1
|
Hou L, Hong H, Cao W, Wei L, Weng L, Yuan S, Xiao C, Zhang Q, Wang Q, Lai D. Identification and characterization of multipotential stem cells in immortalized normal ovarian surface epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:239-254. [PMID: 38243680 PMCID: PMC10984850 DOI: 10.3724/abbs.2023253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/21/2023] [Indexed: 01/21/2024] Open
Abstract
The ovarian surface epithelium (OSE) is a single layer of squamous-to-cuboidal epithelial cells that experience repetitive ovulatory rupture and subsequent repair. However, the characteristics of human immortalized ovarian surface epithelial cells (IOSE80) remain elusive. This study aims to determine whether IOSE80 cells have the characteristics of stem cell proliferation and multilineage differentiation and their application in regenerative medicine. IOSE80 cells are sequenced by high-throughput transcriptome analysis, and 5 sets of public data are used to compare the differences between IOSE80 cells and bone marrow mesenchymal stem cells, pluripotent stem cells, and oocytes in transcriptome profiling. The IOSE80 cells present a cobblestone-like monolayer and express the epithelial cell marker KRT18; the stem cell markers IFITM3, ALDH1A1, and VIM; lowly express stem cell marker LGR5 and germ cell markers DDX4 and DAZL. In addition, the GO terms "regulation of stem cell proliferation", "epithelial cell proliferation", etc., are significantly enriched ( P<0.05). IOSE80 cells have the potential to act as mesenchymal stem cells to differentiate into adipocytes with lipid droplets, osteoblasts, and chondroblasts in vitro. IOSE80 cells express pluripotent stem cell markers, including OCT4, SSEA4, TRA-1-60, and TRA-1-81, and they can be induced into three germ layers in vitro. IOSE80 cells also form oocyte-like cells in vitro and in vivo. In addition, IOSE80 cells exhibit robust proliferation, migration, and ovarian repair functions after in vivo transplantation. This study demonstrates that IOSE80 cells have the characteristics of pluripotent/multipotent stem cells, indicating their important role in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lin Hou
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Hanqing Hong
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Wenjiao Cao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Liutong Wei
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Lichun Weng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Shuang Yuan
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qian Wang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Dongmei Lai
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| |
Collapse
|
2
|
Di Nisio V, Antonouli S, Colafarina S, Zarivi O, Rossi G, Cecconi S, Poma AMG. Repeated Rounds of Gonadotropin Stimulation Induce Imbalance in the Antioxidant Machinery and Activation of Pro-Survival Proteins in Mouse Oviducts. Int J Mol Sci 2023; 24:ijms24119294. [PMID: 37298244 DOI: 10.3390/ijms24119294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Controlled ovarian stimulation (COS) through gonadotropin administration has become a common procedure in assisted reproductive technologies. COS's drawback is the formation of an unbalanced hormonal and molecular environment that could alter several cellular mechanisms. On this basis, we detected the presence of mitochondrial DNA (mtDNA) fragmentation, antioxidant enzymes (catalase; superoxide dismutases 1 and 2, SOD-1 and -2; glutathione peroxidase 1, GPx1) and apoptotic (Bcl-2-associated X protein, Bax; cleaved caspases 3 and 7; phosphorylated (p)-heat shock protein 27, p-HSP27) and cell-cycle-related proteins (p-p38 mitogen-activated protein kinase, p-p38 MAPK; p-MAPK activated protein kinase 2, p-MAPKAPK2; p-stress-activated protein kinase/Jun amino-terminal kinase, p-SAPK/JNK; p-c-Jun) in the oviducts of unstimulated (Ctr) and repeatedly hyperstimulated (eight rounds, 8R) mice. While all the antioxidant enzymes were overexpressed after 8R of stimulation, mtDNA fragmentation decreased in the 8R group, denoting a present yet controlled imbalance in the antioxidant machinery. Apoptotic proteins were not overexpressed, except for a sharp increase in the inflammatory-related cleaved caspase 7, accompanied by a significant decrease in p-HSP27 content. On the other hand, the number of proteins involved in pro-survival mechanisms, such as p-p38 MAPK, p-SAPK/JNK and p-c-Jun, increased almost 50% in the 8R group. Altogether, the present results demonstrate that repeated stimulations cause the activation of the antioxidant machinery in mouse oviducts; however, this is not sufficient to induce apoptosis, and is efficiently counterbalanced by activation of pro-survival proteins.
Collapse
Affiliation(s)
- Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | - Sevastiani Antonouli
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, PC-45110 Ioannina, Greece
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Gianna Rossi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Sandra Cecconi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | | |
Collapse
|
3
|
Tocci A. Reply: In response to: why double ovarian stimulation in an in vitro fertilization cycle is potentially unsafe? Hum Reprod 2022; 37:1947-1949. [DOI: 10.1093/humrep/deac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
4
|
Klyukina LA, Sosnova EA, Ishchenko AA. Carcinogenic Potential Of Ovulation Stimulation In BRCA1/2 Gene Mutation Carriers In Assisted Reproductive Technology Programs. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mutations of the BRCA1/2 genes constitute a fundamental and independent risk factor in the genesis of both breast cancer and ovarian cancer. The specifics of the infertility treatment effect on the risk of developing cancer in carriers of mutations in the BRCA1/2 genes remain unclear and require a comprehensive investigation. In this review, we analyzed published sources on the possible relationship between the infertility treatment and the risk of ovarian and breast cancer in BRCA1/2 mutation carriers.
Collapse
Affiliation(s)
| | - Elena A. Sosnova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anton A. Ishchenko
- Federal Budgetary Institution Medical and Rehabilitation Center, Moscow, Russia
| |
Collapse
|
5
|
Wang J, Liu C, He L, Xie Z, Bai L, Yu W, Wang Z, Lu Y, Gao D, Fu J, Zhang L, Zeng YA. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. eLife 2022; 11:75449. [PMID: 35285801 PMCID: PMC8920503 DOI: 10.7554/elife.75449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and OSE stem cells rapidly generate new cells for the repair. How the stem cell activation is triggered by the rupture and promptly turns on proliferation is unclear. Our previous study has identified that Protein C Receptor (Procr) marks OSE progenitors. In this study, we observed decreased adherent junction and selective activation of YAP signaling in Procr progenitors at OSE rupture site. OSE repair is impeded upon deletion of Yap1 in these progenitors. Interestingly, Procr+ progenitors show lower expression of Vgll4, an antagonist of YAP signaling. Overexpression of Vgll4 in Procr+ cells hampers OSE repair and progenitor proliferation, indicating that selective low Vgll4 expression in Procr+ progenitors is critical for OSE repair. In addition, YAP activation promotes transcription of the OSE stemness gene Procr. The combination of increased cell division and Procr expression leads to expansion of Procr+ progenitors surrounding the rupture site. These results illustrate a YAP-dependent mechanism by which the stem/progenitor cells recognize the murine ovulatory rupture, and rapidly multiply their numbers, highlighting a YAP-induced stem cell expansion strategy.
Collapse
Affiliation(s)
- Jingqiang Wang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.,State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunye Liu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lingli He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhiyao Xie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lanyue Bai
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wentao Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zuoyun Wang
- Human Anatomy & Histoembryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junfen Fu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yi Arial Zeng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
6
|
Juárez-Mercado AP, Chávez-Genaro R, Fiordelisio T, González-Gallardo A, Díaz-Muñoz M, Vázquez-Cuevas FG. Functional expression of P2Y2 receptors in mouse ovarian surface epithelium (OSE). Mol Reprod Dev 2021; 88:758-770. [PMID: 34694051 DOI: 10.1002/mrd.23545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
Ovarian surface epithelium (OSE) is a cell monolayer surrounding the ovary; it is involved in the regulation of the ovulatory process and the genesis of ovarian carcinoma. However, intercellular messengers regulating signaling events, like proliferation in the OSE, have not been completely described. Purines have emerged as novel intercellular messengers in the ovary, in which expression of purinergic receptors has been reported in different cell types. In the present work, we described the functional expression of P2Y2 receptor (P2Y2R), a purinergic receptor widely associated with cell proliferation, in the OSE. The expression of P2Y2R by immunofluorescence and RT-PCR, and its functionality by Ca2+ recording was demonstrated in primary cultured OSE. Functional expression of P2Y2R was also exhibited in situ, by recording of intracellular Ca2+ release and detection of ERK phosphorylation after injection of a selective agonist into the ovarian bursa. Furthermore, P2Y2R activation with UTPγS, in situ, induced cell proliferation at 24 h, whereas continuous stimulation of P2Y2R during a complete estrous cycle significantly modified the size distribution of the follicular population. This is the first evidence of the functional expression of purinergic P2Y2R in the OSE and opens new perspectives on the roles played by purines in ovarian physiology.
