Stimulating Hormone Expression in vitro and in vivo in Female Mice. Front Neurosci 2021; 15:780698. [PMID: 34938157 PMCID: PMC8685435 DOI: 10.3389/fnins.2021.780698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Toxic effects of nanoparticles on female reproductive health have been documented but the underlying mechanisms still need to be clarified. Here, we investigated the effect of carbon black nanoparticles (CB NPs) on the pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which are key regulators of gonadal gametogenesis and steroidogenesis. To that purpose, we subjected adult female mice to a weekly non-surgical intratracheal administration of CB NPs at an occupationally relevant dose over 4 weeks. We also analyzed the effects of CB NPs in vitro, using both primary cultures of pituitary cells and the LβT2 gonadotrope cell line. We report here that exposure to CB NPs does not disrupt estrous cyclicity but increases both circulating FSH levels and pituitary FSH β-subunit gene (Fshb) expression in female mice without altering circulating LH levels. Similarly, treatment of anterior pituitary or gonadotrope LβT2 cells with increasing concentrations of CB NPs dose-dependently up-regulates FSH but not LH gene expression or release. Moreover, CB NPs enhance the stimulatory effect of GnRH on Fshb expression in LβT2 cells without interfering with LH regulation. We provide evidence that CB NPs are internalized by LβT2 cells and rapidly activate the cAMP/PKA pathway. We further show that pharmacological inhibition of PKA significantly attenuates the stimulatory effect of CB NPs on Fshb expression. Altogether, our study demonstrates that exposure to CB NPs alters FSH but not LH expression and may thus lead to gonadotropin imbalance.
Collapse
Affiliation(s)
- Charlotte Avet
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Emmanuel N Paul
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Ghislaine Garrel
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Valérie Grange-Messent
- Sorbonne Université, CNRS, Inserm, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Paris, France
| | - David L'Hôte
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Chantal Denoyelle
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | - Raphaël Corre
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | | | - Sophie Lanone
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Jorge Boczkowski
- Inserm U955, IMRB, U 955, Faculté de Médecine, équipe 04, Université Paris Est (UPEC), Créteil, France
| | - Violaine Simon
- Université de Paris, BFA, UMR 8251, CNRS, ERL U1133, Inserm, Paris, France
| | | |
Collapse
|
6
|
Jiménez R, Burgos M, Barrionuevo FJ. Sex Maintenance in Mammals. Genes (Basel) 2021; 12:genes12070999. [PMID: 34209938 PMCID: PMC8303465 DOI: 10.3390/genes12070999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/26/2021] [Accepted: 06/26/2021] [Indexed: 12/30/2022] Open
Abstract
The crucial event in mammalian sexual differentiation occurs at the embryonic stage of sex determination, when the bipotential gonads differentiate as either testes or ovaries, according to the sex chromosome constitution of the embryo, XY or XX, respectively. Once differentiated, testes produce sexual hormones that induce the subsequent differentiation of the male reproductive tract. On the other hand, the lack of masculinizing hormones in XX embryos permits the formation of the female reproductive tract. It was long assumed that once the gonad is differentiated, this developmental decision is irreversible. However, several findings in the last decade have shown that this is not the case and that a continuous sex maintenance is needed. Deletion of Foxl2 in the adult ovary lead to ovary-to-testis transdifferentiation and deletion of either Dmrt1 or Sox9/Sox8 in the adult testis induces the opposite process. In both cases, mutant gonads were genetically reprogrammed, showing that both the male program in ovaries and the female program in testes must be actively repressed throughout the individual's life. In addition to these transcription factors, other genes and molecular pathways have also been shown to be involved in this antagonism. The aim of this review is to provide an overview of the genetic basis of sex maintenance once the gonad is already differentiated.
Collapse
|
7
|
A Comparative Analysis of Oocyte Development in Mammals. Cells 2020; 9:cells9041002. [PMID: 32316494 PMCID: PMC7226043 DOI: 10.3390/cells9041002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sexual reproduction requires the fertilization of a female gamete after it has undergone optimal development. Various aspects of oocyte development and many molecular actors in this process are shared among mammals, but phylogeny and experimental data reveal species specificities. In this chapter, we will present these common and distinctive features with a focus on three points: the shaping of the oocyte transcriptome from evolutionarily conserved and rapidly evolving genes, the control of folliculogenesis and ovulation rate by oocyte-secreted Growth and Differentiation Factor 9 and Bone Morphogenetic Protein 15, and the importance of lipid metabolism.
Collapse
|
8
|
Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc Natl Acad Sci U S A 2018; 115:E5326-E5333. [PMID: 29784807 PMCID: PMC6003357 DOI: 10.1073/pnas.1800352115] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MTOR (mechanistic target of rapamycin), an integrator of pathways important for cellular metabolism, proliferation, and differentiation, is expressed at all stages of oocyte development. Primordial oocytes constitute a nonproliferating, nongrowing reserve of potential eggs maintained for the entire reproductive lifespan of mammalian females. Using conditional knockouts, we determined the role of MTOR in both primordial and growing oocytes. MTOR-dependent pathways in primordial oocytes are not needed to sustain the viability of the primordial oocyte pool or their recruitment into the cohort of growing oocytes but are essential later for maintenance of oocyte genomic integrity, sustaining ovarian follicular development, and fertility. In growing oocytes, MTOR-dependent pathways are required for processes that promote completion of meiosis and enable embryonic development. MTOR (mechanistic target of rapamycin) is a widely recognized integrator of signals and pathways key for cellular metabolism, proliferation, and differentiation. Here we show that conditional knockout (cKO) of Mtor in either primordial or growing oocytes caused infertility but differentially affected oocyte quality, granulosa cell fate, and follicular development. cKO of Mtor in nongrowing primordial oocytes caused defective follicular development leading to progressive degeneration of oocytes and loss of granulosa cell identity coincident with the acquisition of immature Sertoli cell-like characteristics. Although Mtor was deleted at the primordial oocyte stage, DNA damage accumulated in oocytes during their later growth, and there was a marked alteration of the transcriptome in the few oocytes that achieved the fully grown stage. Although oocyte quality and fertility were also compromised when Mtor was deleted after oocytes had begun to grow, these occurred without overtly affecting folliculogenesis or the oocyte transcriptome. Nevertheless, there was a significant change in a cohort of proteins in mature oocytes. In particular, down-regulation of PRC1 (protein regulator of cytokinesis 1) impaired completion of the first meiotic division. Therefore, MTOR-dependent pathways in primordial or growing oocytes differentially affected downstream processes including follicular development, sex-specific identity of early granulosa cells, maintenance of oocyte genome integrity, oocyte gene expression, meiosis, and preimplantation developmental competence.
Collapse
|
9
|
Garon G, Bergeron F, Brousseau C, Robert NM, Tremblay JJ. FOXA3 Is Expressed in Multiple Cell Lineages in the Mouse Testis and Regulates Pdgfra Expression in Leydig Cells. Endocrinology 2017; 158:1886-1897. [PMID: 28379539 DOI: 10.1210/en.2016-1736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
The three FOXA transcription factors are mainly known for their roles in the liver. However, Foxa3-deficient mice become progressively sub/infertile due to germ cell loss. Because no data were available regarding the localization of the FOXA3 protein in the testis, immunohistochemistry was performed on mouse testis sections. In the fetal testis, a weak but consistent staining for FOXA3 is detected in the nucleus of Sertoli cells. In prepubertal and adult life, FOXA3 remains present in Sertoli cells of some but not all seminiferous tubules. FOXA3 is also detected in the nucleus of some peritubular cells. From postnatal day 20 onward, FOXA3 is strongly expressed in the nucleus of Leydig cells. To identify FOXA3 target genes in Leydig cells, MLTC-1 Leydig cells were transfected with a series of Leydig cell gene reporters in the presence of a FOXA3 expression vector. The platelet-derived growth factor receptor α (Pdgfra) promoter was significantly activated by FOXA3. The Pdgfra promoter contains three potential FOX elements and progressive 5' deletions and site-directed mutagenesis revealed that the most proximal element at -78 bp was sufficient to confer FOXA3 responsiveness. FOXA3 from Leydig cells could bind to this element in vitro (electrophoretic mobility shift assay) and was recruited to the proximal Pdgfra promoter in vivo (chromatin immunoprecipitation). Finally, endogenous Pdgfra messenger RNA levels were reduced in FOXA3-deficient MLTC-1 Leydig cells. Taken together, our data identify FOXA3 as a marker of the Sertoli cell lineage and of the adult Leydig cell population, and as a regulator of Pdgfra transcription in Leydig cells.
