1
|
Stephens KK, Finnerty RM, Grant DG, Winuthayanon S, Martin-DeLeon PA, Winuthayanon W. Proteomic analysis and in vivo visualization of extracellular vesicles from mouse oviducts during pre-implantation embryo development. FASEB J 2024; 38:e70035. [PMID: 39239798 PMCID: PMC11384279 DOI: 10.1096/fj.202400041rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Pre-implantation embryonic development occurs in the oviduct during the first few days of pregnancy. The presence of oviductal extracellular vesicles (oEVs, also called oviductosomes) is crucial for pre-implantation embryonic development in vivo as oEVs often contain molecular transmitters such as proteins. Therefore, evaluating oEV cargo during early pregnancy could provide insights into factors required for proper early embryonic development that are missing in the current in vitro embryo culture setting. In this study, we isolated oEVs from the oviductal fluid at estrus and different stages of early embryonic development. The 2306-3066 proteins in oEVs identified at the different time points revealed 58-60 common EV markers identified in exosome databases. Oviductal extracellular vesicle proteins from pregnant samples significantly differed from those in non-pregnant samples. In addition, superovulation changes the protein contents in oEVs compared to natural ovulation at estrus. Importantly, we have identified that embryo-protectant proteins such as high-mobility protein group B1 and serine (or cysteine) peptidase inhibitor were only enriched in the presence of embryos. We also visualized the physical interaction of EVs and the zona pellucida of 4- to 8-cell stage embryos using transmission electron microscopy as well as in vivo live imaging of epithelial cell-derived GFP-tagged CD9 mouse model. All protein data in this study are readily available to the scientific community in a searchable format at https://genes.winuthayanon.com/winuthayanon/oviduct_ev_proteins/. In conclusion, we identified oEVs proteins that could be tested to determine whether they can improve embryonic developmental outcomes in vivo and in vitro setting.
Collapse
Affiliation(s)
- Kalli K. Stephens
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
| | - Ryan M. Finnerty
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - DeAna G. Grant
- Electron Microscopy Core Facility, University of Missouri, Columbia, MO, 65211, USA
| | - Sarayut Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
| | | | - Wipawee Winuthayanon
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, MO, 65201, USA
- Department of OB/GYN & Women’s Health, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
- Translational Biosciences Program, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Fernando SR, Lee CL, Wong BP, Cheng KW, Lee YL, Chan MC, Ng EH, Yeung WS, Lee KF. Expression of membrane protein disulphide isomerase A1 (PDIA1) disrupt a reducing microenvironment in endometrial epithelium for embryo implantation. Exp Cell Res 2021; 405:112665. [PMID: 34111473 DOI: 10.1016/j.yexcr.2021.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Various proteins in the endometrial epithelium are differentially expressed in the receptive phase and play a pivotal role in embryo implantation. The Protein Disulphide Isomerase (PDI) family contains 21 members that function as chaperone proteins through their redox activities. Although total PDIA1 protein expression was high in four common receptive (Ishikawa and RL95-2) and non-receptive (HEC1-B and AN3CA) endometrial epithelial cell lines, significantly higher membrane PDIA1 expression was found in non-receptive AN3CA cells. In Ishikawa cells, oestrogen up-regulated while progesterone down-regulated membrane PDIA1 expression. Moreover, mid-luteal phase hormone treatment down-regulated membrane PDIA1 expression. Furthermore, oestrogen at 10 nM reduced spheroid attachment on Ishikawa cells. Interestingly, inhibition of PDIA1 function by bacitracin or 16F16 increased the spheroid attachment rate onto non-receptive AN3CA cells. Over-expression of PDIA1 in receptive Ishikawa cells reduced the spheroid attachment rate and significantly down-regulated integrin β3 levels, but not integrin αV and E-cadherin. Addition of reducing agent TCEP induced a sulphydryl-rich microenvironment and increased spheroid attachment onto AN3CA cells and human primary endometrial epithelial cells collected at LH+7/8 days. The luminal epithelial cells from human endometrial biopsies had higher PDIA1 protein expression in the proliferative phase than in the secretory phase. Our findings suggest oestrogen and progesterone regulate PDIA1 expression, resulting in the differential expressions of membrane PDIA1 protein to modulate endometrial receptivity. This suggests that membrane PDIA1 expression prior to embryo transfer could be used to predict endometrial receptivity and embryo implantation in women undergoing assisted reproduction treatment.