Collapse
Affiliation(s)
- Ana Patricia Juárez-Mercado
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Rebeca Chávez-Genaro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| | - Adriana González-Gallardo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
7
|
Sasamoto N, Babic A, Vitonis AF, Titus L, Cramer DW, Trabert B, Tworoger SS, Terry KL. Common Analgesic Use for Menstrual Pain and Ovarian Cancer Risk. Cancer Prev Res (Phila) 2021; 14:795-802. [PMID: 34244153 PMCID: PMC8344407 DOI: 10.1158/1940-6207.capr-21-0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
Menstrual pain has been associated with increased ovarian cancer risk, presumably through increased inflammation, which is known to play a critical role in ovarian carcinogenesis. Analgesic medications are frequently used to treat menstrual pain, some of which lower ovarian cancer risk. In this study, we examined the association between analgesic use for menstrual pain during the premenopausal period and ovarian cancer risk among women with history of menstrual pain. We used data from the New England Case-Control Study, including 1,187 epithelial ovarian cancer cases and 1,225 population-based controls enrolled between 1998 and 2008 with detailed information on analgesic use for their menstrual pain. We used unconditional logistic regression to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between analgesic use (i.e., aspirin, ibuprofen, acetaminophen) for menstrual pain and ovarian cancer risk. We further conducted a stratified analysis by intensity of menstrual pain (mild/moderate, severe). Among women with menstrual pain during their 20s and 30s, ever use of analgesics for menstrual pain was not significantly associated with ovarian cancer risk. However, among women with severe menstrual pain, ever use of aspirin or acetaminophen for menstrual pain was inversely associated with risk (OR, 0.41; 95% CI, 0.18-0.94 and OR, 0.43; 95% CI, 0.21-0.88 compared with never users, respectively). No significant association was observed between analgesic use and ovarian cancer risk among women with mild/moderate menstrual pain (P interaction ≤ 0.03). Our results suggest that use of aspirin or acetaminophen for severe menstrual pain may be associated with lower risk of ovarian cancer. PREVENTION RELEVANCE: This study investigates whether analgesic use specifically for menstrual pain during the premenopausal period influences ovarian cancer risk. Our results suggest use of aspirin or acetaminophen for severe menstrual pain may be associated with lower risk of ovarian cancer among women with severe menstrual pain.
Collapse
Affiliation(s)
- Naoko Sasamoto
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Ana Babic
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Allison F Vitonis
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linda Titus
- Public Health, Muskie School of Public Service, University of Southern Maine, Portland, Maine
| | - Daniel W Cramer
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Britton Trabert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Shelley S Tworoger
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kathryn L Terry
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Mei J, Tian H, Huang HS, Hsu CF, Liou Y, Wu N, Zhang W, Chu TY. Cellular models of development of ovarian high-grade serous carcinoma: A review of cell of origin and mechanisms of carcinogenesis. Cell Prolif 2021; 54:e13029. [PMID: 33768671 PMCID: PMC8088460 DOI: 10.1111/cpr.13029] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
High-grade serous carcinoma (HGSC) is the most common and malignant histological type of epithelial ovarian cancer, the origin of which remains controversial. Currently, the secretory epithelial cells of the fallopian tube are regarded as the main origin and the ovarian surface epithelial cells as a minor origin. In tubal epithelium, these cells acquire TP53 mutations and expand to a morphologically normal 'p53 signature' lesion, transform to serous tubal intraepithelial carcinoma and metastasize to the ovaries and peritoneum where they develop into HGSC. This shifting paradigm of the main cell of origin has revolutionarily changed the focus of HGSC research. Various cell lines have been derived from the two cellular origins by acquiring immortalization via overexpression of hTERT plus disruption of TP53 and the CDK4/RB pathway. Malignant transformation was achieved by adding canonical driver mutations (such as gain of CCNE1) revealed by The Cancer Genome Atlas or by noncanonical gain of YAP and miR181a. Alternatively, because of the extreme chromosomal instability, spontaneous transformation can be achieved by long passage of murine immortalized cells, whereas in humans, it requires ovulatory follicular fluid, containing regenerating growth factors to facilitate spontaneous transformation. These artificially and spontaneously transformed cell systems in both humans and mice have been widely used to discover carcinogens, oncogenic pathways and malignant behaviours in the development of HGSC. Here, we review the origin, aetiology and carcinogenic mechanism of HGSC and comprehensively summarize the cell models used to study this fatal cancer having multiple cells of origin and overt genomic instability.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Huixiang Tian
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Che-Fang Hsu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC
| | - Yuligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Nayiyuan Wu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China
| | - Tang-Yuan Chu
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Obstetrics & Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,Department of Life Sciences, Tzu Chi University, Hualien, Taiwan, ROC
| |
Collapse
|
9
|
Carter LE, Cook DP, Collins O, Gamwell LF, Dempster HA, Wong HW, McCloskey CW, Garson K, Vuong NH, Vanderhyden BC. COX2 is induced in the ovarian epithelium during ovulatory wound repair and promotes cell survival†. Biol Reprod 2020; 101:961-974. [PMID: 31347667 DOI: 10.1093/biolre/ioz134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 07/02/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
The ovarian surface epithelium (OSE) is a monolayer of cells surrounding the ovary that is ruptured during ovulation. After ovulation, the wound is repaired, however, this process is poorly understood. In epithelial tissues, wound repair is mediated by an epithelial-to-mesenchymal transition (EMT). Transforming Growth Factor Beta-1 (TGFβ1) is a cytokine commonly known to induce an EMT and is present throughout the ovarian microenvironment. We, therefore, hypothesized that TGFβ1 induces an EMT in OSE cells and activates signaling pathways important for wound repair. Treating primary cultures of mouse OSE cells with TGFβ1 induced an EMT mediated by TGFβRI signaling. The transcription factor Snail was the only EMT-associated transcription factor increased by TGFβ1 and, when overexpressed, was shown to increase OSE cell migration. A polymerase chain reaction array of TGFβ signaling targets determined Cyclooxygenase-2 (Cox2) to be most highly induced by TGFβ1. Constitutive Cox2 expression modestly increased migration and robustly enhanced cell survival, under stress conditions similar to those observed during wound repair. The increase in Snail and Cox2 expression with TGFβ1 was reproduced in human OSE cultures, suggesting these responses are conserved between mouse and human. Finally, the induction of Cox2 expression in OSE cells during ovulatory wound repair was shown in vivo, suggesting TGFβ1 increases Cox2 to promote wound repair by enhancing cell survival. These data support that TGFβ1 promotes ovulatory wound repair by induction of an EMT and activation of a COX2-mediated pro-survival pathway. Understanding ovulatory wound repair may give insight into why ovulation is the primary non-hereditary risk factor for ovarian cancer.
Collapse
Affiliation(s)
- Lauren E Carter
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Olga Collins
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lisa F Gamwell
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Holly A Dempster
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Howard W Wong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ken Garson
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Nhung H Vuong
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Ottawa/The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Mara JN, Zhou LT, Larmore M, Johnson B, Ayiku R, Amargant F, Pritchard MT, Duncan FE. Ovulation and ovarian wound healing are impaired with advanced reproductive age. Aging (Albany NY) 2020; 12:9686-9713. [PMID: 32407290 PMCID: PMC7288922 DOI: 10.18632/aging.103237] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Aging is associated with reduced tissue remodeling efficiency and increased fibrosis, characterized by excess collagen accumulation and altered matrix degradation. Ovulation, the process by which an egg is released from the ovary, is one of the most dynamic cycles of tissue wounding and repair. Because the ovary is one of the first organs to age, ovulation and ovarian wound healing is impaired with advanced reproductive age. To test this hypothesis, we induced superovulation in reproductively young and old mice and determined the numbers of eggs ovulated and corpora lutea (CLs), the progesterone producing glands formed post-ovulation. Reproductively old mice ovulated fewer eggs and had fewer CLs relative to young controls. Moreover, reproductively old mice exhibited a greater number of oocytes trapped within CLs and expanded cumulus oocyte complexes within unruptured antral follicles, indicative of failed ovulation. In addition, post-ovulatory tissue remodeling was compromised with age as evidenced by reduced CL vasculature, increased collagen, decreased hyaluronan, decreased cell proliferation and apoptosis, impaired wound healing capacity, and aberrant morphology of the ovarian surface epithelium (OSE). These findings demonstrate that ovulatory dysfunction is an additional mechanism underlying the age-related loss of fertility beyond the reduction of egg quantity and quality.
Collapse
Affiliation(s)
- Jamie N. Mara
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Megan Larmore
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brian Johnson
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Ayiku
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele T. Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Procr-expressing progenitor cells are responsible for murine ovulatory rupture repair of ovarian surface epithelium. Nat Commun 2019; 10:4966. [PMID: 31672973 PMCID: PMC6823351 DOI: 10.1038/s41467-019-12935-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/10/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and repair. The OSE replenishing mechanism post ovulation remains unclear. Here we report that the expression of Protein C Receptor (Procr) marks a progenitor population in adult mice that is responsible for OSE repair post ovulation. Procr+ cells are the major cell source for OSE repair. The mechanism facilitating the rapid re-epithelialization is through the immediate expansion of Procr+ cells upon OSE rupture. Targeted ablation of Procr+ cells impedes the repairing process. Moreover, Procr+ cells displayed robust colony-formation capacity in culture, which we harnessed and established a long-term culture and expansion system of OSE cells. Finally, we show that Procr+ cells and previously reported Lgr5+ cells have distinct lineage tracing behavior in OSE homeostasis. Our study suggests that Procr marks progenitor cells that are critical for OSE ovulatory rupture and homeostasis, providing insight into how adult stem cells respond upon injury. The ovary is covered by a surface epithelium (OSE) and cells mediating its repair post ovulation are unclear. Here, the authors identify the Protein C Receptor (Procr) as marking progenitor cells, distinct from Lgr5+ stem cells, on the murine surface epithelium that repair the OSE post ovulation.