Collapse
Affiliation(s)
- Gabriel Garon
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Catherine Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Nicholas M Robert
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec City, Québec G1V 4G2, Canada
- Centre for Research in Reproduction, Development, and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
10
|
Zhu Y, Wang C, Chen X, Guan G. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change. Mol Biol Rep 2016; 43:629-37. [PMID: 27230579 DOI: 10.1007/s11033-016-3997-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022]
Abstract
We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.
Collapse
Affiliation(s)
- Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Chunlei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Guijun Guan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China.
| |
Collapse
|
11
|
Di-Luoffo M, Brousseau C, Tremblay JJ. MEF2 and NR2F2 cooperate to regulate Akr1c14
gene expression in mouse MA-10 Leydig cells. Andrology 2016; 4:335-44. [DOI: 10.1111/andr.12150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/03/2015] [Accepted: 11/19/2015] [Indexed: 01/04/2023]
Affiliation(s)
- M. Di-Luoffo
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
| | - C. Brousseau
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
| | - J. J. Tremblay
- Reproduction, Mother and Child Health; Centre de recherche du centre hospitalier universitaire de Québec; Québec City QC Canada
- Centre de recherche en biologie de la reproduction; Department of Obstetrics, Gynecology and Reproduction; Faculty of Medicine; Université Laval; Québec City QC Canada
| |
Collapse
|
12
|
Di-Luoffo M, Brousseau C, Bergeron F, Tremblay JJ. The Transcription Factor MEF2 Is a Novel Regulator of Gsta Gene Class in Mouse MA-10 Leydig Cells. Endocrinology 2015; 156:4695-706. [PMID: 26393304 DOI: 10.1210/en.2015-1500] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Testosterone is essential for spermatogenesis and the development of male sexual characteristics. However, steroidogenesis produces a significant amount of reactive oxygen species (ROS), which can disrupt testosterone production. The myocyte enhancer factor 2 (MEF2) is an important regulator of organogenesis and cell differentiation in various tissues. In the testis, MEF2 is present in Sertoli and Leydig cells throughout fetal and adult life. MEF2-deficient MA-10 Leydig cells exhibit a significant decrease in steroidogenesis concomitant with a reduction in glutathione S-transferase (GST) activity and in the expression of the 4 Gsta members (GST) that encode ROS inactivating enzymes. Here, we report a novel role for MEF2 in ROS detoxification by directly regulating Gsta expression in Leydig cells. Endogenous Gsta1-4 mRNA levels were decreased in MEF2-deficient MA-10 Leydig cells. Conversely, overexpression of MEF2 increased endogenous Gsta1 levels. MEF2 recruitment to the proximal Gsta1 promoter and direct binding on the -506-bp MEF2 element were confirmed by chromatin immunoprecipitation and DNA precipitation assays. In MA-10 Leydig cells, MEF2 activates the Gsta1 promoter and cooperates with Ca(2+)/calmodulin-dependent kinases I to further enhance Gsta1 promoter activity. These effects were lost when the -506-bp MEF2 element was mutated or when a MEF2-Engrailed dominant negative protein was used. Similar results were obtained on the Gsta2, Gsta3, and Gsta4 promoters, suggesting a global role for MEF2 factors in the regulation of all 4 Gsta genes. Altogether, our results identify a novel role for MEF2 in the expression of genes involved in ROS detoxification, a process essential for adequate testosterone production in Leydig cells.
Collapse
Affiliation(s)
- Mickaël Di-Luoffo
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Catherine Brousseau
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Francis Bergeron
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health (M.D.-L., C.B., F.B., J.J.T.), Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| |
Collapse
|
13
|
Simão VA, Berloffa Belardin L, Araújo Leite GA, de Almeida Chuffa LG, Camargo ICC. Effects of different doses of nandrolone decanoate on estrous cycle and ovarian tissue of rats after treatment and recovery periods. Int J Exp Pathol 2015; 96:338-49. [PMID: 26575430 DOI: 10.1111/iep.12144] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/22/2015] [Indexed: 01/17/2023] Open
Abstract
This study tested the hypothesis that different doses of nandrolone decanoate (ND) will cause changes in the estrous cycle and ovarian tissue of adult rats; and investigated the duration of the recovery period that is sufficient to restore the damage in the animals treated with different doses. Wistar rats were treated with ND at doses of 1.87, 3.75, 7.5 and 15 mg/kg body weight, or received mineral oil (control group) for 15 days, subcutaneously. All animals were divided into three groups according to the treatment periods: (i) ND treatment for 15 days; (ii) ND treatment followed by a 30-day recovery; and (iii) ND treatment followed by a 60-day recovery. Estrous cycle was monitored daily, and at the end of each period, the animals were euthanized for histopathological analysis. During ND treatment and after 30-day recovery, all animals exhibited persistent diestrus. After a 60-day recovery, persistent diestrus was only maintained in the group that had received the highest dose. Ovarian weight was decreased significantly after the 30-day recovery, regardless of ND doses, compared with the control group. There was a reduction (P < 0.05) in the number of corpora lutea and antral and growing follicles, in contrast to an increase (P < 0.05) in atretic follicles in a dose- and time-dependent manner. Remarkable histopathological changes occurred in the ovaries of all ND-treated groups. In conclusion, the different doses of ND caused changes in the estrous cycle and ovarian tissue of rats, and recovery periods (30 and 60 days) were insufficient to completely restore the damage in the animals treated with the highest dose.
Collapse
Affiliation(s)
- Vinícius Augusto Simão
- Department of Biological Sciences, Faculty of Sciences and Letters, Univ Estadual Paulista - UNESP, Assis, Brazil
| | - Larissa Berloffa Belardin
- Department of Biological Sciences, Faculty of Sciences and Letters, Univ Estadual Paulista - UNESP, Assis, Brazil
| | - Gabriel Adan Araújo Leite
- Department of Biological Sciences, Faculty of Sciences and Letters, Univ Estadual Paulista - UNESP, Assis, Brazil
| | | | | |
Collapse
|
14
|
Daems C, Di-Luoffo M, Paradis É, Tremblay JJ. MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells. Endocrinology 2015; 156:2693-703. [PMID: 25860031 DOI: 10.1210/en.2014-1964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.
Collapse
Affiliation(s)
- Caroline Daems
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Mickaël Di-Luoffo
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Élise Paradis
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Jacques J Tremblay
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| |
Collapse
|
15
|
Wu GC, Li HW, Luo JW, Chen C, Chang CF. The Potential Role of Amh to Prevent Ectopic Female Development in Testicular Tissue of the Protandrous Black Porgy, Acanthopagrus schlegelii1. Biol Reprod 2015; 92:158. [DOI: 10.1095/biolreprod.114.126953] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/03/2015] [Indexed: 11/01/2022] Open
|
16
|
Hsiao CH, Ji ATQ, Chang CC, Cheng CJ, Lee LM, Ho JHC. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury. Stem Cell Res Ther 2015; 6:113. [PMID: 26025454 PMCID: PMC4449584 DOI: 10.1186/s13287-015-0079-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/22/2014] [Accepted: 04/10/2015] [Indexed: 11/30/2022] Open
Abstract
Introduction Testicular torsion is a urological emergency and infertility is a common complication due to ischemic injury. Surgical reduction and orchiopexy is indicated, but to date there is no effective method for restoration of spermatogenesis. The effects of mesenchymal stem cells (MSCs) on acute tissue injury have been demonstrated, and the abilities of paracrine support, differentiation and immune-modulation may benefit to testicular torsion-induced infertility. We investigate the therapeutic efficacy and the mechanisms of MSCs in testicular torsion-induced germ cell injury when injected locally. Methods Six to eight-week-old Sprague–Dawley rats received surgical 720 degree torsion for 3 hours, followed by detorsion on the left testis. 20 μl of phosphate-buffered saline (PBS) without or with 3 x 104 MSCs from human orbital fat tissues (OFSCs) were given for 10 rats, respectively, via local injection into the left testis 30 minutes before detorsion. 20 μl of PBS injection for 6 rats with surgical exposure without torsion served as sham control. Histopathology with Johnsen’s score analysis, Western blot analysis for superoxide dismutase 2, Bax, Caspase-3, human insulin growth factor-1 and human stem cell factor, malondialdehyde (MDA) assay in testis and plasma, hormones level including testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by ELISA Kits, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and fluorescence staining for P450, Sox-9 and VASA were performed. Results Animals were sacrificed and bilateral orchiectomy was performed 7 days after torsion-detorsion. Local injections of OFSCs prevented torsion-induced infertility judging from Johnsen's score. TUNEL assay and Western blot analysis on caspase 3 and Bax demonstrated that OFSCs prevented ischemic/reperfusion induced intrinsic apoptosis. MDA assay revealed that OFSCs significantly reduced the oxidative stress in the damaged testicular tissues. After the OFSC injection, serum testosterone secretion was increased, while the elevation of FSH triggered by testicular injury was balanced. OFSCs also produced stem cell factor in the damaged testis. Immunofluorescence staining revealed that most transplanted cells surrounded the Leydig cells. Some of transplanted cells differentiated into p450 expressing cells within 7 days. Conclusions Local injection of allogenic MSCs before surgical detorsion is a simple, clinical friendly procedure to rescue torsion-induced infertility.