Collapse
Affiliation(s)
- Sudini R Fernando
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Animal Science, Faculty of Animal Science & Export Agriculture, Uva Wellassa University, Badulla, 50000, Sri Lanka
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Benancy Pc Wong
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kiu-Wai Cheng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Ming-Chung Chan
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ernest Hy Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - William Sb Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Futian District, Shenzhen, 518053, China.
| |
Collapse
|
3
|
McGlade EA, Herrera GG, Stephens KK, Olsen SLW, Winuthayanon S, Guner J, Hewitt SC, Korach KS, DeMayo FJ, Lydon JP, Monsivais D, Winuthayanon W. Cell-type specific analysis of physiological action of estrogen in mouse oviducts. FASEB J 2021; 35:e21563. [PMID: 33818810 PMCID: PMC8189321 DOI: 10.1096/fj.202002747r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023]
Abstract
One of the endogenous estrogens, 17β-estradiol (E2 ) is a female steroid hormone secreted from the ovary. It is well established that E2 causes biochemical and histological changes in the uterus. However, it is not completely understood how E2 regulates the oviductal environment in vivo. In this study, we assessed the effect of E2 on each oviductal cell type, using an ovariectomized-hormone-replacement mouse model, single-cell RNA-sequencing (scRNA-seq), in situ hybridization, and cell-type-specific deletion in mice. We found that each cell type in the oviduct responded to E2 distinctively, especially ciliated and secretory epithelial cells. The treatment of exogenous E2 did not drastically alter the transcriptomic profile from that of endogenous E2 produced during estrus. Moreover, we have identified and validated genes of interest in our datasets that may be used as cell- and region-specific markers in the oviduct. Insulin-like growth factor 1 (Igf1) was characterized as an E2 -target gene in the mouse oviduct and was also expressed in human fallopian tubes. Deletion of Igf1 in progesterone receptor (Pgr)-expressing cells resulted in female subfertility, partially due to an embryo developmental defect and embryo retention within the oviduct. In summary, we have shown that oviductal cell types, including epithelial, stromal, and muscle cells, are differentially regulated by E2 and support gene expression changes, such as growth factors that are required for normal embryo development and transport in mouse models. Furthermore, we have identified cell-specific and region-specific gene markers for targeted studies and functional analysis in vivo.
Collapse
Affiliation(s)
- Emily A. McGlade
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Gerardo G. Herrera
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Kalli K. Stephens
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Sierra L. W. Olsen
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Joie Guner
- Department of Pathology and Immunology, Center for Drug Discovery, Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sylvia C. Hewitt
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - Kenneth S. Korach
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - Francesco J. DeMayo
- Department of Health and Human Services, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH/NIEHS), NC, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Center for Drug Discovery, Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Kölle S, Hughes B, Steele H. Early embryo-maternal communication in the oviduct: A review. Mol Reprod Dev 2020; 87:650-662. [PMID: 32506761 DOI: 10.1002/mrd.23352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
An intact embryo-maternal communication is critical for the establishment of a successful pregnancy. To date, a huge number of studies have been performed describing the complex process of embryo-maternal signaling within the uterus. However, recent studies indicate that the early embryo communicates with the oviductal cells shortly after fertilizationand that this is important for the successful establishment of pregnancy. Only if the early embryo is capable to signal the mother within a precise timeframe and to garner a response, will the embryo be able to survive and reach the uterus. This review will give an overview of all the experimental designs which have investigated embryo-maternal interaction in the oviduct. In addition to that, it will provide a comprehensive analysis of the findings to date elucidating the morphological and molecular changes in the oviduct which are induced by the presence of the early embryo highlighting how the tubal responses affect embryo development and survival.
Collapse
Affiliation(s)
- Sabine Kölle
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Barbara Hughes
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Heather Steele
- Health Sciences Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Xie C, Bekpen C, Künzel S, Keshavarz M, Krebs-Wheaton R, Skrabar N, Ullrich KK, Tautz D. A de novo evolved gene in the house mouse regulates female pregnancy cycles. eLife 2019; 8:44392. [PMID: 31436535 PMCID: PMC6760900 DOI: 10.7554/elife.44392] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
The de novo emergence of new genes has been well documented through genomic analyses. However, a functional analysis, especially of very young protein-coding genes, is still largely lacking. Here, we identify a set of house mouse-specific protein-coding genes and assess their translation by ribosome profiling and mass spectrometry data. We functionally analyze one of them, Gm13030, which is specifically expressed in females in the oviduct. The interruption of the reading frame affects the transcriptional network in the oviducts at a specific stage of the estrous cycle. This includes the upregulation of Dcpp genes, which are known to stimulate the growth of preimplantation embryos. As a consequence, knockout females have their second litters after shorter times and have a higher infanticide rate. Given that Gm13030 shows no signs of positive selection, our findings support the hypothesis that a de novo evolved gene can directly adopt a function without much sequence adaptation. Different species have specific genes that set them apart from other species. Yet exactly how these species-specific genes originate is not fully known. The traditional view is that existing old genes are duplicated to make a ‘spare’ copy, which can change through mutations into a new gene with a new role gradually over time. Despite there being lots of evidence supporting this theory, not all new genes found in recent years can be traced back to older genes. This led to an alternative view – that recently evolved genes can also appear ‘de novo’, and come from regions of random DNA sequences that did not previously code for a protein. So far, the possibility of genes forming de novo during evolution has largely been supported by comparing and analyzing the genomes of related species. However, very little is known about the biological role these de novo genes play. Now, Xie et al. have generated a list of recently evolved de novo mouse genes, and carried out a detailed analysis of one de novo gene expressed in females at the time when embryos implant into the uterus wall. To study the role of this gene, Xie et al. created a strain of knock-out mice that have a defunct version of the protein coded by the gene. Loss of this protein caused female mice to have their second litter after a shorter period of time and increased the likelihood that female mice would terminate their newborn pups. This suggests that this newly discovered de novo gene is involved in regulating the female reproductive cycles of mice. Further analysis showed that this de novo gene counteracts the action of an older gene that promotes the implantation of embryos. This gene has therefore likely evolved due to the benefit it offers mothers, as it protects them from experiencing the increased physiological stress caused by a premature second pregnancy. These findings support the idea that genes which have evolved de novo can have an essential biological purpose despite coming from random DNA sequences. This establishes that de novo evolution of genes is the second major mechanism of how new genes with significant biological roles can form in the genome.