Collapse
|
12
|
Patel H, Bhartiya D, Parte S. Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. J Ovarian Res 2018; 11:3. [PMID: 29304868 PMCID: PMC5755409 DOI: 10.1186/s13048-017-0377-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stem cells in the ovary comprise of two distinct populations including very small embryonic-like stem cells (VSELs) and slightly bigger progenitors termed ovarian stem cells (OSCs). They are lodged in ovary surface epithelium (OSE) and are expected to undergo neo-oogenesis and primordial follicle (PF) assembly in adult ovaries. The ovarian stem cells express follicle stimulating hormone (FSH) receptors and are directly activated by FSH resulting in formation of germ cell nests (GCN) in vitro. Present study was undertaken to further characterize adult sheep OSCs and to understand their role during neo-oogenesis and PF assembly. METHODS Stem cells were collected by gently scraping the OSE cells and were characterized by H&E staining, immuno-localization, immuno-phenotyping and RT-PCR studies. Expression of FSH receptors and markers specific for stem cells (OCT-4, SSEA-4) and proliferation (PCNA) were studied on stem/progenitor cells in OSE culture and on adult sheep ovarian cortical tissue sections. Effect of FSH on stem cells was also studied in vitro. Asymmetric cell division (ACD) was monitored by studying expression of OCT-4 and NUMB. RESULTS Additional evidence was generated on the presence of two populations of stem cells in the OSE including VSELs and OSCs. FSHR expression was observed on both VSELs and OSCs by immuno-localization and immuno-phenotyping studies. FSH treatment in vitro stimulated VSELs that underwent ACD to self-renew and give rise to OSCs which divided rapidly by symmetric cell divisions (SCD) and clonal expansion with incomplete cytokinesis to form GCN. ACD was further confirmed by differential expression of OCT-4 in VSELs and NUMB in the OSCs. Immuno-histochemical expression of OCT-4, PCNA and FSHR was noted on stem cells located in the OSE in sheep ovarian sections. GCN and cohort of PF were observed in the ovarian cortex and provided evidence in support of neo-oogenesis from the stem cells. CONCLUSION Results of present study provide further evidence in support of two stem cells populations in adult sheep ovary. Both VSELs, OSCs and GCN express FSH receptors and FSH possibly regulates their function to undergo neo-oogenesis and primordial follicle assembly.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| |
Collapse
|
13
|
Vuong NH, Salah Salah O, Vanderhyden BC. 17β-Estradiol sensitizes ovarian surface epithelium to transformation by suppressing Disabled-2 expression. Sci Rep 2017; 7:16702. [PMID: 29196616 PMCID: PMC5711839 DOI: 10.1038/s41598-017-16219-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023] Open
Abstract
Estrogen replacement therapy increases the risk of human ovarian cancer and exogenous estradiol accelerates the onset of ovarian cancer in mouse models. This study uses primary cultures of mouse ovarian surface epithelium (OSE) to demonstrate that one possible mechanism by which estrogen accelerates the initiation of ovarian cancer is by up-regulation of microRNA-378 via the ESR1 pathway to result in the down-regulation of a tumour suppressor called Disabled-2 (Dab2). Estrogen suppression of Dab2 was reproducible in vivo and across many cell types including mouse oviductal epithelium and primary cultures of human ovarian cancer cells. Suppression of Dab2 resulted in increased proliferation, loss of contact inhibition, morphological dysplasia, and resistance to oncogene-induced senescence - all factors that can sensitize OSE to transformation. Given that DAB2 is highly expressed in healthy human OSE and is absent in the majority of ovarian tumours, this study has taken the first steps to provide a mechanistic explanation for how estrogen therapy may play a role in the initiation of ovarian cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/biosynthesis
- Adaptor Proteins, Vesicular Transport/genetics
- Animals
- Apoptosis Regulatory Proteins
- Carcinoma, Ovarian Epithelial/chemically induced
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Cell Transformation, Neoplastic/chemically induced
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelium/metabolism
- Epithelium/pathology
- Estradiol/adverse effects
- Estradiol/pharmacology
- Female
- Humans
- Mice
- Mice, Knockout
- Ovarian Neoplasms/chemically induced
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovary/metabolism
- Ovary/pathology
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Nhung H Vuong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Omar Salah Salah
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
14
|
Lee M, Ahn JI, Lee AR, Ko DW, Yang WS, Lee G, Ahn JY, Lim JM. Adverse Effect of Superovulation Treatment on Maturation, Function and Ultrastructural Integrity of Murine Oocytes. Mol Cells 2017; 40:558-566. [PMID: 28756654 PMCID: PMC5582302 DOI: 10.14348/molcells.2017.0058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/04/2022] Open
Abstract
Regular monitoring on experimental animal management found the fluctuation of ART outcome, which showed a necessity to explore whether superovulation treatment is responsible for such unexpected outcome. This study was subsequently conducted to examine whether superovulation treatment can preserve ultrastructural integrity and developmental competence of oocytes following oocyte activation and embryo culture. A randomized study using mouse model was designed and in vitro development (experiment 1), ultrastructural morphology (experiment 2) and functional integrity of the oocytes (experiment 3) retrieved after PMSG/hCG injection (superovulation group) or not (natural ovulation; control group) were evaluated. In experiment 1, more oocytes were retrieved following superovulation than following natural ovulation, but natural ovulation yielded higher (p < 0.0563) maturation rate than superovulation. The capacity of mature oocytes to form pronucleus and to develop into blastocysts in vitro was similar. In experiment 2, a notable (p < 0.0186) increase in mitochondrial deformity, characterized by the formation of vacuolated mitochondria, was detected in the superovulation group. Multivesicular body formation was also increased, whereas early endosome formation was significantly decreased. No obvious changes in other microorganelles, however, were detected, which included the formation and distribution of mitochondria, cortical granules, microvilli, and smooth and rough endoplasmic reticulum. In experiment 3, significant decreases in mitochondrial activity, ATP production and dextran uptake were detected in the superovulation group. In conclusion, superovulation treatment may change both maturational status and functional and ultrastuctural integrity of oocytes. Superovulation effect on preimplantation development can be discussed.
Collapse
Affiliation(s)
- Myungook Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Jong Il Ahn
- Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Ah Ran Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Dong Woo Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Woo Sub Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Gene Lee
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826,
Korea
- Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
15
|
Feng D, Zhao T, Yan K, Liang H, Liang J, Zhou Y, Zhao W, Ling B. Gonadotropins promote human ovarian cancer cell migration and invasion via a cyclooxygenase 2-dependent pathway. Oncol Rep 2017; 38:1091-1098. [PMID: 28677781 DOI: 10.3892/or.2017.5784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 06/22/2017] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that ovarian cancer is associated with local elevation of gonadotropins (FSH and LH), with repeated ovulation and accompanying expression of inducible cyclooxygenase 2 (COX2). However, the roles of gonadotropins and the concomitant elevation of COX2 in the development of ovarian cancer have not been fully characterized. Herein, we report that excessive FSH/LH exposure did not induce proliferation in ovarian cancer cell lines but significantly promoted cell migration and invasion. Moreover, FSH/LH treatment rapidly upregulated COX2 expression within 24 h, whereas COX1 expression remained unchanged. Further results showed that enhancement of epithelial-mesenchymal transition (EMT) and upregulation of matrix metalloproteinase (MMP)2 and MMP9 contributed to the stimulatory effect of gonadotropins on cell migration and invasion; these effects were sufficiently blocked by a selective COX2 inhibitor. In conclusion, the present study suggests that gonadotropin-induced migration and invasion in ovarian cancer may be caused by EMT and MMP upregulation via a COX2-dependent pathway.