Collapse
Affiliation(s)
- Chi-Hao Hsiao
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan. .,Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Andrea Tung-Qian Ji
- Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| | - Chih-Cheng Chang
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Department of Pulmonary Medicine, Shuang Ho Hospital, Taipei Medical University, #291, Zhongzheng Road, Zhonghe District, New Taipei, 235, Taiwan.
| | - Chien-Jui Cheng
- Department of Pathology, College of Medicine, Taipei Medical University, #250, Wu-Hsing Street, Taipei, Taiwan. .,Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, #250, Wu-Hsing Street, Taipei, 110, Taiwan.
| | - Liang-Ming Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| | - Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, #250 Wu-Hsing Street, Taipei, 110, Taiwan. .,Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, #111, Section 3, Hsing-Long Road, Taipei, 116, Taiwan.
| |
Collapse
|
17
|
Di-Luoffo M, Daems C, Bergeron F, Tremblay JJ. Novel Targets for the Transcription Factors MEF2 in MA-10 Leydig Cells. Biol Reprod 2015; 93:9. [PMID: 26019261 DOI: 10.1095/biolreprod.114.127761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Testosterone production by Leydig cells is a tightly regulated process requiring synchronized expression of several steroidogenic genes by numerous transcription factors. Myocyte enhancer factor 2 (MEF2) are transcription factors recently identified in somatic cells of the male gonad. In other tissues, MEF2 factors are essential regulators of organogenesis and cell differentiation. So far in the testis, MEF2 factors were found to regulate Leydig cell steroidogenesis by controlling Nr4a1 and Star gene expression. To expand our understanding of the role of MEF2 in Leydig cells, we performed microarray analyses of MEF2-depleted MA-10 Leydig cells, and the results were analyzed using Partek and Ingenuity Pathway Analysis software. Several genes were differentially expressed in MEF2-depleted Leydig cells, and 16 were validated by quantitative RT-PCR. A large number of these genes are known to be involved in fertility, gonad morphology, and steroidogenesis. These include Ahr, Bmal1, Cyp1b1, Hsd3b1, Hsd17b7, Map2k1, Nr0b2, Pde8a, Por, Smad4, Star, and Tsc22d3, which were all downregulated in the absence of MEF2. In silico analyses revealed the presence of MEF2-binding sites within the first 2 kb upstream of the transcription start site of the Por, Bmal1, and Nr0b2 promoters, suggesting direct regulation by MEF2. Using transient transfections in MA-10 Leydig cells, small interfering RNA knockdown, and a MEF2-Engrailed dominant negative, we found that MEF2 activates the Por, Bmal1, and Nr0b2 promoters and that this requires an intact MEF2 element. Our results identify novel target genes for MEF2 and define MEF2 as an important regulator of Leydig cell function and male reproduction.
Collapse
Affiliation(s)
- Mickaël Di-Luoffo
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Caroline Daems
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec, Canada Centre de recherche en biologie de la reproduction, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
18
|
Qiu Y, Sun S, Charkraborty T, Wu L, Sun L, Wei J, Nagahama Y, Wang D, Zhou L. Figla Favors Ovarian Differentiation by Antagonizing Spermatogenesis in a Teleosts, Nile Tilapia (Oreochromis niloticus). PLoS One 2015; 10:e0123900. [PMID: 25894586 PMCID: PMC4404364 DOI: 10.1371/journal.pone.0123900] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 01/23/2023] Open
Abstract
Figla (factor in the germ line, alpha), a female germ cell-specific transcription factor, had been shown to activate genetic hierarchies in oocytes. The ectopic expression of Figla was known to repress spermatogenesis-associated genes in male mice. However, the potential role of Figla in other vertebrates remains elusive. The present work was aimed to identify and characterize the functional relevance of Figla in the ovarian development of Nile tilapia (Oreochromis niloticus). Tissue distribution and ontogeny analysis revealed that tilapia Figla gene was dominantly expressed in the ovary from 30 days after hatching. Immunohistochemistry analysis also demonstrated that Figla was expressed in the cytoplasm of early primary oocytes. Intriguingly, over-expression of Figla in XY fish resulted in the disruption of spermatogenesis along with the depletion of meiotic spermatocytes and spermatids in testis. Dramatic decline of sycp3 (synaptonemal complex protein 3) and prm (protamine) expression indicates that meiotic spermatocytes and mature sperm production are impaired. Even though Sertoli cell (dmrt1) and Leydig cell (star and cyp17a1) marker genes remained unaffected, hsd3b1 expression and 11-KT production were enhanced in Figla-transgene testis. Taken together, our data suggest that fish Figla might play an essential role in the ovarian development by antagonizing spermatogenesis.
Collapse
Affiliation(s)
- Yongxiu Qiu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Shaohua Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Tapas Charkraborty
- South Ehime Fisheries Research Center, Ehime University, Funakoshi, Ainan, Ehime, Japan
| | - Limin Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
| | - Yoshitaka Nagahama
- South Ehime Fisheries Research Center, Ehime University, Funakoshi, Ainan, Ehime, Japan
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
- * E-mail: (DSW); (LYZ)
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Science, Southwest University, Beibei, Chongqing, China
- * E-mail: (DSW); (LYZ)
| |
Collapse
|
19
|
Rios-Rojas C, Bowles J, Koopman P. On the role of germ cells in mammalian gonad development: quiet passengers or back-seat drivers? Reproduction 2015; 149:R181-91. [PMID: 25628441 DOI: 10.1530/rep-14-0663] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In addition to their role as endocrine organs, the gonads nurture and protect germ cells, and regulate the formation of gametes competent to convey the genome to the following generation. After sex determination, gonadal somatic cells use several known signalling pathways to direct germ cell development. However, the extent to which germ cells communicate back to the soma, the molecular signals they use to do so and the significance of any such signalling remain as open questions. Herein, we review findings arising from the study of gonadal development and function in the absence of germ cells in a range of organisms. Most published studies support the view that germ cells are unimportant for foetal gonadal development in mammals, but later become critical for stabilisation of gonadal function and somatic cell phenotype. However, the lack of consistency in the data, and clear differences between mammals and other vertebrates and invertebrates, suggests that the story may not be so simple and would benefit from more careful analysis using contemporary molecular, cell biology and imaging tools.
Collapse
Affiliation(s)
- Clarissa Rios-Rojas
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| | - Josephine Bowles
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| | - Peter Koopman
- Institute for Molecular BioscienceThe University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Vandormael-Pournin S, Guigon CJ, Ishaq M, Coudouel N, Avé P, Huerre M, Magre S, Cohen-Tannoudji J, Cohen-Tannoudji M. Oocyte-specific inactivation of Omcg1 leads to DNA damage and c-Abl/TAp63-dependent oocyte death associated with dramatic remodeling of ovarian somatic cells. Cell Death Differ 2014; 22:108-17. [PMID: 25168238 DOI: 10.1038/cdd.2014.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 11/09/2022] Open
Abstract
Aberrant loss of oocytes following cancer treatments or genetic mutations leads to premature ovarian insufficiency (POI) associated with endocrine-related disorders in 1% of women. Therefore, understanding the mechanisms governing oocyte death is crucial for the preservation of female fertility. Here, we report the striking reproductive features of a novel mouse model of POI obtained through oocyte-specific inactivation (ocKO) of Omcg1/Zfp830 encoding a nuclear zinc finger protein involved in pre-mRNA processing. Genetic ablation of OMCG1 in early growing oocytes leads to reduced transcription, accumulation of DNA double-strand breaks and subsequent c-Abl/TAp63-dependent oocyte death, thus uncovering the key role of OMCG1 for oocyte genomic integrity. All adult Omcg1(ocKO) females displayed complete elimination of early growing oocytes and sterility. Unexpectedly, mutant females exhibited a normal onset of puberty and sexual receptivity. Detailed studies of Omcg1(ocKO) ovaries revealed that the ovarian somatic compartment underwent a dramatic structural and functional remodeling. This allowed the cooperation between oocyte-depleted follicles and interstitial tissue to produce estradiol. Moreover, despite early folliculogenesis arrest, mutant mice exhibited sexual cyclicity as shown by cyclical changes in estrogen secretion, vaginal epithelium cytology and genital tract weight. Collectively, our findings demonstrate the key role of Omcg1 for oocyte survival and highlight the contribution of p63 pathway in damaged oocyte elimination in adulthood. Moreover, our findings challenge the prevailing view that sexual cyclicity is tightly dependent upon the pace of folliculogenesis and luteal differentiation.