Collapse
Affiliation(s)
- Chen Xie
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cemalettin Bekpen
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Künzel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Maryam Keshavarz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Rebecca Krebs-Wheaton
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Neva Skrabar
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Kristian Karsten Ullrich
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
6
|
Song H, Song J, Kim YJ, Jeong HH, Min HJ, Koh SS. DCPP1 is the mouse ortholog of human PAUF that possesses functional analogy in pancreatic cancer. Biochem Biophys Res Commun 2017; 493:1498-1503. [PMID: 28988106 DOI: 10.1016/j.bbrc.2017.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 11/15/2022]
Abstract
Pancreatic adenocarcinoma upregulated factor (PAUF) overexpressed in pancreatic ductal adenocarcinoma (PDAC) plays a major role in tumor progression and metastasis by autocrine and paracrine manners. However, underlying molecular mechanism of PAUF functioning in pancreatic cancer are not fully understood yet. The objective of this study was to evaluate the potential of demilune cell and parotid protein 1 (DCPP1) as a putative mouse ortholog of human PAUF by sequence alignment and functional studies. Overexpression of mouse DCPP1 in Chinese hamster ovary (CHO) cells or pancreatic cancer cells increased cell proliferation, migration, invasion, and adhesion ability in vitro. Treatment of human pancreatic cancer cells with recombinant mouse DCPP1 elevated cell growth, motility, invasiveness, and adhesiveness. Mouse DCPP1 exerted its function on pancreatic cancer cells by activating intracellular signaling pathways involved in aggressive cancer phenotype of human pancreatic cancer cells. Moreover, subcutaneous injection of mice with DCPP1-overexpressing CHO cells increased tumor sizes. Taken together, we conclude that mouse DCPP1 is a multifunctional promoter of tumor growth through functional activation of pancreatic cancer cells, suggesting it to be an ortholog of human PAUF.
Collapse
Affiliation(s)
- Hayne Song
- Department of Biological Sciences, Dong-A University, Busan, South Korea
| | - Jinhoi Song
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yeon Jeong Kim
- Department of Biological Sciences, Dong-A University, Busan, South Korea
| | - Hyeon Hee Jeong
- Department of Biological Sciences, Dong-A University, Busan, South Korea
| | - Hye Jin Min
- Aging Research Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sang Seok Koh
- Department of Biological Sciences, Dong-A University, Busan, South Korea.
| |
Collapse
|
7
|
Skepner J, Trocha M, Ramesh R, Qu XA, Schmidt D, Baloglu E, Lobera M, Davis S, Nolan MA, Carlson TJ, Hill J, Ghosh S, Sundrud MS, Yang J. In vivo regulation of gene expression and T helper type 17 differentiation by RORγt inverse agonists. Immunology 2015; 145:347-56. [PMID: 25604624 DOI: 10.1111/imm.12444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/21/2014] [Accepted: 12/23/2014] [Indexed: 12/14/2022] Open
Abstract
The orphan nuclear receptor, retinoic acid receptor-related orphan nuclear receptor γt (RORγt), is required for the development and pathogenic function of interleukin-17A-secreting CD4(+) T helper type 17 (Th17) cells. Whereas small molecule RORγt antagonists impair Th17 cell development and attenuate autoimmune inflammation in vivo, the broader effects of these inhibitors on RORγt-dependent gene expression in vivo has yet to be characterized. We show that the RORγt inverse agonist TMP778 acts potently and selectively to block mouse Th17 cell differentiation in vitro and to impair Th17 cell development in vivo upon immunization with the myelin antigen MOG35-55 plus complete Freund's adjuvant. Importantly, we show that TMP778 acts in vivo to repress the expression of more than 150 genes, most of which fall outside the canonical Th17 transcriptional signature and are linked to a variety of inflammatory pathologies in humans. Interestingly, more than 30 genes are related with SMAD3, a transcription factor involved in the Th17 cell differentiation. These results reveal novel disease-associated genes regulated by RORγt during inflammation in vivo, and provide an early read on potential disease indications and safety concerns associated with pharmacological targeting of RORγt.