Collapse
Affiliation(s)
- Dingqing Feng
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tingting Zhao
- Department of Obstetrics, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214002, P.R. China
| | - Keqin Yan
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Haiyan Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, P.R. China
| | - Bin Ling
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
16
|
Abdel-Hamid AAM, Mesbah Y, Soliman MFM. Reversal of tubo-ovarian atypical epithelial patterns after cessation of ovarian stimulation by letrozole. Int J Exp Pathol 2016; 97:329-336. [PMID: 27581552 DOI: 10.1111/iep.12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/22/2016] [Indexed: 12/14/2022] Open
Abstract
Letrozole (LTZ), one of the ovulation induction medications, is increasingly prescribed in various gynaecological conditions. Previous studies have demonstrated its potential hazardous effect on the ovarian surface epithelium (OSE) as well as on tubal epithelial cells (TEC). However, it is not clear whether this effect could be reversed by LTZ cessation. Therefore, the objective of our study was to investigate the effect of stoppage of LTZ on these cells after 12 cycles of ovarian stimulation. A total of 54 Sprague Dawley rats were used in this study, divided equally into control, LTZ12 and CES12 groups (received saline, 12 cycles of LTZ and 12 cycles of cessation post-LTZ12 respectively). Samples from the ovaries as well as fallopian tubes (FTs) were studied histologically for the changes associated with LTZ12 and CES12 respectively. There was evident increase in the proliferative activity and Ki67 immunoexpression in the OSE of LTZ12. The OSE was hyperchromatic, and abnormally frequent deep invaginations, micropapillae and cortical cysts. Their TEC showed frequent multilayering, papillary projections and loss of cilia. Almost all these changes disappeared 12 cycles after LTZ cessation. While the tubal IL-1β, IL-6, TNF-α and serum MCP-1 levels significantly increased in the LTZ12 group compared with the control group, their levels decreased in the CES12 group compared with those of the control. Therefore, the abnormal tubo-ovarian epithelial patterns may completely regress after cessation of LTZ stimulation for a reasonable duration. This is a potentially good omen and a positive indicator of the relatively safe use of LTZ after its intake has been stopped.
Collapse
Affiliation(s)
- Ahmed A M Abdel-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Yaser Mesbah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona F M Soliman
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Cardenas C, Alvero AB, Yun BS, Mor G. Redefining the origin and evolution of ovarian cancer: a hormonal connection. Endocr Relat Cancer 2016; 23:R411-22. [PMID: 27440787 DOI: 10.1530/erc-16-0209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022]
Abstract
Ovarian cancer has the highest mortality of all female reproductive cancers. Late diagnosis, tumour heterogeneity and the development of chemoresistance contribute to this statistic and work against patient survival. Current studies have revealed novel concepts that impact our view on how ovarian cancer develops. The greatest impact is on our understanding that, as a disease, ovarian cancer has multiple cellular origins and that these malignant precursors are mostly derived from outside of the ovaries. In this review, we propose a new concept of a step-wise developmental process that may underwrite ovarian tumorigenesis and progression: (1) migration/recruitment to the ovaries; (2) seeding and establishment in the ovaries; (3) induction of a dormant cancer stage; and (4) expansion and tumor progression. We will discuss the relationship of each step with the changing ovarian function and milieu during the reproductive age and the subsequent occurrence of menopause. The realization that ovarian cancer development and progression occurs in distinct steps is critical for the search of adequate markers for early detection that will offer personalized strategies for prevention and therapy.
Collapse
Affiliation(s)
- Carlos Cardenas
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ayesha B Alvero
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bo Seong Yun
- Department of Obstetrics and GynecologyCHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea
| | - Gil Mor
- Department of ObstetricsGynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Valdelièvre C, Sonigo C, Comtet M, Simon C, Eskenazi S, Grynberg M. [Impact of gonadotropins in women suffering from cancer]. Bull Cancer 2016; 103:282-8. [PMID: 26917466 DOI: 10.1016/j.bulcan.2016.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
The role of gonadotropins in the genesis of malignant diseases, in particular gynecologic cancers, is still controversial. The production of ovarian steroids, as a consequence of FSH and LH actions, may constitute a bias to draw reliable conclusions. Over the past decades, the use of exogenous gonadotropins has markedly increased in cancer patients, candidates for fertility preservation, and in survivors facing infertility as a consequence of gonadotoxic treatments. In gynecologic cancers, high serum estradiol levels may be problematic and can therefore be overcome by specific protocols of ovarian stimulation. However, exogenous gonadotropin administration in cancer patients should systematically be included in a multidisciplinary approach. The present article discusses the possible role of gonadotropins as tumorigenic factors and the use of exogenous gonadotropins in females suffering from cancer.
Collapse
Affiliation(s)
- Constance Valdelièvre
- Hôpital Jean-Verdier, service de médecine de la reproduction, avenue du 14-Juillet, 93140 Bondy, France
| | - Charlotte Sonigo
- Hôpital Jean-Verdier, service de médecine de la reproduction, avenue du 14-Juillet, 93140 Bondy, France; Université Paris XIII, 93000 Bobigny, France
| | - Marjorie Comtet
- Hôpital Jean-Verdier, service de médecine de la reproduction, avenue du 14-Juillet, 93140 Bondy, France
| | - Cynthia Simon
- Hôpital Jean-Verdier, service de médecine de la reproduction, avenue du 14-Juillet, 93140 Bondy, France
| | - Sarah Eskenazi
- Hôpital Jean-Verdier, service de médecine de la reproduction, avenue du 14-Juillet, 93140 Bondy, France
| | - Michaël Grynberg
- Hôpital Jean-Verdier, service de médecine de la reproduction, avenue du 14-Juillet, 93140 Bondy, France; Université Paris XIII, 93000 Bobigny, France; Université Paris-Diderot, unité Inserm U1133, 75013 Paris, France.
| |
Collapse
|
19
|
Abstract
The mammalian ovary is covered by a single-layered epithelium that undergoes rupture and remodelling following each ovulation. Although resident stem cells are presumed to be crucial for this cyclic regeneration, their identity and mode of action have been elusive. Surrogate stemness assays and in vivo fate-mapping studies using recently discovered stem cell markers have identified stem cell pools in the ovary and fimbria that ensure epithelial homeostasis. Recent findings provide insights into intrinsic mechanisms and local extrinsic cues that govern the function of ovarian and fimbrial stem cells. These discoveries have advanced our understanding of stem cell biology in the ovary and fimbria, and lay the foundations for evaluating the contribution of resident stem cells to the initiation and progression of human epithelial ovarian cancer.
Collapse
|
20
|
Sriraman K, Bhartiya D, Anand S, Bhutda S. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation. Reprod Sci 2015; 22:884-903. [PMID: 25779995 DOI: 10.1177/1933719115576727] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study was undertaken to investigate stem cells in adult mouse ovary, the effect of chemotherapy on them and their potential to differentiate into germ cells. Very small embryonic-like stem cells (VSELs) that were SCA-1+/Lin-/CD45-, positive for nuclear octamer-binding transforming factor 4 (OCT-4), Nanog, and cell surface stage-specific embryonic antigen 1, were identified in adult mouse ovary. Chemotherapy resulted in complete loss of follicular reserve and cytoplasmic OCT-4 positive progenitors (ovarian germ stem cells) but VSELs survived. In ovarian surface epithelial (OSE) cell cultures from chemoablated ovary, proliferating germ cell clusters and mouse vasa homolog/growth differentiation factor 9-positive oocyte-like structure were observed by day 6, probably arising as a result of differentiation of the surviving VSELs. Follicle-stimulating hormone (FSH) exerted a direct stimulatory action on the OSE and induced stem cells proliferation and differentiation into premeiotic germ cell clusters during intact chemoablated ovaries culture. The FSH analog pregnant mare serum gonadotropin treatment to chemoablated mice increased the percentage of surviving VSELs in ovary. The results of this study provide evidence for the presence of potential VSELs in mouse ovaries and show that they survive chemotherapy, are modulated by FSH, and retain the ability to undergo oocyte-specific differentiation. These results show relevance to women who undergo premature ovarian failure because of oncotherapy.
Collapse
Affiliation(s)
- Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| | - Smita Bhutda
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), Mumbai, Maharashtra, India
| |
Collapse
|
21
|
Joo BS, Jung IK, Park MJ, Joo JK, Kim KH, Lee KS. Differential expression of pluripotent and germ cell markers in ovarian surface epithelium according to age in female mice. Reprod Biol Endocrinol 2014; 12:113. [PMID: 25421381 PMCID: PMC4280751 DOI: 10.1186/1477-7827-12-113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/04/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many studies have proposed that putative ovarian stem cells (OSCs) derived from the ovarian surface epithelium (OSE) layer of adult mammalian ovaries can produce oocytes. Few studies have reported that ovaries of aged mammalian females including mice and women possess rare premeiotic germ cells that can generate oocytes. However, no studies have reported the changes of OSCs according to the age of the female. Therefore, this study evaluated pluripotent and germ cell marker expression in the intact ovary, scraped OSE, and postcultured OSE according to age in female mice. METHODS C57BL/6 female mice of 2 age groups (6-8 and 28-31 weeks) were superovulated by injection with 5 IU equine chorionic gonadotropin (eCG). Both ovaries were removed after 48 hours and scrapped to obtain OSE. Gene expressions of pluripotent (Oct-4, Sox-2, Nanog) and germ cell markers (c-Kit, GDF-9, and VASA) were evaluated by RT-PCR. VASA and GDF-9 were immune-localized in oocyte-like structures. RESULTS Expressions of germ cell markers in the intact ovary were significantly decreased in aged females, whereas expressions of pluripotent markers were not detected, regardless of age. Scraped OSE expression of all pluripotent and germ cell markers, except for c-Kit, was similar between both age groups. Three weeks postcultured OSE had significantly decreased expression of GDF-9 and VASA , but not c-Kit, in old mice, as compared to young mice; however there was no difference in the expression of other genes. The number of positively stained Oct-4 by immunohistochemistry in postcultured OSE was 2.5 times higher in young mice than aged mice. Oocyte-like structure was spontaneously produced in postcultured OSE. However, while that of young mice revealed a prominent nucleus, zona pellucida-like structure and cytoplasmic organelles, these features were not observed in old mice. CONCLUSIONS These results show that aged female mice have putative OSCs in OSE, but their differentiation potential, as well as the number of OSCs differs from those of young mice.