Collapse
Affiliation(s)
- S Vandormael-Pournin
- 1] Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France [2] CNRS URA 2578, Paris F-75015, France
| | - C J Guigon
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - M Ishaq
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - N Coudouel
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - P Avé
- Institut Pasteur, Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Paris F-75015, France
| | - M Huerre
- Institut Pasteur, Unité de Recherche et d'Expertise Histotechnologie et Pathologie, Paris F-75015, France
| | - S Magre
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - J Cohen-Tannoudji
- 1] INSERM U1133, Physiologie de l'Axe Gonadotrope, Paris F-75013, France [2] Université Paris Diderot, Sorbonne Paris Cité, Paris F-75013, France [3] CNRS, UMR 8251, Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - M Cohen-Tannoudji
- 1] Institut Pasteur, Unité de Génétique Fonctionnelle de la Souris, Département de Biologie du Développement et Cellules Souches, 25 rue du docteur Roux, Paris F-75015, France [2] CNRS URA 2578, Paris F-75015, France
| |
Collapse
|
21
|
Abstract
It is generally assumed that sexual phenotypes formed in utero are permanently established and do not require maintenance. In this issue of Developmental Cell, Minkina et al. (2014) now show that the transcriptional regulator DMRT1 actively prevents postnatal male-to-female sex reversal by blocking the activation of retinoid-signaling-dependent feminization genes.
Collapse
|
22
|
Daems C, Martin LJ, Brousseau C, Tremblay JJ. MEF2 is restricted to the male gonad and regulates expression of the orphan nuclear receptor NR4A1. Mol Endocrinol 2014; 28:886-98. [PMID: 24694307 DOI: 10.1210/me.2013-1407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Leydig cell steroidogenesis is controlled by the pituitary gonadotropin LH that activates several signaling pathways, including the Ca(2+)/calmodulin kinase I (CAMKI) pathway. In other tissues, CAMKI regulates the activity of the myocyte enhancer factor 2 (MEF2) transcription factors. MEF2 factors are essential regulators of cell differentiation and organogenesis in numerous tissues but their expression and role in the mammalian gonad had not been explored. Here we show that MEF2 factors are expressed in a sexually dimorphic pattern in the mouse gonad. MEF2 factors are present in the testis throughout development and into adulthood but absent from the ovary. In the testis, MEF2 was localized mainly in the nucleus of both somatic lineages, the supporting Sertoli cells and the steroidogenic Leydig cells. In Leydig cells, MEF2 was found to activate the expression of Nr4a1, a nuclear receptor important for hormone-induced steroidogenesis. In these cells MEF2 also cooperates with forskolin and CAMKI to enhance Nr4a1 promoter activity via two MEF2 elements (-318 and -284 bp). EMSA confirmed direct binding of MEF2 to these elements whereas chromatin immunoprecipitation revealed that MEF2 recruitment to the proximal Nr4a1 promoter was increased following hormonal stimulation. Modulation of endogenous MEF2 protein level (small interfering RNA-mediated knockdown) or MEF2 activity (MEF2-Engrailed active dominant negative) led to a significant decrease in Nr4a1 mRNA levels in Leydig cells. All together, our results identify MEF2 as a novel testis-specific transcription factor, supporting a role for this factor in male sex differentiation and function. MEF2 was also positioned upstream of NR4A1 in a regulatory cascade controlling Leydig cell gene expression.
Collapse
Affiliation(s)
- Caroline Daems
- Reproduction, Mother and Child Health (C.D., L.J.M., C.B., J.J.T., Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada, G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | | | | | | |
Collapse
|
23
|
Chalmey C, Giton F, Chalmel F, Fiet J, Jégou B, Mazaud-Guittot S. Systemic compensatory response to neonatal estradiol exposure does not prevent depletion of the oocyte pool in the rat. PLoS One 2013; 8:e82175. [PMID: 24358151 PMCID: PMC3864944 DOI: 10.1371/journal.pone.0082175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
The formation of ovarian follicles is a finely tuned process that takes place within a narrow time-window in rodents. Multiple factors and pathways have been proposed to contribute to the mechanisms triggering this process but the role of endocrine factors, especially estrogens, remains elusive. It is currently hypothesized that removal from the maternal hormonal environment permits follicle formation at birth. However, experimentally-induced maintenance of high 17β-estradiol (E2) levels leads to subtle, distinct, immediate effects on follicle formation and oocyte survival depending on the species and dose. In this study, we examined the immediate effects of neonatal E2 exposure from post-natal day (PND) 0 to PND2 on the whole organism and on ovarian follicle formation in rats. Measurements of plasma E2, estrone and their sulfate conjugates after E2 exposure showed that neonatal female rats rapidly acquire the capability to metabolize and clear excessive E2 levels. Concomitant modifications to the mRNA content of genes encoding selected E2 metabolism enzymes in the liver and the ovary in response to E2 exposure indicate that E2 may modify the neonatal maturation of these organs. In the liver, E2 treatment was associated with lower acquisition of the capability to metabolize E2. In the ovary, E2 depleted the oocyte pool in a dose dependent manner by PND3. In 10 µg/day E2-treated ovaries, apoptotic oocytes were observed in newly formed follicles in addition to areas of ovarian cord remodeling. At PND6, follicles without any visible oocyte were present and multi-oocyte follicles were not observed. Our study reveals a major species-difference. Indeed, neonatal exposure to E2 depletes the oocyte pool in the rat ovary, whereas in the mouse it is well known to increase oocyte survival.
Collapse
Affiliation(s)
- Clémentine Chalmey
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
| | - Franck Giton
- AP-HP, Hôpital H. Mondor - A. Chenevier, service de Biochimie et de Génétique, Créteil, France
- Institut National de la Santé et de la Recherche Médicale, U955 Équipe 07, Créteil, France
| | - Frédéric Chalmel
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
| | - Jean Fiet
- Institut National de la Santé et de la Recherche Médicale, U955 Équipe 07, Créteil, France
| | - Bernard Jégou
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
- Ecole des Hautes Études en Santé Publique, Rennes, France
| | - Séverine Mazaud-Guittot
- Institut National de la Santé et de la Recherche Médicale, Unité 1085 Institut de Recherche en Santé Environnement et Travail, Institut Fédératif de Recherche 140, Université de Rennes 1, Rennes, France
- * E-mail:
| |
Collapse
|
24
|
Said RS, Badr AM, Nada AS, El-Demerdash E. Sodium selenite treatment restores long-lasting ovarian damage induced by irradiation in rats: impact on oxidative stress and apoptosis. Reprod Toxicol 2013; 43:85-93. [PMID: 24291358 DOI: 10.1016/j.reprotox.2013.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/16/2022]
Abstract
The deleterious damage of reproductive function following radiotherapy is of increasing importance. In the present study, we investigated the impact of long-term sodium selenite (SS) treatment on radiotherapy-induced ovarian injury in a rat model. Two-week after radiation exposure vaginal cyclicity was arrested, and serum FSH level was elevated in irradiated female rats. SS significantly ameliorated ovarian and uterine oxidative stress induced by irradiation through decreasing the lipid peroxide level and increasing the glutathione level, and glutathione peroxidase activity. In the presence of SS, ovarian cytochrome c and caspase 3 expressions triggered by radiotherapy were decreased. SS significantly counteracted radiation-induced a widespread loss of ovarian follicles and caused further stimulation of follicular proliferation through enhancing PCNA expression. Despite such alteration in ovarian function, serum estradiol level did not change after irradiation, whereas SS significantly increased it. In conclusion, long-term SS treatment improved reproductive development, which was impaired by radiotherapy.