Collapse
Affiliation(s)
- Jill Skepner
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Mark Trocha
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Radha Ramesh
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Xiaoyan A Qu
- Computational Biology, Quantitative Sciences, GlaxoSmithKline, RTP, NC, USA
| | - Darby Schmidt
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Erkan Baloglu
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Mercedes Lobera
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Scott Davis
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Michael A Nolan
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | | | - Jonathan Hill
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Shomir Ghosh
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| | - Mark S Sundrud
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA.,Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Jianfei Yang
- Tempero Pharmaceuticals, GlaxoSmithKline, Cambridge, MA, USA
| |
Collapse
|
8
|
Abstract
Experimental evidence from the last 30 years supports the fact that the oviduct is involved in the modulation of the reproductive process in eutherian mammals. Oviductal secretion contains molecules that contribute to regulation of gamete function, gamete interaction, and the early stages of embryo development. The oviductal environment would act as a sperm reservoir, maintaining sperm viability, and modulating the subpopulation of spermatozoa that initiates the capacitation process. It could also contribute to prevent the premature acrosome reaction and to reduce polyspermy. Many studies have reported the beneficial effects of the oviductal environment on fertilization and on the first stages of embryo development. Some oviductal factors have been identified in different mammalian species. The effects of oviductal secretion on the reproductive process could be thought to result from the dynamic combined action (inhibitory or stimulatory) of multiple factors present in the oviductal lumen at different stages of the ovulatory cycle and in the presence of gametes or embryos. It could be hypothesized that the absence of a given molecule would not affect fertility as its action could be compensated by another factor with similar functions. However, any alteration in this balance could affect certain events of the reproductive process and could perhaps impair fertility. Thus, the complexity of the reproductive process warrants a continuous research effort to unveil the mechanisms and factors behind its regulation in the oviductal microenvironment.
Collapse
|
9
|
Osteopontin is expressed in the oviduct and promotes fertilization and preimplantation embryo development of mouse. ZYGOTE 2014; 23:622-30. [DOI: 10.1017/s0967199414000483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SummaryOsteopontin (OPN) is a multifunctional phosphoprotein that is detected in various tissues, including male and female reproductive tracts. In this study, we evaluated OPN expression in mouse oviducts during the estrus cycle, and at days 1–5 of pregnancy and pseudopregnancy by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry. The mice oocytes, sperm and embryos were treated with different concentrations of anti-OPN antibody in vitro to detect the function of OPN in fertilization and preimplantation embryo development. OPN mRNA and protein expression in mouse oviducts were cyclic dependent throughout the estrous cycle, which was highest at estrous and lowest at diestrous. Such a phenomenon was consistent with the change in estrogen level in mice. The expression levels of OPN in mice oviduct of normal pregnancy and pseudopregnancy were significantly different, which indicated that OPN expression in mouse oviducts was depend on estrogen and preimplantation embryo. Furthermore, anti-OPN antibody treatment could reduce the rates of fertilization, cleavage and blastocyst formation in vitro in a dose-dependent way. Overall, our results indicated that the expression of OPN in mouse oviducts during the estrous cycle and early pregnancy is likely regulated by estrogen and the embryo, and OPN may play a vital role in oocyte fertilization and preimplantation embryo development.
Collapse
|
10
|
Xie H, Sun X, Piao Y, Jegga AG, Handwerger S, Ko MSH, Dey SK. Silencing or amplification of endocannabinoid signaling in blastocysts via CB1 compromises trophoblast cell migration. J Biol Chem 2012; 287:32288-97. [PMID: 22833670 DOI: 10.1074/jbc.m112.381145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid signaling plays key roles in multiple female reproductive events. Previous studies have shown an interesting phenomenon, that mice with either silenced or elevated endocannabinoid signaling via Cnr1 encoding CB(1) show similar defects in several pregnancy events, including preimplantation embryo development. To unravel the downstream signaling of this phenomenon, microarray studies were performed using RNAs collected from WT, Cnr1(-/-), and Faah(-/-) mouse blastocysts on day 4 of pregnancy. The results indicate that about 100 genes show unidirectional changes under either silenced or elevated anandamide signaling via CB(1). Functional enrichment analysis of the microarray data predicted that multiple biological functions and pathways are affected under aberrant endocannabinoid signaling. Among them, genes enriched in cell migration are suppressed in Cnr1(-/-) or Faah(-/-) blastocysts. Cell migration assays validated the prediction of functional enrichment analysis that cell mobility and spreading of either Cnr1(-/-) or Faah(-/-) trophoblast stem cells are compromised. Either silenced or elevated endocannabinoid signaling via CB(1) causes similar changes in downstream targets in preimplantation embryos and trophoblast stem cells. This study provides evidence that a tightly regulated endocannabinoid signaling is critical to normal preimplantation embryo development and migration of trophoblast stem cells.