Collapse
Affiliation(s)
- Bo Sun Joo
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea
| | - In Kook Jung
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Min Jung Park
- Research Center for Anti-Aging Technology Development, Pusan National University, Busan, Korea
| | - Jong Kil Joo
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| | - Kyu-Sup Lee
- Department of Obstetrics and Gynecology, Medical Research Institute, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
22
|
Bhartiya D, Singh J. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging, and cancer. Reproduction 2014; 149:R35-48. [PMID: 25269615 DOI: 10.1530/rep-14-0220] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite extensive research, genetic basis of premature ovarian failure (POF) and ovarian cancer still remains elusive. It is indeed paradoxical that scientists searched for mutations in FSH receptor (FSHR) expressed on granulosa cells, whereas more than 90% of cancers arise in ovary surface epithelium (OSE). Two distinct populations of stem cells including very small embryonic-like stem cells (VSELs) and ovarian stem cells (OSCs) exist in OSE, are responsible for neo-oogenesis and primordial follicle assembly in adult life, and are modulated by FSH via its alternatively spliced receptor variant FSHR3 (growth factor type 1 receptor acting via calcium signaling and the ERK/MAPK pathway). Any defect in FSH-FSHR3-stem cell interaction in OSE may affect folliculogenesis and thus result in POF. Ovarian aging is associated with a compromised microenvironment that does not support stem cell differentiation into oocytes and further folliculogenesis. FSH exerts a mitogenic effect on OSE and elevated FSH levels associated with advanced age may provide a continuous trigger for stem cells to proliferate resulting in cancer, thus supporting gonadotropin theory for ovarian cancer. Present review is an attempt to put adult ovarian biology, POF, aging, and cancer in the perspective of FSH-FSHR3-stem cell network that functions in OSE. This hypothesis is further supported by the recent understanding that: i) cancer is a stem cell disease and OSE is the niche for ovarian cancer stem cells; ii) ovarian OCT4-positive stem cells are regulated by FSH; and iii) OCT4 along with LIN28 and BMP4 are highly expressed in ovarian cancers.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology DepartmentNational Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| | - Jarnail Singh
- Stem Cell Biology DepartmentNational Institute for Research in Reproductive Health (ICMR), Mumbai 400 012, India
| |
Collapse
|
23
|
Ng A, Tan S, Singh G, Rizk P, Swathi Y, Tan TZ, Huang RYJ, Leushacke M, Barker N. Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat Cell Biol 2014; 16:745-57. [DOI: 10.1038/ncb3000] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 05/29/2014] [Indexed: 12/19/2022]
|
24
|
Modi DA, Sunoqrot S, Bugno J, Lantvit DD, Hong S, Burdette JE. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells. NANOSCALE 2014; 6:2812-20. [PMID: 24468839 DOI: 10.1039/c3nr05042d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.
Collapse
Affiliation(s)
- Dimple A Modi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 900 S. Ashland Ave. Chicago, IL 60607, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Parte S, Bhartiya D, Manjramkar DD, Chauhan A, Joshi A. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. J Ovarian Res 2013; 6:20. [PMID: 23547966 PMCID: PMC3635909 DOI: 10.1186/1757-2215-6-20] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/22/2013] [Indexed: 12/11/2022] Open
Abstract
Background Cryopreserved ovarian cortical tissue acts as a source of primordial follicles (PF) which can either be auto-transplanted or cultured in vitro to obtain mature oocytes. This offers a good opportunity to attain biological parenthood to individuals with gonadal insufficiency including cancer survivors. However, role of various intra- and extra-ovarian factors during PF growth initiation still remain poorly understood. Ovarian biology has assumed a different dimension due to emerging data on presence of pluripotent very small embryonic-like stem cells (VSELs) and ovarian germ stem cells (OGSCs) in ovary surface epithelium (OSE) and the concept of postnatal oogenesis. The present study was undertaken to decipher effect of follicle stimulating hormone (FSH) and basic fibroblast growth factor (bFGF) on the growth initiation of PF during organ culture with a focus on ovarian stem cells. Methods Serum-free cultures of marmoset (n=3) and human (young and peri-menopausal) ovarian cortical tissue pieces were established. Cortical tissue pieces stimulated with FSH (0.5 IU/ml) or bFGF (100 ng/ml) were collected on Day 3 for histological and molecular studies. Gene transcripts specific for pluripotency (Oct-4A, Nanog), early germ cells (Oct-4, c-Kit, Vasa) and to reflect PF growth initiation (oocyte-specific Gdf-9 and Lhx8, and granulosa cells specific Amh) were studied by q-RTPCR. Results A prominent proliferation of OSE (which harbors stem cells) and transition of PF to primary follicles was observed after FSH and bFGF treatment. Ovarian stem cells were found to be released on the culture inserts and retained the potential to spontaneously differentiate into oocyte-like structures in extended cultures. q-RTPCR analysis revealed an increased expression of gene transcripts specific for VSELs, OGSCs and early germ cells suggestive of follicular transition. Conclusion The present study shows that both FSH and bFGF stimulate stem cells present in OSE and also lead to PF growth initiation. Thus besides being a source of PF, cryopreserved ovarian cortical tissue could also be a source of stem cells which retain the ability to spontaneously differentiate into oocyte-like structures in vitro. Results provide a paradigm shift in the basic understanding of FSH action and also offer a new perspective to the field of oncofertility research.
Collapse
Affiliation(s)
- Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (NIRRH), JM Street, Parel, Mumbai, 400 012, India.
| | | | | | | | | |
Collapse
|
26
|
Gonadotropins activate oncogenic pathways to enhance proliferation in normal mouse ovarian surface epithelium. Int J Mol Sci 2013; 14:4762-82. [PMID: 23449028 PMCID: PMC3634497 DOI: 10.3390/ijms14034762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy affecting American women. The gonadotropins, follicle stimulating hormone (FSH) and luteinizing hormone (LH), have been implicated as growth factors in ovarian cancer. In the present study, pathways activated by FSH and LH in normal ovarian surface epithelium (OSE) grown in their microenvironment were investigated. Gonadotropins increased proliferation in both three-dimensional (3D) ovarian organ culture and in a two-dimensional (2D) normal mouse cell line. A mouse cancer pathway qPCR array using mRNA collected from 3D organ cultures identified Akt as a transcriptionally upregulated target following stimulation with FSH, LH and the combination of FSH and LH. Activation of additional pathways, such as Birc5, Cdk2, Cdk4, and Cdkn2a identified in the 3D organ cultures, were validated by western blot using the 2D cell line. Akt and epidermal growth factor receptor (EGFR) inhibitors blocked gonadotropin-induced cell proliferation in 3D organ and 2D cell culture. OSE isolated from 3D organ cultures stimulated with LH or hydrogen peroxide initiated growth in soft agar. Hydrogen peroxide stimulated colonies were further enhanced when supplemented with FSH. LH colony formation and FSH promotion were blocked by Akt and EGFR inhibitors. These data suggest that the gonadotropins stimulate some of the same proliferative pathways in normal OSE that are activated in ovarian cancers.
Collapse
|
27
|
Very small embryonic-like stem cells: implications in reproductive biology. BIOMED RESEARCH INTERNATIONAL 2013; 2013:682326. [PMID: 23509758 PMCID: PMC3586435 DOI: 10.1155/2013/682326] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/12/2012] [Indexed: 01/17/2023]
Abstract
The most primitive germ cells in adult mammalian testis are the spermatogonial stem cells (SSCs) whereas primordial follicles (PFs) are considered the fundamental functional unit in ovary. However, this central dogma has recently been modified with the identification of a novel population of very small embryonic-like stem cells (VSELs) in the adult mammalian gonads. These stem cells are more primitive to SSCs and are also implicated during postnatal ovarian neo-oogenesis and primordial follicle assembly. VSELs are pluripotent in nature and characterized by nuclear Oct-4A, cell surface SSEA-4, and other pluripotent markers like Nanog, Sox2, and TERT. VSELs are considered to be the descendants of epiblast stem cells and possibly the primordial germ cells that persist into adulthood and undergo asymmetric cell division to replenish the gonadal germ cells throughout life. Elucidation of their role during infertility, endometrial repair, superovulation, and pathogenesis of various reproductive diseases like PCOS, endometriosis, cancer, and so on needs to be addressed. Hence, a detailed review of current understanding of VSEL biology is pertinent, which will hopefully open up new avenues for research to better understand various reproductive processes and cancers. It will also be relevant for future regenerative medicine, translational research, and clinical applications in human reproduction.