Collapse
Affiliation(s)
- Riham Soliman Said
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Amira Mohamed Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed Shafik Nada
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
25
|
Sox9-related signaling controls zebrafish juvenile ovary-testis transformation. Cell Death Dis 2013; 4:e930. [PMID: 24263104 PMCID: PMC3847332 DOI: 10.1038/cddis.2013.456] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/19/2013] [Accepted: 10/21/2013] [Indexed: 01/25/2023]
Abstract
In almost all vertebrates, the downstream of the sox9 signaling axis is well conserved for testis differentiation. The upstream genes of this pathway vary from species to species during evolution. Yet, little is known about how these signaling cascades are regulated and what cellular processes are dominant in ovary–testis transformation in juvenile zebrafish. In this study, we find that the transforming gonads undergo activation of sox9a-expressing stromal cells with increased deposition of extracellular matrix and formation of degenerative compartments. This leads to follicle disassembly, oocyte degeneration, follicle cell-cyp19a1a-amh conversions, and, eventually, formation of the testis cord. In vitro primary culture of juvenile ovary tissue in gonadotropins increases cytoplasmic accumulation of sox9a and p-Erk1/2, and induces mesenchymal morphology. MAPK inhibitors (MKI), a mixture of PD98059 and U0216, eliminate the cytoplasmic distribution but do not eradicate nuclear localization of sox9a and p-Erk1/2. Nuclear p53 are relatively increased in MKI-treated cells that exhibit less spreading and reduced proliferation. Despite uniform nuclear condensation, only a fraction of cells displayed the apoptotic phenotype. These results suggest that high levels of cytoplasmic sox9a and p-Erk1/2 activity activate stromal cells and enhance the production of extracellular matrix required for testis cord formation, whereas deregulation and translocation of sox9a and p-Erk1/2 induce follicle disassembly and incomplete apoptosis associated with nuclear p53. Together with the established FSH/cAMP/MAPK/AMH pathway in mammalian granulosa and Sertoli cells, we demonstrated that the sox9 axis signaling that determines testis formation in mammals also induces zebrafish ovary–testis transition, and adds to its conserved role in sex reversal.
Collapse
|
26
|
Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary. Dev Biol 2013; 383:295-306. [PMID: 24036309 DOI: 10.1016/j.ydbio.2013.08.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/21/2022]
Abstract
Mammalian sex determination is controlled by antagonistic pathways that are initially co-expressed in the bipotential gonad and subsequently become male- or female-specific. In XY gonads, testis development is initiated by upregulation of Sox9 by SRY in pre-Sertoli cells. Disruption of either gene leads to complete male-to-female sex reversal. Ovarian development is dependent on canonical Wnt signaling through Wnt4, Rspo1 and β-catenin. However, only a partial female-to-male sex reversal results from disruption of these ovary-promoting genes. In Wnt4 and Rspo1 mutants, there is evidence of pregranulosa cell-to-Sertoli cell transdifferentiation near birth, following a severe decline in germ cells. It is currently unclear why primary sex reversal does not occur at the sex-determining stage, but instead occurs near birth in these mutants. Here we show that Wnt4-null and Rspo1-null pregranulosa cells transition through a differentiated granulosa cell state prior to transdifferentiating towards a Sertoli cell fate. This transition is preceded by a wave of germ cell death that is closely associated with the disruption of pregranulosa cell quiescence. Our results suggest that maintenance of mitotic arrest in pregranulosa cells may preclude upregulation of Sox9 in cases where female sex-determining genes are disrupted. This may explain the lack of complete sex reversal in such mutants at the sex-determining stage.
Collapse
|
27
|
Rad54 is required for the normal development of male and female germ cells and contributes to the maintainance of their genome integrity after genotoxic stress. Cell Death Dis 2013; 4:e774. [PMID: 23949223 PMCID: PMC3763443 DOI: 10.1038/cddis.2013.281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 12/31/2022]
Abstract
Rad54 is an important factor in the homologous recombination pathway of DNA double-strand break repair. However, Rad54 knockout (KO) mice do not exhibit overt phenotypes at adulthood, even when exposed to radiation. In this study, we show that in Rad54 KO mouse the germline is actually altered. Compared with the wild-type (WT) animals, these mice have less premeiotic germ cells. This germ cell loss is found as early as in E11.5 embryos, suggesting an early failure during mutant primordial germ cells development. Both testicular and ovarian KO germ cells exhibited high radiation sensitivity leading to a long-term gametogenesis defect at adulthood. The KO female germline was particularly affected displaying decreased litter size or sterility. Spermatogenesis recovery after irradiation was slower and incomplete in Rad54 KO mice compared with that of WT mice, suggesting that loss of germ stem cell precursors is not fully compensated along the successive rounds of spermatogenesis. Finally, spermatogenesis recovery after postnatal irradiation is in part regulated by glial-cell-line-derived neurotrophic factor (GDNF) in KO but not in irradiated WT mice, suggesting that Sertoli cell GDNF production is stimulated upon substantial germ cell loss only. Our findings suggest that Rad54 has a key function in maintaining genomic integrity of the developing germ cells.
Collapse
|
28
|
von Schalburg KR, Gowen BE, Rondeau EB, Johnson NW, Minkley DR, Leong JS, Davidson WS, Koop BF. Sex-specific expression, synthesis and localization of aromatase regulators in one-year-old Atlantic salmon ovaries and testes. Comp Biochem Physiol B Biochem Mol Biol 2013; 164:236-46. [DOI: 10.1016/j.cbpb.2013.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/18/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
|
29
|
Wu GC, Chang CF. Oocytes Survive in the Testis by Altering the Soma Fate from Male to Female in the Protandrous Black Porgy, Acanthopagrus schlegeli1. Biol Reprod 2013. [DOI: 10.1095/biolreprod.112.104398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
30
|
Piprek RP, Pecio A, Kubiak JZ, Szymura JM. Differential effects of busulfan on gonadal development in five divergent anuran species. Reprod Toxicol 2012; 34:393-401. [DOI: 10.1016/j.reprotox.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/13/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|
31
|
Germ cells are not required to establish the female pathway in mouse fetal gonads. PLoS One 2012; 7:e47238. [PMID: 23091613 PMCID: PMC3473035 DOI: 10.1371/journal.pone.0047238] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/10/2012] [Indexed: 01/26/2023] Open
Abstract
The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells.
Collapse
|
32
|
Galas J, Starowicz A, Knapczyk-Stwora K, Tabarowski Z, Szołtys M. Steroid concentrations and immunoexpression of steroidogenic enzymes in ovaries of aged bank voles: effect of photoperiod. ACTA ACUST UNITED AC 2012; 317:622-9. [PMID: 22952145 DOI: 10.1002/jez.1763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/13/2012] [Accepted: 08/10/2012] [Indexed: 11/08/2022]
Abstract
The main objective of the present study was to establish morphological and steroidogenic changes occurring in the ovaries of senescent bank voles, with respect to the photoperiod of rearing. Obtained results revealed less pronounced changes in the ovaries of females reared in a long photoperiod (LD). Their gonads still possessed some healthy follicles and old corpora lutea (CLs). Senescence-related changes encompassed the presence of abnormal follicles, large regions containing extra-follicular luteinized granulosa cells and numerous clusters of hypertrophied theca/interstitial cells, exhibiting strong expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) and much weaker that of cytochrome P450c17. More pronounced changes were observed in animals reared in short day (SD) conditions and included the presence of only few, usually abnormal follicles and/or remnants of CLs in the surface region, and the isle-like clusters of cells in the ovarian medulla. The clusters were composed of cells generally featuring strong 3β-HSD and/or P450c17 immunoreaction. Steroid content analysis revealed that progesterone dominated in the ovaries of LD bank voles and androgens in SD animals, while estradiol content was very low in both investigated groups. These studies showed for the first time morphological and steroidogenic changes found in the ovaries of senescent bank voles and indicated an important role of length light conditions in the process of reproductive aging.
Collapse
Affiliation(s)
- Jerzy Galas
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Kraków, Poland.
| | | | | | | | | |
Collapse
|
33
|
Warr N, Greenfield A. The molecular and cellular basis of gonadal sex reversal in mice and humans. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:559-77. [PMID: 23801533 PMCID: PMC3709125 DOI: 10.1002/wdev.42] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian gonad is adapted for the production of germ cells and is an endocrine gland that controls sexual maturation and fertility. Gonadal sex reversal, namely, the development of ovaries in an XY individual or testes in an XX, has fascinated biologists for decades. The phenomenon suggests the existence of genetic suppressors of the male and female developmental pathways and molecular genetic studies, particularly in the mouse, have revealed controlled antagonism at the core of mammalian sex determination. Both testis and ovary determination represent design solutions to a number of problems: how to generate cells with the right properties to populate the organ primordium; how to produce distinct organs from an initially bipotential primordium; how to pattern an organ when the expression of key cell fate determinants is initiated only in a discrete region of the primordium and extends to other regions asynchronously; how to coordinate the interaction between distinct cell types in time and space and stabilize the resulting morphology; and how to maintain the differentiated state of the organ throughout the adult period. Some of these, and related problems, are common to organogenesis in general; some are distinctive to gonad development. In this review, we discuss recent studies of the molecular and cellular events underlying testis and ovary development, with an emphasis on the phenomenon of gonadal sex reversal and its causes in mice and humans. Finally, we discuss sex-determining loci and disorders of sex development in humans and the future of research in this important area. WIREs Dev Biol 2012, 1:559–577. doi: 10.1002/wdev.42
Collapse
Affiliation(s)
- Nick Warr
- Mammalian Genetics Unit, MRC Harwell, Oxfordshire, UK
| | | |
Collapse
|
34
|
Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, Capel B. Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod 2012; 86:37. [PMID: 21976597 DOI: 10.1095/biolreprod.111.095208] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The embryonic origins of ovarian granulosa cells have been a subject of debate for decades. By tamoxifen-induced lineage tracing of Foxl2-expressing cells, we show that descendants of the bipotential supporting cell precursors in the early gonad contribute granulosa cells to a specific population of follicles in the medulla of the ovary that begin to grow immediately after birth. These precursor cells arise from the proliferative ovarian surface epithelium and enter mitotic arrest prior to upregulating Foxl2. Granulosa cells that populate the cortical primordial follicles activated in adult life derive from the surface epithelium perinatally, and enter mitotic arrest at that stage. Ingression from the surface epithelium dropped to undetectable levels by Postnatal Day 7, when most surviving oocytes were individually encapsulated by granulosa cells. These findings add complexity to the standard model of sex determination in which the Sertoli and granulosa cells of the adult testis and ovary directly stem from the supporting cell precursors of the bipotential gonad.