Collapse
Affiliation(s)
- Huirong Xie
- Division of Reproductive Sciences, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The female reproductive system is a complex system. Epithelia of the female reproductive system including the ovaries, the oviduct, and the uterus are important sites for follicular development, ovulation, fertilization, implantation, and embryo development. They are also able to synthesize and secrete various hormones, growth factors, and cytokines, which are essential to women's health, sexuality, and reproduction. Conversely, their dysfunction has been implicated in disorders such as infertility, endometriosis, and many other gynecological diseases, as well as cancer. In this chapter, we describe detailed procedures for establishing and maintaining primary cultures of human ovarian surface epithelium, oviductal epithelium, and endometrium. We also provide protocols for cell immortalization, clonal isolation, and in coculture with stromal cells. These cultures can be useful models for investigating the molecular and cellular functions of these epithelia in both normal and pathological states.
Collapse
|
12
|
Reis A, Silva L, Silva A, Sousa J, Vale W. Efeito do estradiol e da progesterona no desenvolvimento e na qualidade de embriões bovinos produzidos in vitro. ARQ BRAS MED VET ZOO 2010. [DOI: 10.1590/s0102-09352010000600012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2025] Open
Abstract
Avaliaram-se o desenvolvimento e a qualidade de embriões bovinos, cocultivados com células epiteliais do oviduto bovino (CEOBs) expostas ou não ao estradiol e à progesterona. Os ovócitos foram maturados in vitro por 24h e, então, fertilizados utilizando-se sêmen congelado, em estufa de CO2 a 5% e 38,5ºC. As CEOBs foram cultivadas em TCM-199 com ou sem estradiol (E2) (24 horas), nas mesmas condições da maturação e fertilização in vitro (MIV e FIV), e, em seguida, adicionadas aos diferentes grupos em CR2 com ou sem progesterona (P4) (G1=P4+E2); (G2=E2); (G3=P4) e (G4=controle). Após 18h da FIV, as células foram cultivadas nos diferentes sistemas. Nenhuma diferença (P>0,05) foi observada nas taxas de clivagem entre G1, G2 e G4 (53,5%; 56,3%; 51,7%) e nos padrões de blastocistos (BLs) (29,3%; 31,2%, 28,7%). Índices menores (P<0,05) foram obtidos no G3 para ambas as variáveis (34,5%; 16,4%). G1 e G2 apresentaram taxas de eclosão maiores (P<0,05) que os outros grupos (23,3%; 23,2%), sendo G4 (19,3%) diferente de G3 (16,1%). Em G1, G2 e G3, o número de células nos BLs aumentou 125,9; 128,4 e 123,6, respectivamente (P<0,05), em relação ao G4 (112,5). Conclui-se que o tratamento das CEOBs com o E2, nas primeiras 24 horas de cultivo, pode ser usado isoladamente ou em combinação com a progesterona, a fim de melhorar a qualidade de embriões bovinos produzidos in vitro
Collapse
|
13
|
Kodithuwakku SP, Ng PY, Liu Y, Ng EHY, Yeung WSB, Ho PC, Lee KF. Hormonal regulation of endometrial olfactomedin expression and its suppressive effect on spheroid attachment onto endometrial epithelial cells. Hum Reprod 2010; 26:167-75. [DOI: 10.1093/humrep/deq298] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
14
|
Zuo Y, Gao J, Yeung WSB, Lee KF. The testis-specific VAD1.3/AEP1 interacts with β-actin and syntaxin 1 and directs peri-nuclear/Golgi expression with bipartite nucleus localization (BNL) sequence. Biochem Biophys Res Commun 2010; 401:275-80. [PMID: 20850414 DOI: 10.1016/j.bbrc.2010.09.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 09/10/2010] [Indexed: 01/24/2023]
Abstract
VAD1.3 (AEP1), a novel testis-specific gene, was first isolated from the testis of a retinol-treated vitamin-A-deficient (VAD) rat model. It is expressed at the acrosomal region of spermatids from postnatal day 25. VAD1.3 immunoreactivity is present in rat, human, monkey and porcine spermatids and spermatozoa, suggesting that VAD1.3 may play a role in acrosome formation. However, direct evidence on the detailed sub-cellular localization of the VAD1.3 protein in the acrosome and how VAD1.3 is involved in acrosome formation remains largely unknown. Here, we isolated and identified VAD1.3 interacting proteins by immunoprecipitation followed by mass spectrometry, and determined the functional motifs of VAD1.3 that were important for its specific sub-cellular location in vitro. We found that VAD1.3 bound to syntaxin 1 and β-actin proteins in vitro. Immunogold electron microscopic study localized VAD1.3 immunoreactivity to the acrosome membranes and matrix, and colocalized it with the β-actin protein. The full-length GFP-VAD (1-3601) and GFP-VAD (1-730) fusion proteins that contain the bipartite nucleus localization (BNL) signal were located in the peri-nucleus/Golgi of the transfected cells. In addition, the GFP signal colocalized with the endoplasmic reticulum marker and the syntaxin 1 protein in the transfected HeLa and GC-2spd cells. The C-terminal GFP-VAD (1770-3601) was expressed in the nucleus. Taken together, VAD1.3 interacts with β-actin and syntaxin 1 in vitro. The BNL signal may mediate the peri-nuclei localization of the protein that may interact with syntaxin 1 and β-actin for acrosome formation in spermatogenesis.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | |
Collapse
|
15
|