Collapse
|
28
|
Bhartiya D, Sriraman K, Gunjal P, Modak H. Gonadotropin treatment augments postnatal oogenesis and primordial follicle assembly in adult mouse ovaries? J Ovarian Res 2012; 5:32. [PMID: 23134576 PMCID: PMC3616927 DOI: 10.1186/1757-2215-5-32] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Follicle stimulating hormone (FSH) exerts action on both germline and somatic compartment in both ovary and testis although FSH receptors (FSHR) are localized only on the somatic cells namely granulosa cells of growing follicles and Sertoli cells in the seminiferous tubules. High levels of FSH in females are associated with poor ovarian reserve, ovarian hyper stimulation syndrome etc. and at the same time FSH acts as a survival factor during in vitro organotypic culture of ovarian cortical strips. Thus a further understanding of FSH action on the ovary is essential. We have earlier reported presence of pluripotent very small embryonic-like stem cells (VSELs express Oct-4A in addition to other pluripotent markers) and their immediate descendants 'progenitors' ovarian germ stem cells (OGSCs express Oct-4B in addition to other germ cell markers) in ovarian surface epithelium (OSE) in various mammalian species including mice, rabbit, monkey, sheep and human. Present study was undertaken to investigate the effect of pregnant mare serum gonadotropin (PMSG) on adult mice ovaries with a focus on VSELs, OGSCs, postnatal oogenesis and primordial follicle assembly. METHODS Ovaries were collected from adult mice during different stages of estrus cycle and after 2 and 7 days of PMSG (5 IU) treatment to study histo-architecture and expression for FSHR, pluripotent stem cells , meiosis and germ cell specific markers. RESULTS PMSG treatment resulted in increased FSHR and proliferation as indicated by increased FSHR and PCNA immunostaining in OSE and oocytes of primordial follicles (PF) besides the granulosa cells of large antral follicles. Small 1-2 regions of multilayered OSE invariably associated with a cohort of PF during estrus stage in control ovary were increased to 5-8 regions after PMSG treatment. This was associated with an increase in pluripotent transcripts (Oct-4A, Nanog), meiosis (Scp-3) and germ cells (Oct-4B, Mvh) specific markers. MVH showed positive immuno staining on germ cell nest-like clusters and at places primordial follicles appeared connected through oocytes. CONCLUSIONS The results of the present study show that gonadotropin (PMSG) treatment to adult mouse leads to increased pluripotent stem cell activity in the ovaries, associated with increased meiosis, appearance of several cohorts of PF and their assembly in close proximity of OSE. This was found associated with the presence of germ cell nests and cytoplasmic continuity of oocytes in PF. We have earlier reported that pluripotent ovarian stem cells in the adult mammalian ovary are the VSELs which give rise to slightly differentiated OGSCs. Thus we propose that gonadotropin through its action on pluripotent VSELs augments neo-oogenesis and PF assembly in adult mouse ovaries.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, 400 012, India.
| | | | | | | |
Collapse
|
29
|
Gamwell LF, Collins O, Vanderhyden BC. The mouse ovarian surface epithelium contains a population of LY6A (SCA-1) expressing progenitor cells that are regulated by ovulation-associated factors. Biol Reprod 2012; 87:80. [PMID: 22914315 DOI: 10.1095/biolreprod.112.100347] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ovarian surface epithelium, a single layer of poorly differentiated epithelial cells, covers the surface of the ovary and is ruptured during ovulation. Little is known about the changes that occur in this layer before or during ovulation, and even less is known about the regenerative processes that occur after the surface is ruptured to release a mature oocyte. Recently, a population of mouse ovarian surface epithelial (MOSE) cells that exhibit progenitor/stem cell characteristics has been identified, though neither a genetic marker nor how these cells are regulated has been determined. We have identified a defined population of MOSE cells with progenitor cell characteristics that express the stem cell marker lymphocyte antigen 6 complex, locus A (LY6A; also known as stem cell antigen-1 [SCA-1]). By testing the effect of factors found in the follicular fluid at ovulation on proliferation, sphere formation, and LY6A expression, we have determined that the size of the LY6A-expressing (LY6A+) progenitor cell population is regulated by at least two ovulation-associated factors present in the follicular fluid: transforming growth factor beta 1 and leukemia-inhibitory factor. Our work has identified a population of LY6A+ MOSE progenitor cells on the surface of the ovary that may play a role in ovulatory wound healing.
Collapse
Affiliation(s)
- Lisa F Gamwell
- Center for Cancer Therapeutics, Ottawa Hospital Research Institute, Ontario, Canada
| | | | | |
Collapse
|
30
|
Gulliver LSM, Hurst PR. Repeat estradiol exposure differentially regulates protein expression patterns for estrogen receptor and E-cadherin in older mouse ovarian surface epithelium: implications for replacement and adjuvant hormone therapies? Steroids 2012; 77:674-85. [PMID: 22406420 DOI: 10.1016/j.steroids.2012.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/26/2012] [Accepted: 02/21/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Estrogen replacement therapy increases risk for ovarian epithelial cancer, a cancer of mainly older women, yet the response of older ovarian surface epithelium (OSE) to repeat estrogen exposure overtime has not been studied. We have previously reported significant reductions in estrogen receptor (ER) protein expression, particularly the ERβ1 isoform, in older mouse OSE following a single depot estradiol injection. The current study examined OSE from older mice following a single, and repeat estradiol injection, given 14 days apart over 28 days. METHODS Cohorts of mice were sacrificed 48 hours following each estradiol injection, and at three other equidistant time points. Serum and ovarian tissue estradiol concentration was correlated to immunohistochemical and morphometric parameters used to identify evidence of OSE hyperplasia and hypertrophy. Using immunohistochemistry, E-cadherin expression was investigated in OSE 48 hours following both estradiol injections, while ERα and ERβ1 expression was examined in OSE following repeat estradiol exposure only. RESULTS First exposure to exogenous estradiol resulted in OSE hypertrophy and hyperplasia, and high levels of E-cadherin expression. In contrast, repeat estradiol exposure resulted in no OSE hyperplasia or hypertrophy, low levels of E-cadherin expression, high ERα and reduced ERβ1 protein expression in OSE, and low stromal ERα expression. Blood and ovarian tissue estradiol levels following repeat estradiol injection were half those recorded after a first dose equivalent injection, but remained significantly elevated above controls. CONCLUSION Repeat estradiol exposure leads to accumulation of estradiol in ovarian tissue, differentially regulating protein expression patterns for E-cadherin in OSE and ER in OSE and stroma.
Collapse
|
31
|
Saddick SY. In vitro regulation of sheep ovarian surface epithelium (OSE) proliferation by local ovarian factors. Saudi J Biol Sci 2012; 19:285-90. [PMID: 23961188 DOI: 10.1016/j.sjbs.2012.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/26/2022] Open
Abstract
The ovarian surface epithelium (OSE) forms a lining around the entire ovary and actively participates in the ovulatory cycle. To investigate how specific growth factors and hormones affect OSE proliferation, the present study used sheep as a model to examine the effects of follicular and luteal products on the proliferation of sheep OSE cells in culture, and to analyse the influences of large antral follicles and corpora lutea (CL) on the expression of gonadotrophin receptors (FSHR and LHR) in the OSE. In the present study, follicular fluids from medium and large follicles, and extracts of corpora lutea stimulated the growth of OSE cells. The results of the present study showed that factors in the follicular fluid can induce OSE proliferative activity, and this stimulation effect could not be attributed to steroids in the follicular fluid since oestrogen and progesterone treatments failed to stimulate OSE cells. The expression of LH and FSH receptors over large follicles (5 mm or larger) was two and four times higher than those over stroma and CL, respectively. In conclusion, OSE proliferation in cycling sheep is associated with underlying developing follicles and CL, mediated by, at least in part, the up-regulation of gonadotrophin receptors, and facilitated by the action of mitogenic glycopeptides and growth factors, but not steroids.
Collapse
Affiliation(s)
- Salina Yahya Saddick
- Faculty of Science, Biology Department, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| |
Collapse
|
32
|
King SM, Burdette JE. Evaluating the progenitor cells of ovarian cancer: analysis of current animal models. BMB Rep 2011; 44:435-45. [PMID: 21777513 DOI: 10.5483/bmbrep.2011.44.7.435] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Serous ovarian cancer is one of the most lethal gynecological malignancies. Progress on effective diagnostics and therapeutics for this disease are hampered by ambiguity as to the cellular origins of this histotype of ovarian cancer, as well as limited suitable animal models to analyze early stages of disease. In this report, we will review current animal models with respect to the two proposed progenitor cells for serous ovarian cancer, the ovarian surface epithelium and the fallopian tube epithelium.