Collapse
Affiliation(s)
- Lindsey Mork
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Kerr JB, Brogan L, Myers M, Hutt KJ, Mladenovska T, Ricardo S, Hamza K, Scott CL, Strasser A, Findlay JK. The primordial follicle reserve is not renewed after chemical or γ-irradiation mediated depletion. Reproduction 2012; 143:469-76. [PMID: 22301887 DOI: 10.1530/rep-11-0430] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reports indicate that germ-line stem cells present in adult mice can rapidly generate new oocytes and contribute to the primordial follicle reserve following conditions of ovotoxic stress. We further investigated the hypothesis that adult mice have the capacity to generate new oocytes by monitoring primordial follicle numbers throughout postnatal life and following depletion of the primordial follicle reserve by exposure to doxorubicin (DXR), trichostatin A (TSA), or whole-body γ-irradiation. We show that primordial follicle number remains stable in adult C57BL/6 mice between the ages of 25 and 100 days. However, within 2 days of treatment with DXR or TSA, primordial follicle numbers had declined to 65 and 51% respectively (P<0.05-0.01 when compared to untreated controls), with no restoration of follicle numbers evident after 7 days for either treatment. Furthermore, ovaries from mice subjected to sterilizing doses of γ-irradiation (0.45 or 4.5 Gy) revealed complete ablation of all primordial follicles 5 days after treatment, with no indication of follicular renewal. We conclude that neo-folliculogenesis does not occur following chemical or γ-irradiation mediated depletion of the primordial follicle reserve.
Collapse
Affiliation(s)
- J B Kerr
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Guigon CJ, Cohen-Tannoudji M. [Reconsidering the roles of female germ cells in ovarian development and folliculogenesis]. Biol Aujourdhui 2012; 205:223-33. [PMID: 22251857 DOI: 10.1051/jbio/2011022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 11/15/2022]
Abstract
The production of fertilizable ova is the consequence of multiple events that start as soon as ovarian development and culminate at the time of ovulation. Throughout their development, germ cells are associated with companion somatic cells, which ensure germ cell survival, growth and maturation. Data obtained in vitro and in vivo on several animal models of germ cell depletion have led to uncover the many roles of germ cells on both ovarian development and folliculogenesis. During ovarian development, germ cells become progressively enclosed within epithelial structures called "ovigerous cords" constituted by pregranulosa cells, lined by a basement membrane. At the end of ovarian development, ovigerous cords fragment into primordial follicles, which are epithelial units constituted by an oocyte surrounded by a single layer of granulosa cells. Germ cells are necessary for the fragmentation of ovigerous cords into follicles, since in their absence, no follicle will form. Germ cells also ensure the differentiation of the ovarian somatic lineage, and they may inhibit the testis-differentiating pathway by preventing the conversion of pregranulosa cells into Sertoli cells, their counterpart in the testis. Regularly, primordial follicles are recruited into the growing follicle pool and initiate their growth. They develop through primary, preantral, antral and preovulatory stages before being ovulated. Interestingly, the action of the oocyte on companion somatic cells tightly depends on the follicular stage. In primordial follicles, the oocyte prevents the transdifferentiation of granulosa cells into cells resembling Sertoli cells. By contrast, as soon as the follicle enters growth, the oocyte regulates the functional differentiation of granulosa cells and at the latest stages, it prevents their premature maturation into luteal cells. Overall, these data demonstrate that the female germ cell act on companion somatic cells to regulate ovarian development and folliculogenesis, thereby actively supporting its own maturation.
Collapse
Affiliation(s)
- Céline J Guigon
- Université Paris Diderot, Sorbonne Paris Cité, Équipe Physiologie de l'Axe Gonadotrope, Unité Biologie Fonctionnelle et Adaptative, Paris, France.
| | | |
Collapse
|
37
|
Lasala C, Schteingart HF, Arouche N, Bedecarrás P, Grinspon RP, Picard JY, Josso N, di Clemente N, Rey RA. SOX9 and SF1 are involved in cyclic AMP-mediated upregulation of anti-Mullerian gene expression in the testicular prepubertal Sertoli cell line SMAT1. Am J Physiol Endocrinol Metab 2011; 301:E539-47. [PMID: 21693691 DOI: 10.1152/ajpendo.00187.2011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Sertoli cells, anti-Müllerian hormone (AMH) expression is upregulated by FSH via cyclic AMP (cAMP), although no classical cAMP response elements exist in the AMH promoter. The response to cAMP involves NF-κB and AP2; however, targeted mutagenesis of their binding sites in the AMH promoter do not completely abolish the response. In this work we assessed whether SOX9, SF1, GATA4, and AP1 might represent alternative pathways involved in cAMP-mediated AMH upregulation, using real-time RT-PCR (qPCR), targeted mutagenesis, luciferase assays, and immunocytochemistry in the Sertoli cell line SMAT1. We also explored the signaling cascades potentially involved. In qPCR experiments, Amh, Sox9, Sf1, and Gata4 mRNA levels increased after SMAT1 cells were incubated with cAMP. Blocking PKA abolished the effect of cAMP on Sox9, Sf1, and Gata4 expression, inhibiting PI3K/PKB impaired the effect on Sf1 and Gata4, and reducing MEK1/2 and p38 MAPK activities curtailed Gata4 increase. SOX9 and SF1 translocated to the nucleus after incubation with cAMP. Mutations of the SOX9 or SF1 sites, but not of GAT4 or AP1 sites, precluded the response of a 3,063-bp AMH promoter to cAMP. In conclusion, in the Sertoli cell line SMAT1 cAMP upregulates SOX9, SF1, and GATA4 expression and induces SOX9 and SF1 nuclear translocation mainly through PKA, although other kinases may also participate. SOX9 and SF1 binding to the AMH promoter is essential to increase the activity of the AMH promoter in response to cAMP.
Collapse
Affiliation(s)
- Celina Lasala
- Centro de Investigaciones Endocrinológicas, Hospital de Niños R. Gutiérrez, Gallo, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Testis determination in most mammals is regulated by a genetic hierarchy initiated by the SRY gene. Early ovarian development has long been thought of as a default pathway switched on passively by the absence of SRY. Recent studies challenge this view and show that the ovary constantly represses male-specific genes, from embryonic stages to adulthood. Notably, the absence of the crucial ovarian transcription factor FOXL2 (alone or in combination with other factors) induces a derepression of male-specific genes during development, postnatally and, even more interestingly, during adulthood. Strikingly, in the adult, targeted ablation of Foxl2 leads to a molecular transdifferentiation of the supporting cells of the ovary, which acquire cytological and transcriptomic characteristics of the supporting cells of the testes. These studies bring many answers to the field of gonadal determination, differentiation and maintenance, but also open many questions.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, CNRS-UMR 7592, Bâtiment Buffon, Paris Cedex, France.
| |
Collapse
|
39
|
García-López A, de Jonge H, Nóbrega RH, de Waal PP, van Dijk W, Hemrika W, Taranger GL, Bogerd J, Schulz RW. Studies in zebrafish reveal unusual cellular expression patterns of gonadotropin receptor messenger ribonucleic acids in the testis and unexpected functional differentiation of the gonadotropins. Endocrinology 2010; 151:2349-60. [PMID: 20308533 PMCID: PMC2869266 DOI: 10.1210/en.2009-1227] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study aimed to improve, using the zebrafish model, our understanding of the distinct roles of pituitary gonadotropins FSH and LH in regulating testis functions in teleost fish. We report, for the first time in a vertebrate species, that zebrafish Leydig cells as well as Sertoli cells express the mRNAs for both gonadotropin receptors (fshr and lhcgr). Although Leydig cell fshr expression has been reported in other piscine species and may be a common feature of teleost fish, Sertoli cell lhcgr expression has not been reported previously and might be related to the undifferentiated gonochoristic mode of gonadal sex differentiation in zebrafish. Both recombinant zebrafish (rzf) gonadotropins (i.e. rzfLH and rzfFSH) stimulated androgen release in vitro and in vivo, with rzfFSH being significantly more potent than rzfLH. Forskolin-induced adenylate cyclase activation mimicked, whereas the protein kinase A inhibitor H-89 significantly reduced, the gonadotropin-stimulated androgen release. Therefore, we conclude that both FSH receptor and LH/choriogonadotropin receptor signaling are predominantly mediated through the cAMP/protein kinase A pathway to promote steroid production. Despite this similarity, other downstream mechanisms seem to differ. For example, rzfFSH up-regulated the testicular mRNA levels of a number of steroidogenesis-related genes both in vitro and in vivo, whereas rzfLH or human chorionic gonadotropin did not. Although not fully understood at present, these differences could explain the capacity of FSH to support both steroidogenesis and spermatogenesis on a long-term basis, whereas LH-stimulated steroidogenesis might be a more acute process, possibly restricted to periods during which peak steroid levels are required.