Lee KF, Lee YL, Chan RW, Cheong AW, Ng EH, Ho PC, Yeung WS. Up-regulation of endocrine gland-derived vascular endothelial growth factor but not vascular endothelial growth factor in human ectopic endometriotic tissue. Fertil Steril 2010; 93:1052-60. [PMID: 19135668 DOI: 10.1016/j.fertnstert.2008.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 11/26/2008] [Accepted: 12/02/2008] [Indexed: 01/12/2023]
|
16
|
Liu Y, Kodithuwakku SP, Ng PY, Chai J, Ng EHY, Yeung WSB, Ho PC, Lee KF. Excessive ovarian stimulation up-regulates the Wnt-signaling molecule DKK1 in human endometrium and may affect implantation: an in vitro co-culture study. Hum Reprod 2009; 25:479-90. [PMID: 19955106 DOI: 10.1093/humrep/dep429] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High serum estradiol (E2) levels following ovarian stimulation lead to reduced implantation and pregnancy rates, yet the underlying mechanisms remain unknown. We investigated if aberrant expression of genes in the Wnt-signaling pathway may be involved. METHODS Microarray and real-time PCR analysis were performed to analyze gene expression profiles of endometrial samples taken at day hCG + 7 in stimulated cycles, and days LH + 7 and LH + 10 in natural cycles. Expression of several Wnt-signaling transcripts, including Dickkopf homolog 1 (DKK1), DKK2 and secreted frizzled-related protein 4 (sFRP4), was analyzed throughout the menstrual cycle. JAr spheroid/Ishikawa endometrial cell co-culture experiments were established to study effects of DKK1 on spheroid attachment in vitro. RESULTS We identified 351 differentially expressed genes. Endometrial samples taken at hCG + 7 had similar expression profiles to those at LH + 10. DKK1 transcripts were up-regulated and DKK2 and sFRP4 were down-regulated in the stimulated compared with LH + 7 group (all P < 0.05). DKK1 transcripts were low in proliferative phase (PS) and increased in late-secretory phase (LS, P < 0.05), although DKK2 peaked in mid-secretory phase (P < 0.05). sFRP4 transcripts were high in PS. Treatment of spheroid with recombinant human DKK-1 protein dose-dependently suppressed (P < 0.05 versus control) spheroids attachment onto endometrial cells (associated with decreased beta-catenin protein): this suppression was nullified by anti-DKK1 antibody. CONCLUSION Gene expression patterns in stimulated cycles resembled those of LS in natural cycles, when the implantation window is about to close, suggesting high serum E2 and/or progesterone concentrations may advance endometrial development, altering the implantation window and possibly decreasing pregnancy rate. Aberrant expression of DKK1 might impair embryo attachment and implantation in vivo.
Collapse
Affiliation(s)
- Yunao Liu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Chow WN, Lee YL, Wong PC, Chung MK, Lee KF, Yeung WSB. Complement 3 deficiency impairs early pregnancy in mice. Mol Reprod Dev 2009; 76:647-55. [PMID: 19205046 DOI: 10.1002/mrd.21013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human oviductal cells produce complement-3 (C3) and its derivative, iC3b. These molecules are important in immune responses. Our recent study suggested that iC3b also possessed embryotrophic activity and it stimulates the blastulation and hatching rates of in vitro cultured mouse embryos. The objective is to study the impact of C3 deficiency on early pregnancy in vivo using homozygous C3-deficient (C3KO) and wild-type (C3WT) mice. C3 protein was undetectable in the reproductive tissues of C3KO mice. Deficiency in C3 is associated with significantly longer estrous cycle (P = 0.037). No significant difference was found in the ovulation rate, total cell count in blastocysts and implantation rate between the wild-type and the C3KO mice, though C3KO mice tended to have lower values in the latter two parameters. On day 15 of pregnancy, C3KO mice had fewer conceptus (P < 0.001) and higher resorption rate (P < 0.001) than that of C3WT mice. The fetal and placental weights (P < 0.001) were lower in the C3KO mice. The placenta of C3KO mice had smaller spongiotrophoblast (P = 0.001) and labyrinth (P = 0.037). Deficiency in C3 is associated with mild impairment in early pregnancy including longer estrous cycle and higher resorption rates after implantation. The impairment may be related to compromised placental development leading to under-developed fetuses.
Collapse
Affiliation(s)
- Wang-Ngai Chow
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Fertilization and development of mouse embryos occur in the oviduct. Accumulating data suggested that embryo-maternal communication exists in the preimplantation period, with the female reproductive tract providing the optimal microenvironment conducive to the development of embryos. Signals produced from the developing embryos not only affect their own transport in the oviduct, but the physiology and gene expression patterns of the oviduct. As a step towards understanding the action of embryos on oviductal physiology, both genomics and proteomics approaches are being used to unveil the underlying mechanism of embryo-maternal interaction at the preimplantation stage. Results from recent studies allow us to better understand the roles and the use of oviductal secretory proteins or factors that affect embryo development in vivo and in vitro. It has been shown that in vitro culture alters gene expression of the cultured embryos and may predispose the embryo to certain disease. Therefore, the interaction between gamete/embryo and oviduct in vitro and in vivo, and the long-term effects of embryo culture on foetal development warrant further investigation.