Collapse
Affiliation(s)
- Shelby M King
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 60607, USA
| | | |
Collapse
|
33
|
King SM, Hilliard TS, Wu LY, Jaffe RC, Fazleabas AT, Burdette JE. The impact of ovulation on fallopian tube epithelial cells: evaluating three hypotheses connecting ovulation and serous ovarian cancer. Endocr Relat Cancer 2011; 18:627-42. [PMID: 21813729 PMCID: PMC3638747 DOI: 10.1530/erc-11-0107] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy affecting American women. Current hypotheses concerning the etiology of ovarian cancer propose that a reduction in the lifetime number of ovulations decreases ovarian cancer risk. Advanced serous carcinoma shares several biomarkers with fallopian tube epithelial cells, suggesting that some forms of ovarian carcinoma may originate in the fallopian tube. Currently, the impact of ovulation on the tubal epithelium is unknown. In CD1 mice, ovulation did not increase tubal epithelial cell (TEC) proliferation as measured by bromodeoxyuridine incorporation and proliferating cell nuclear antigen staining as compared to unstimulated animals. In superovulated mice, an increase in the number of pro-inflammatory macrophages was detected in the oviduct. Ovulation also increased levels of phospho-γH2A.X in TEC, indicating that these cells were susceptible to double-strand DNA breakage following ovulation. To determine which components of ovulation contributed to DNA damage in the fallopian tube, an immortalized baboon TEC cell line and a three-dimensional organ culture system for mouse oviduct and baboon fallopian tubes were developed. TEC did not proliferate or display increased DNA damage in response to the gonadotropins or estradiol alone in vitro. Oxidative stress generated by treatment with hydrogen peroxide or macrophage-conditioned medium increased DNA damage in TEC in culture. Ovulation may impact the fallopian tube epithelium by generating DNA damage and stimulating macrophage infiltration but does not increase proliferation through gonadotropin signaling.
Collapse
Affiliation(s)
- Shelby M King
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago College of Pharmacy, 900 S. Ashland, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rodler D, Sinowatz F. Immunohistochemical and ultrastructural characterization of the ovarian surface epithelium of Japanese quail (Coturnix japonica). Anim Sci J 2011; 82:307-13. [PMID: 21729211 DOI: 10.1111/j.1740-0929.2010.00843.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Contrary to humans, most ovarian tumors in other species do not arise from the ovarian surface epithelium but are of follicular-, stromal- or germ-cell origin. One of the few species where ovarian cancer arises from the ovarian surface epithelium (OSE) is chicken (Gallus domesticus). Little is known about the morphology of the OSE in other avian species. In our study we analyzed the OSE morphology of Japanese quail (Coturnix japonica) using ultrastructural and histochemical techniques. Carbohydrate residues have been studied by using a panel of fluorescein isothiocyanate labeled lectins. Japanese quails are commonly used animal models in biomedical research as their housing is comparatively inexpensive and they show a short generation interval. Our ultrastructural and histochemical results demonstrate that the quail ovarian surface epithelium shows characteristic features which resemble the epithelia of both chicken and human. Additionally, the ovarian surface epithelium of the Japanese quail contains cytokeratin as well as vimentin intermediate filaments in their cytoplasm. Therewith and among other parts the quail OSE shows many characteristic features also seen in those of humans, which may qualify quail's ovary as a potential animal model for human ovarian carcinomas.
Collapse
Affiliation(s)
- Daniela Rodler
- Department of Veterinary Sciences, University of Munich, Munich, Germany
| | | |
Collapse
|
35
|
Wright JW, Jurevic L, Stouffer RL. Dynamics of the primate ovarian surface epithelium during the ovulatory menstrual cycle. Hum Reprod 2011; 26:1408-21. [PMID: 21421660 DOI: 10.1093/humrep/der057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) risk correlates strongly with the number of ovulations that a woman experiences. The primary source of EOC in women is the ovarian surface epithelium (OSE). Mechanistic studies on the etiology of OSE transformation to EOC cannot be realistically performed in women. Selecting a suitable animal model to investigate the normal OSE in the context of ovulation should be guided by the model's reproductive similarities to women in natural features that are thought to contribute to EOC risk. METHODS We selected the non-human primate, rhesus macaque, as a surrogate to study the normal OSE during the natural menstrual cycle. We investigated OSE morphology and marker expression, plus cell proliferation and death in relation to menstrual cycle stage and ovulation. RESULTS OSE cells displayed a morphological range from squamous to columnar. Cycle-independent parameters and cycle-dependent changes were observed for OSE histology, steroid receptor expression, cell death, DNA repair and cell adhesion. Contrary to findings in non-primates, primate OSE cells were not manifestly cleared from the site of ovulation, nor were proliferation rates affected by ovulation or stage of the menstrual cycle. DNA repair proteins were more highly expressed in OSE than in other ovarian cells. CONCLUSIONS This study identifies significant differences between primate and non-primate OSE. In contrast to established views, ovulation-induced death and proliferation are not indicated as prominent contributors to EOC risk, but disruption of OSE cadherin-mediated adhesion may be, as could the loss of ovary-mediated chronic suppression of proliferation and elevation of DNA repair potential.
Collapse
Affiliation(s)
- Jay W Wright
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
36
|
Huhtaniemi I. Are gonadotrophins tumorigenic--a critical review of clinical and experimental data. Mol Cell Endocrinol 2010; 329:56-61. [PMID: 20471448 DOI: 10.1016/j.mce.2010.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 04/12/2010] [Accepted: 04/26/2010] [Indexed: 01/17/2023]
Abstract
The growth of many gonadal and extragonadal tumors is stimulated by gonadal sex hormones. Because gonadal hormone production is regulated by pituitary gonadotrophins, the latter hormones can be considered as indirect tumor promoters. In addition, there is a growing body of evidence that both gonadal (e.g. ovarian cancer) and extragonadal (e.g. breast, uterus, prostate and adrenal) tumors express gonadotrophin receptors, indicating the possibility of a direct tumorigenic role for FSH and LH. The purpose of this brief review is to present a critical evaluation of the current information, both clinical and experimental, about the direct involvement of gonadotrophins in the induction and growth of gonadal and extragonadal tumors.
Collapse
Affiliation(s)
- Ilpo Huhtaniemi
- Department of Surgery and Cancer, IRDB Building, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
37
|
Singavarapu R, Buchinsky N, Cheon DJ, Orsulic S. Whole ovary immunohistochemistry for monitoring cell proliferation and ovulatory wound repair in the mouse. Reprod Biol Endocrinol 2010; 8:98. [PMID: 20712898 PMCID: PMC2929235 DOI: 10.1186/1477-7827-8-98] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/16/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Ovarian surface epithelial cells are thought to be a precursor cell type for ovarian carcinoma. It has been proposed that an increased rate of ovarian surface epithelial cell proliferation during ovulatory wound repair contributes to the accumulation of genetic changes and cell transformation. The proliferation of ovarian surface epithelial cells during ovulatory wound repair has been studied primarily using immunohistochemical staining of paraffin-embedded ovary sections. However, such analyses require complex reconstruction from serially-cut ovary sections for the visualization and quantification of the cells on the ovarian surface. In order to directly visualize the proliferation and organization of the ovarian surface epithelial cells, we developed a technique for immunohistochemical staining of whole mouse ovaries. Using this method, we analyzed cell proliferation and morphologic changes in mouse ovarian surface epithelial cells during follicle growth and ovulatory wound repair. METHODS Three-week old FVB/N female mice were superovulated by sequential administration of pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Ten hours after hCG administration, mice were given 5-bromo-2-deoxyuridine (BrdU) and euthanized two hours after BrdU administration for ovary isolation. The levels of incorporated BrdU in the ovarian surface epithelial cells were measured by staining paraffin-embedded ovary sections and whole ovaries with the BrdU antibody. Re-epithelialization of the ovarian surface after ovulatory rupture was visualized by immunohistochemical staining with E-cadherin and Keratin 8 in paraffin-embedded ovary sections and whole ovaries. RESULTS We determined that active proliferation of ovarian epithelial surface cells primarily occurs during antral follicle formation and, to a lesser extent, in response to an ovulatory wound. We also demonstrated that ovarian surface epithelial cells exhibit a circular organization around the wound site CONCLUSION Whole ovary immunohistochemistry enables efficient and comprehensive three-dimensional visualization of ovarian surface epithelial cells without the need for laborious reconstruction from immunohistochemically-stained serial ovary sections.