Collapse
Affiliation(s)
- Angel García-López
- Department of Biology, Division of Endocrinology and Metabolism, Utrecht University, Faculty of Science, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mazaud Guittot S, Bouchard MF, Robert-Grenon JP, Robert C, Goodyer CG, Silversides DW, Viger RS. Conserved usage of alternative 5' untranslated exons of the GATA4 gene. PLoS One 2009; 4:e8454. [PMID: 20041118 PMCID: PMC2795200 DOI: 10.1371/journal.pone.0008454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/07/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND GATA4 is an essential transcription factor required for the development and function of multiple organs. Despite this important role, our knowledge of how the GATA4 gene is regulated remains limited. To better understand this regulation, we characterized the 5' region of the mouse, rat, and human GATA4 genes. METHODOLOGY/PRINCIPAL FINDINGS Using 5' RACE, we identified novel transcription start sites in all three species. GATA4 is expressed as multiple transcripts with varying 5' ends encoded by alternative untranslated first exons. Two of these non-coding first exons are conserved between species: exon 1a located 3.5 kb upstream of the GATA4 ATG site in exon 2, and a second first exon (exon 1b) located 28 kb further upstream. Expression of both mRNA variants was found in all GATA4-expressing organs but with a preference for the exon 1a-containing transcript. The exception was the testis where exon 1a- and 1b-containing transcripts were similarly expressed. In some tissues such as the intestine, alternative transcript expression appears to be regionally regulated. Polysome analysis suggests that both mRNA variants contribute to GATA4 protein synthesis. CONCLUSIONS/SIGNIFICANCE Taken together, our results indicate that the GATA4 gene closely resembles the other GATA family members in terms of gene structure where alternative first exon usage appears to be an important mechanism for regulating its tissue- and cell-specific expression.
Collapse
Affiliation(s)
- Séverine Mazaud Guittot
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Marie France Bouchard
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
| | - Jean-Philippe Robert-Grenon
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Claude Robert
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Animal Science, Laval University, Quebec City, Canada
| | - Cynthia G. Goodyer
- McGill University Health Centre-Montreal Children's Hospital Research Institute, Montreal, Canada
| | | | - Robert S. Viger
- Reproduction, Perinatal and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Canada
- Centre de Recherche en Biologie de la Reproduction (CRBR), Laval University, Quebec City, Canada
- Department of Obstetrics and Gynecology, Laval University, Quebec City, Canada
- * E-mail:
| |
Collapse
|
41
|
Carmona FD, Lupiáñez DG, Real FM, Burgos M, Zurita F, Jiménez R. SOX9 is not required for the cellular events of testicular organogenesis in XX mole ovotestes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:734-48. [DOI: 10.1002/jez.b.21291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Schlessinger D, Garcia-Ortiz JE, Forabosco A, Uda M, Crisponi L, Pelosi E. Determination and stability of gonadal sex. ACTA ACUST UNITED AC 2009; 31:16-25. [PMID: 19875493 DOI: 10.2164/jandrol.109.008201] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery that the SRY gene induces male sex in humans and other mammals led to speculation about a possible equivalent for female sex. But females are proving to be more complicated. Several master genes appear to be autonomously involved, and female sex determination seems to remain relatively labile. Partial loss of function of the transcription factor FOXL2 leads to premature ovarian failure in women; and in animal models, Foxl2 is required for folliculogenesis as well as for maintenance, and possibly induction, of female sex determination. In the germ line, oocytes apparently form normally even in the absence of Foxl2, dependent on genes that include female-specific factors such as Fig-alpha, Nobox, etc. In the soma, ablation of Foxl2 or the independently expressed gene Wnt4 (likely downstream of Rspo1) can produce partial testis differentiation in XX mice, and the double knockout results in the formation of tubules and spermatogonia. This indicates that at least 2 autonomous ovarian pathways are required to antagonize testis differentiation in females, a finding that is being increasingly corroborated by studies in goats and nonmammalian vertebrates. In recent expression profiling of mouse ovaries that lack Foxl2 alone or in combination with Wnt4 or Kit/c-Kit, we found that following Foxl2 loss, early testis genes (including the downstream effector of Sry, Sox9) and several novel ovarian genes were consistently dysregulated during embryo-fetal development. The results support the proposal of dose-dependent Foxl2 function and antitestis action. A partial working model for somatic development and sex determination is presented in which Sox9 is a direct antagonist of Foxl2 in the supporting cell lineage.
Collapse
Affiliation(s)
- David Schlessinger
- Laboratory of Genetics, National Institute on Aging-IRP, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
43
|
Nicholas CR, Chavez SL, Baker VL, Reijo Pera RA. Instructing an embryonic stem cell-derived oocyte fate: lessons from endogenous oogenesis. Endocr Rev 2009; 30:264-83. [PMID: 19366753 PMCID: PMC2726843 DOI: 10.1210/er.2008-0034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Female reproductive potential is limited in the majority of species due to oocyte depletion. Because functional human oocytes are restricted in number and accessibility, a robust system to differentiate oocytes from stem cells would enable a thorough investigation of the genetic, epigenetic, and environmental factors affecting human oocyte development. Also, the differentiation of functional oocytes from stem cells may permit the success of human somatic cell nuclear transfer for reprogramming studies and for the production of patient-specific embryonic stem cells (ESCs). Thus, ESC-derived oocytes could ultimately help to restore fertility in women. Here, we review endogenous and ESC-derived oocyte development, and we discuss the potential and challenges for differentiating functional oocytes from ESCs.
Collapse
Affiliation(s)
- Cory R Nicholas
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Palo Alto, California 94304, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
A critical element of successful sexual reproduction is the generation of sexually dimorphic adult reproductive organs, the testis and ovary, which produce functional gametes. Examination of different vertebrate species shows that the adult gonad is remarkably similar in its morphology across different phylogenetic classes. Surprisingly, however, the cellular and molecular programs employed to create similar organs are not evolutionarily conserved. We highlight the mechanisms used by different vertebrate model systems to generate the somatic architecture necessary to support gametogenesis. In addition, we examine the different vertebrate patterns of germ cell migration from their site of origin to colonize the gonad and highlight their roles in sex-specific morphogenesis. We also discuss the plasticity of the adult gonad and consider how different genetic and environmental conditions can induce transitions between testis and ovary morphology.
Collapse
Affiliation(s)
- Tony DeFalco
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
45
|
Sex determination and SRY: down to a wink and a nudge? Trends Genet 2008; 25:19-29. [PMID: 19027189 DOI: 10.1016/j.tig.2008.10.008] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/25/2008] [Accepted: 10/25/2008] [Indexed: 01/04/2023]
Abstract
Sex-determining region Y (Sry) is the crucial gene that initiates male sex determination in most mammals. Although several components of the pathway regulating sexual differentiation have been elucidated, the mechanism of Sry action within this was unclear. However, recent discoveries in cellular, genetic and molecular aspects of gonad development are shedding light on the precise role of SRY in the regulation of Sox9, a crucial downstream target gene. SRY is thought to act synergistically with SF1, a nuclear receptor, through an enhancer of Sox9 to promote Sertoli cell differentiation in mice. In this review, we focus on the regulation of these genes and their interaction with other genes involved in promoting testis or ovary development. We also explore the common features between sex determination in mammals and in other vertebrates that lack Sry.