Collapse
Affiliation(s)
- Kai-Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | | |
Collapse
|
19
|
Cheong AWY, Lee YL, Liu WM, Yeung WSB, Lee KF. Oviductal microsomal epoxide hydrolase (EPHX1) reduces reactive oxygen species (ROS) level and enhances preimplantation mouse embryo development. Biol Reprod 2009; 81:126-32. [PMID: 19321813 DOI: 10.1095/biolreprod.108.071449] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Somatic cell-embryo coculture enhances embryo development in vitro by producing embryotrophic factor(s) and/or removing harmful substances from the culture environment. Yet, the underlying molecular mechanisms on how somatic cells remove the toxicants from the culture medium remain largely unknown. By using suppression subtractive hybridization, we identified a number of mouse oviductal genes that were up-regulated when developing preimplantation embryos were present in the oviduct. Epoxide hydrolase 1, microsomal (Ephx1 previously known as mEH) was one of these genes. EPHX1 detoxifies genotoxic compounds and participates in the removal of reactive oxygen species (ROS). The transcript of Ephx1 increases in the oviductal epithelium at the estrus stage and in Day 3 of pregnancy as well as in the uterus of ovariectomized mice injected with estrogen or progesterone. Human oviductal epithelial cells OE-E6/E7 express EPHX1 and improve mouse embryo development in vitro. Addition of an EPHX1 inhibitor, cyclohexene oxide (CHO) or 1,1,1-trichloropropene 2,3-oxide (TCPO), to the culture medium increased intracellular and extracellular ROS levels of OE-E6/E7 cells and suppressed the beneficial effect of the cells on embryo development; CHO and TCPO at these concentrations had no adverse effect on OE-E6/E7 growth and embryo development in vitro. Taken together, EPHX1 in oviductal cells may enhance the development of cocultured embryos by protecting them from oxidative stress. Our result supports the notion that somatic cell coculture may enhance embryo development via removal of deleterious substances in the culture medium.
Collapse
Affiliation(s)
- Ana W Y Cheong
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Lee YL, Cheong AW, Chow WN, Lee KF, Yeung WS. Regulation of complement-3 protein expression in human and mouse oviducts. Mol Reprod Dev 2009; 76:301-8. [PMID: 18671285 DOI: 10.1002/mrd.20955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Lee KF, Tam YT, Zuo Y, Cheong AW, Pang RT, Lee NP, Shum CK, Tam PC, Cheung AN, Yang ZM, Yeung WS, Luk JM. Characterization of an acrosome protein VAD1.2/AEP2 which is differentially expressed in spermatogenesis. Mol Hum Reprod 2008; 14:465-74. [DOI: 10.1093/molehr/gan041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
22
|
Tse PK, Lee YL, Chow WN, Luk JMC, Lee KF, Yeung WSB. Preimplantation embryos cooperate with oviductal cells to produce embryotrophic inactivated complement-3b. Endocrinology 2008; 149:1268-76. [PMID: 18039777 DOI: 10.1210/en.2007-1277] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human oviductal epithelial (OE) cells produce complement protein 3 (C3) and its derivatives, C3b and inactivated complement-3b (iC3b). Among them, iC3b is the most potent embryotrophic molecule. We studied the production of iC3b in the oviductal cell/embryo culture system. In the immune system, C3 convertase converts C3 into C3b, and the conversion of C3b to iC3b requires factor I (fI) and its cofactors, such as factor H or membrane cofactor protein. Human oviductal epithelium and OE cells expressed mRNA and protein of the components of C3 convertase, including C2, C4, factor B, and factor D. The OE cell-conditioned medium contained active C3 convertase activity that was suppressed by C3 convertase inhibitor, H17 in a dose and time-dependent manner. Although the oviductal epithelium and OE cells produced fI, the production of its cofactor, factor H required for the conversion of C3b to iC3b, was weak. Thus, OE cell-conditioned medium was inefficient in producing iC3b from exogenous C3b. On the contrary, mouse embryos facilitated such conversion to iC3b, which was taken up by the embryos, resulting in the formation of more blastocysts of larger size. The facilitatory activity was mediated by complement receptor 1-related gene/protein Y (Crry) with known membrane cofactor protein activity on the trophectoderm of the embryos as anti-Crry antibody inhibited the conversion and embryotrophic activity of C3b in the presence of fI. In conclusion, human oviduct possesses C3 convertase activity converting C3 to C3b, and Crry of the preimplantation embryos may be involved in the production of embryotrophic iC3b on the surface of the embryos.
Collapse
Affiliation(s)
- Pui-Keung Tse
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
23
|
Liu Y, Lee KF, Ng EHY, Yeung WSB, Ho PC. Gene expression profiling of human peri-implantation endometria between natural and stimulated cycles. Fertil Steril 2008; 90:2152-64. [PMID: 18191855 DOI: 10.1016/j.fertnstert.2007.10.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of high serum E(2) levels in gonadotropin-stimulated cycles (hCG+7) on the gene expression patterns of human endometrium compared with natural cycles on the seventh day of LH surge (LH+7) and elucidate the underlying molecular changes that may be related to endometrial receptivity. DESIGN Observational study. SETTING University Hospital. PATIENTS(S) Infertile patients with normal menstrual cycles undergoing IVF treatment. INTERVENTION(S) Gonadotropin stimulation and endometrial biopsy. MAIN OUTCOME MEASURE(S) Gene expression by microarray and quantitative polymerase chain reaction (qPCR). RESULT(S) Endometrial samples from natural (n = 5) and stimulated (n = 8) cycles were collected. Patients in the stimulated cycles were classified as moderate (n = 4) or excessive (n = 4) responders if their serum E(2) levels on the day of administration of hCG were <or=20,000 pmol/L or >20,000 pmol/L, respectively. The RNA transcripts were profiled by Affymetrix HG-U133A microarray. Clustering and principal component analysis demonstrated a significant difference (>or=2-fold) in the expression patterns of 411 genes among the three groups. Putative estrogen response elements or progesterone response elements were identified in the promoter regions of 49 differentially expressed genes of diverse biologic functions. The qPCR confirmed the microarray result in 47 endometrial samples. CONCLUSION(S) High serum E(2) and/or progesterone modulate the gene expression profiles of human endometrium and may affect endometrial receptivity.
Collapse
Affiliation(s)
- Yunao Liu
- Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
24
|
Sengupta A, Baker T, Chakrabarti N, Whittaker JA, Sridaran R. Localization of immunoreactive gonadotropin-releasing hormone and relative expression of its mRNA in the oviduct during pregnancy in rats. J Histochem Cytochem 2007; 55:525-34. [PMID: 17283369 DOI: 10.1369/jhc.6a7135.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to determine the cellular and ultrastructural distribution of the gonadotropin-releasing hormone (GnRH) and the relative expression of its mRNA in the oviduct of rats during different time points (days 7, 9, 16, and 20) of pregnancy. Immunofluorescent localization and confocal microscopic techniques were used to determine the cellular distribution of GnRH in the oviduct. Immunogold electron microscopy indicated its localization at the ultrastructural level, and real-time PCR was used to study the expression pattern of GnRH mRNA in the oviduct during pregnancy. In general, GnRH was localized within the epithelial cells lining the oviductal lumen at each selected time point. A strong correlation between the fluorescence intensity of GnRH-immunoreactive cells and the relative expression of GnRH mRNA was noted on days 7 and 16, followed by a plateau by day 20. At the ultrastructural level, uniform labeling of colloidal gold particles was observed in secretory vesicles and lamella of the luminal epithelium as well as the lumen of the oviduct. Collectively, these results demonstrate for the first time that the oviductal epithelium synthesizes and secretes the decapeptide GnRH during pregnancy in rats, which may have a possible role in postimplantation embryonic development and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anamika Sengupta
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA
| | | | | | | | | |
Collapse
|
25
|
Mullins JJ, Mullins LJ, Dunbar DR, Brammar WJ, Gross KW, Morley SD. Identification of a human ortholog of the mouseDcppgene locus, encoding a novel member of the CSP-1/Dcpp salivary protein family. Physiol Genomics 2006; 28:129-40. [PMID: 16954406 DOI: 10.1152/physiolgenomics.00153.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Salivary fluid, the collective product of numerous major and minor salivary glands, contains a range of secretory proteins that play key defensive, digestive, and gustatory roles in the oral cavity. To understand the distinct protein “signature” contributed by individual salivary glands to salivary secretions, we studied a family of proteins shown by in vitro mRNA translation to be abundantly expressed in mouse sublingual glands. Molecular cloning, Southern blotting, and restriction fragment length polymorphism analyses showed these to represent one known and two novel members of the common salivary protein (CSP-1)/Demilune cell and parotid protein (Dcpp) salivary protein family, the genes for which are closely linked in the T-complex region of mouse chromosome 17. Bioinformatic analysis identified a putative human CSP-1/Dcpp ortholog, HRPE773, expressed predominantly in human salivary tissue, that shows 31% amino acid identity and 45% amino acid similarity to the mouse Dcpp query sequence. The corresponding human gene displays a similar structure to the mouse Dcpp genes and is located on human chromosome 16 in a region known to be syntenic with the T-complex region of mouse chromosome 17. The predicted mouse and human proteins both display classical NH2-terminal signal sequences, putative jacalin-related lectin domains, and potential N-linked glycosylation sites, suggesting secretion via sublingual saliva into the oral cavity where they may display antimicrobial activity or provide a defensive coating to enamel. Identification of a human CSP-1/Dcpp ortholog therefore provides a key tool for investigation of salivary protein function in human oral health and disease.
Collapse
Affiliation(s)
- John J Mullins
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|