Collapse
|
46
|
Laguë E, Tremblay JJ. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology 2008; 149:4688-94. [PMID: 18499751 DOI: 10.1210/en.2008-0310] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Insulin-like 3 (INSL3) is a small peptide produced by testicular Leydig cells throughout embryonic and postnatal life and by theca and luteal cells of the adult ovary. During fetal life, INSL3 regulates testicular descent in males, whereas in adults, it acts as an antiapoptotic factor for germ cells in males and as a follicle selection and survival factor in females. Despite its considerable roles in the reproductive system, the mechanisms that regulate Insl3 expression remain poorly understood. There is accumulating evidence suggesting that androgens might regulate Insl3 expression in Leydig cells, but transcriptional data are still lacking. We now report that testosterone does increase Insl3 mRNA levels in a Leydig cell line and primary Leydig cells. We also show that testosterone activates the activity of the Insl3 promoter from different species. In addition, the testosterone-stimulating effects on Insl3 mRNA levels and promoter activity require the androgen receptor. We have mapped the testosterone-responsive element to the proximal Insl3 promoter region. This region, however, lacks a consensus androgen response element, suggesting an indirect mechanism of action. Finally we show that mono-(2-ethylhexyl) phthalate, a widely distributed endocrine disruptor with antiandrogenic activity previously shown to inhibit Insl3 expression in vivo, represses Insl3 transcription, at least in part, by antagonizing testosterone/androgen receptor action. All together our data provide important new insights into the regulation of Insl3 transcription in Leydig cells and the mode of action of phthalates.
Collapse
Affiliation(s)
- Eric Laguë
- Department of Reproduction, Perinatal, and Child Health, Centre Hospitalier Universitaire of Québec Research Centre, CHUL Room T1-49, 2705 Laurier Boulevard, Québec City, Québec, Canada G1V 4G2
| | | |
Collapse
|
47
|
Martin LJ, Boucher N, Brousseau C, Tremblay JJ. The orphan nuclear receptor NUR77 regulates hormone-induced StAR transcription in Leydig cells through cooperation with Ca2+/calmodulin-dependent protein kinase I. Mol Endocrinol 2008; 22:2021-37. [PMID: 18599618 DOI: 10.1210/me.2007-0370] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cholesterol transport in the mitochondrial membrane, an essential step of steroid biosynthesis, is mediated by a protein complex containing the steroidogenic acute regulatory (StAR) protein. The importance of this transporter is underscored by mutations in the human StAR gene that cause lipoid congenital adrenal hyperplasia, male pseudohermaphroditism, and adrenal insufficiency. StAR transcription in steroidogenic cells is hormonally regulated and involves several transcription factors. The nuclear receptor NUR77 is present in steroidogenic cells, and its expression is induced by hormones known to activate StAR expression. We have now established that StAR transcription in cAMP-stimulated Leydig cells requires de novo protein synthesis and involves NUR77. We found that cAMP-induced NUR77 expression precedes that of StAR both at the mRNA and protein levels in Leydig cells. In these cells, small interfering RNA-mediated NUR77 knockdown reduces cAMP-induced StAR expression. Chromatin immunoprecipitation assays revealed a cAMP-dependent increase in NUR77 recruitment to the proximal StAR promoter, whereas transient transfections in MA-10 Leydig cells confirmed that NUR77 can activate the StAR promoter and that this requires an element located at -95 bp. cAMP-induced StAR and NUR77 expression in Leydig cells was found to require a Ca2+/calmodulin-dependent protein kinase (CaMK)-dependent signaling pathway. Consistent with this, we show that within the testis, CaMKI is specifically expressed in Leydig cells. Finally, we report that CaMKI transcriptionally cooperates with NUR77, but not steroidogenic factor 1, to further enhance StAR promoter activity in Leydig cells. All together, our results implicate NUR77 as a mediator of cAMP action on StAR transcription in steroidogenic Leydig cells and identify a role for CaMKI in this process.
Collapse
Affiliation(s)
- Luc J Martin
- Reproduction, Perinatal and Child Health, Centre Hospitalier Universitaire of Quebec Research Centre, CHUL Room T1-49, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2
| | | | | | | |
Collapse
|
48
|
Kojima Y, Bhandari RK, Kobayashi Y, Nakamura M. Sex change of adult initial-phase male wrasse, Halichoeres trimaculatus by estradiol-17 beta treatment. Gen Comp Endocrinol 2008; 156:628-32. [PMID: 18353327 DOI: 10.1016/j.ygcen.2008.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/15/2007] [Accepted: 02/04/2008] [Indexed: 11/16/2022]
Abstract
Sex steroids are considered major regulators of sex change processes in fish. Estrogen depletion is shown to be crucial for female-male sex change initiation; however, its role in male-female sex change is largely unknown. In the present study, we examined the effects of estradiol-17 beta (E2) treatments on testes of initial-phase (IP) males of the three-spot wrasse (Halichoeres trimaculatus), which naturally do not undergo male-female sex change. Sexually mature IP males were fed a diet containing E2 (low, 20 microg/g feed; high, 200 microg/g feed) for 6 or 12 weeks, and changes in gonadal structures were examined. Percentage of sex change varied with the dosage of E2 and the duration of treatment. All individuals treated with high-dose E2 for 6 weeks had ovaries with many immature oocytes; whereas 75% of individuals treated with low-dose of E2 for 6 weeks and sampled on the 12th week had ovaries with yolky oocytes and an ovarian cavity indicating a typical mature ovary. No testicular tissue was observed in sex-reversed gonads in both treatment groups. Contrary to the previous assumptions, present results suggest that IP male wrasses have the potential to undergo male-female sex change in response to exogenous estrogen. How the presence or absence of estrogen creates sexual plasticity in gonadal germ and somatic cells remains to be clarified.
Collapse
Affiliation(s)
- Y Kojima
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa 907-0227, Japan
| | | | | | | |
Collapse
|
49
|
Tanaka M, Saito D, Morinaga C, Kurokawa H. Cross talk between germ cells and gonadal somatic cells is critical for sex differentiation of the gonads in the teleost fish, medaka (Oryzias latipes). Dev Growth Differ 2008; 50:273-8. [PMID: 18366386 DOI: 10.1111/j.1440-169x.2008.01015.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To evaluate the possible role of germ cells on sex differentiation of the gonads in vertebrates, the teleost fish, medaka (Oryzias latipes), was used to generate a gonad without germ cells. The germ cell-deficient medaka reveals multiple effects of germ cells on the process of sex differentiation. The previously isolated mutant medaka, hotei, with the excessive number of germ cells may support the contention that the proliferation of germ cells is related to feminization of the gonad. Futhermore, we show that two modes of proliferation for either maintenance of germ cells or commitment to gametogenesis are important components of the sex differentiation of medaka developing gonads. An intimate cross talk between germ cells and gonadal somatic cells during the sex differentiation will be discussed.
Collapse
Affiliation(s)
- Minoru Tanaka
- Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Okazaki 444-8787, Japan.
| | | | | | | |
Collapse
|
50
|
Moisan V, Bomgardner D, Tremblay JJ. Expression of the Ladybird-like homeobox 2 transcription factor in the developing mouse testis and epididymis. BMC DEVELOPMENTAL BIOLOGY 2008; 8:22. [PMID: 18304314 PMCID: PMC2277406 DOI: 10.1186/1471-213x-8-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Accepted: 02/27/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND Homeoproteins are a class of transcription factors that are well-known regulators of organogenesis and cell differentiation in numerous tissues, including the male reproductive system. Indeed, a handful of homeoproteins have so far been identified in the testis and epididymis where a few were shown to play important developmental roles. Through a degenerate PCR approach aimed at identifying novel homeoproteins expressed in the male reproductive system, we have detected several homeoproteins most of which had never been described before in this tissue. One of these homeoproteins is Ladybird-like homeobox 2 (Lbx2), a homeobox factor mostly known to be expressed in the nervous system. RESULTS To better define the expression profile of Lbx2 in the male reproductive system, we have performed in situ hybridization throughout testicular and epididymal development and into adulthood. Lbx2 expression was also confirmed by real time RT-PCR in those tissues and in several testicular and epididymal cell lines. In the epididymis, a highly segmented tissue, Lbx2 shows a regionalized expression profile, being more expressed in proximal segments of the caput epididymis than any other segment. In the testis, we found that Lbx2 is constitutively expressed at high levels in Sertoli cells. In interstitial cells, Lbx2 is weakly expressed during fetal and early postnatal life, highly expressed around P32-P36, and absent in adult animals. Finally, Lbx2 can also be detected in a population of germ cells in adults. CONCLUSION Altogether, our data suggest that the homeoprotein Lbx2 might be involved in the regulation of male reproductive system development and cell differentiation as well as in male epididymal segmentation.
Collapse
Affiliation(s)
- Vanessa Moisan
- Ontogeny-Reproduction Research Unit, CHUQ Research Centre (CHUL), Québec City, Québec, Canada.
| | | | | |
Collapse
|