Collapse
Affiliation(s)
- Rajasekhar Singavarapu
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Natalie Buchinsky
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Dong-Joo Cheon
- Women's Cancer Research Institute at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sandra Orsulic
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Women's Cancer Research Institute at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
38
|
Jackson KS, Inoue K, Davis DA, Hilliard TS, Burdette JE. Three-dimensional ovarian organ culture as a tool to study normal ovarian surface epithelial wound repair. Endocrinology 2009; 150:3921-6. [PMID: 19423762 PMCID: PMC2717856 DOI: 10.1210/en.2008-1674] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ovarian cancers are primarily derived from a single layer of epithelial cells surrounding the ovary, the ovarian surface epithelium (OSE). Ovarian surface proliferation is associated with ovulation and has been suggested to play a role in ovarian surface transformation and cancer progression. Aspects of ovarian surface repair after ovulation include proliferation, migration, and surface regeneration. To study ovarian surface repair, an organ culture system was developed that supports the proliferation, encapsulation, and repair of an artificially wounded surface. Wounded mouse ovaries embedded into an alginate hydrogel matrix have normal OSE cells as demonstrated by expression of cytokeratin 8, vimentin, N-cadherin, and a lack of E-cadherin. Normal OSE cells began proliferating and migrating around wounded surfaces after 1 d of culture. Organ cultures were propagated in medium supplemented with BSA and fetal bovine serum to determine optimal growth conditions. BSA cultured organs had OSE that proliferated significantly more than controls until d 4, whereas fetal bovine serum cultured organs had significantly more surface area encapsulated by OSE. Overall, a three-dimensional ovarian organ culture supports the growth of normal OSE in response to artificial wounding and provides a novel system for investigating wound repair as it relates to the possible role of ovulation and ovarian cancer.
Collapse
Affiliation(s)
- Kevin S Jackson
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
39
|
Ansenberger K, Zhuge Y, Lagman JAJ, Richards C, Barua A, Bahr JM, Hales DB. E-cadherin expression in ovarian cancer in the laying hen, Gallus domesticus, compared to human ovarian cancer. Gynecol Oncol 2009; 113:362-9. [PMID: 19321195 DOI: 10.1016/j.ygyno.2009.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/03/2009] [Accepted: 02/07/2009] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Epithelial ovarian carcinoma (EOC) is a leading cause of cancer deaths in women. Until recently, a significant lack of an appropriate animal model has hindered the discovery of early detection markers for ovarian cancer. The aging hen serves as an animal model because it spontaneously develops ovarian adenocarcinomas similar in histological appearance to the human disease. E-cadherin is an adherens protein that is down-regulated in many cancers, but has been shown to be up-regulated in primary human ovarian cancer. Our objective was to evaluate E-cadherin expression in the hen ovary and compare its expression to human ovarian cancer. METHODS White Leghorn hens aged 185 weeks (cancerous and normal) were used for sample collection. A human ovarian tumor tissue array was used for comparison to the human disease. E-cadherin mRNA and protein expression were analyzed in cancerous and normal hen ovaries by immunohistochemistry (IHC), Western blot, and quantitative real-time PCR (qRT-PCR). Tissue fixed in neutral buffered formalin was used for IHC. Protein from tissue frozen in liquid nitrogen was analyzed by Western blot. RNA was extracted from tissue preserved in RNAlater and analyzed by qRT-PCR. The human ovarian tumor tissue array was used for IHC. RESULTS E-cadherin mRNA and protein expression were significantly increased in cancerous hen ovaries as compared to ovaries of normal hens by qRT-PCR and Western blot. Similar expression of E-cadherin was observed by IHC in both human and hen ovarian cancer tissues. Similar E-cadherin expression was also observed in primary ovarian tumor and peritoneal metastatic tissue from cancerous hens. CONCLUSIONS Our findings suggest that the up-regulation of E-cadherin is an early defining event in ovarian cancer and may play a significant role in the initial development of the primary ovarian tumor. E-cadherin also appears to be important in the development of secondary tumors within the peritoneal cavity. Our data suggest that E-cadherin may prove to be an important target in the preventative treatment of metastatic ovarian cancer and further confirm that the laying hen is a good model for the study of human epithelial ovarian carcinoma.
Collapse
Affiliation(s)
- Kristine Ansenberger
- Department of Physiology and Biophysics (M/C 901), University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Doyle LK, Donadeu FX. Regulation of the proliferative activity of ovarian surface epithelial cells by follicular fluid. Anim Reprod Sci 2008; 114:443-8. [PMID: 19042098 DOI: 10.1016/j.anireprosci.2008.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/13/2008] [Accepted: 10/17/2008] [Indexed: 11/29/2022]
Abstract
Despite critical roles of the ovarian surface epithelium (OSE) in ovulation and post-ovulatory wound repair, little is known about the physiological mechanism regulating OSE proliferation. A role of follicles and corpora lutea in locally regulating the proliferative activity of OSE has been suggested. In this study, the effects of follicular and luteal products on proliferation of cultured OSE cells were tested using cells obtained from seasonally anoestrous ewes. Follicular fluid but not luteal extracts induced OSE cell proliferation (2.5-fold relative to untreated controls; P<0.0001). The response of OSE cells was not affected by follicle size or previous charcoal-extraction of follicular fluid (P>0.1). Treatment with IGF-1 (2.2-fold; P<0.01), EGF (1.9-fold; P<0.01) and, to a lesser extent, FSH (P<0.05) also induced OSE cell proliferation. In contrast, oestradiol or progesterone did not induce cell proliferation or enhance the effects of FSH on proliferation (P>0.1). It was concluded that follicular fluid can directly stimulate ovine OSE cell proliferation and that this effect is attributable to non-steroidal mitogens.
Collapse
Affiliation(s)
- L K Doyle
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin BioCentre, Midlothian EH25 9PS, UK
| | | |
Collapse
|
41
|
Murdoch WJ, Van Kirk EA, Youqing Shen. Pathogenic Reactions of the Ovarian Surface Epithelium to Ovulation, Dimethylbenzanthracene, and Estrogen are Negated by Vitamin E. Reprod Sci 2008; 15:839-45. [DOI: 10.1177/1933719108322435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Youqing Shen
- Reproductive Biology Program, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
42
|
Wang PH, Horng HC, Chen YJ, Hsieh SL, Chao HT, Yuan CC. Effect of a selective nonsteroidal anti-inflammatory drug, celecoxib, on the reproductive function of female mice. J Chin Med Assoc 2007; 70:245-8. [PMID: 17591584 DOI: 10.1016/s1726-4901(09)70367-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The aim of the present study was to determine if long-term use of a cyclooxygenase-2 (COX-2) inhibitor affects fertility or ovulation in female mice. METHODS Twenty-four female mice, 25 days of age, were given a selective COX-2 inhibitor: 3 mg/kg celecoxib (n = 8), 5 mg/kg celecoxib (n = 8),or placebo (n = 8) in a random fashion. Eight female mice, 10-11 weeks old, given 3 mg/kg celecoxib (n = 4) or placebo (n = 4) were subjected to continuous mating studies. RESULTS Results from the 24 mice (n = 8 for each group) showed that oocyte number was not significantly different between female mice treated with either 3 mg/kg or 5 mg/kg celecoxib and placebo (21.4 +/- 2.5, 21.5 +/- 3.3, 23.3 +/- 3.8, respectively). From the continuous mating study, the litter size of female mice treated with celecoxib was not significantly different (8.2 +/- 1.3 pups/litter) compared to those treated with placebo (8.3 +/- 1.2 pups/litter). In addition, female mice treated with celecoxib had an average of 2.8 +/- 0.5 litters in a 12-week period, which was similar to female mice treated with placebo (3.0 +/- 0.8 litters/female). CONCLUSION This study suggests that use of low-dose (<or= 5 mg/kg) selective COX-2 inhibitor in a mouse model does not significantly impair the female reproductive function.
Collapse
Affiliation(s)
- Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taiwan, R.O.C.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Ovarian epithelial cancer (OEC) accounts for 90% of all ovarian cancers and is the leading cause of death from gynecological cancers in North America and Europe. Despite its clinical significance, the factors that regulate the development and progression of ovarian cancer are among the least understood of all major human malignancies. The two gonadotropins, FSH and LH, are key regulators of ovarian cell functions, and the potential role of gonadotropins in the pathogenesis of ovarian cancer is suggested. Ovarian carcinomas have been found to express specific receptors for gonadotropins. The presence of gonadotropins in ovarian tumor fluid suggests the importance of these factors in the transformation and progression of ovarian cancers as well as being prognostic indicators. Functionally, there is evidence showing a direct action of gonadotropins on ovarian tumor cell growth. This review summarizes the key findings and recent advances in our understanding of these peptide hormones in ovarian cancer development and progression and their role in potential future cancer therapy. We will first discuss the supporting evidence and controversies in the "gonadotropin theory" and the use of animal models for exploring the involvement of gonadotropins in the etiology of ovarian cancer. The role of gonadotropins in regulating the proliferation, survival, and metastasis of OEC is next summarized. Relevant data from ovarian surface epithelium, which is widely believed to be the precursor of OEC, are also described. Finally, we will discuss the clinical applications of gonadotropins in ovarian cancer and the recent progress in drug development.
Collapse
Affiliation(s)
- Jung-Hye Choi
- Department of Obstetrics and Gynecology, Zhejiang University School of Medicine, China
| | | | | | | |
Collapse
|
44
|
Alexander BM, Van Kirk EA, Naughton LMA, Murdoch WJ. Ovarian morphometrics in TP53-deficient mice. Anat Rec (Hoboken) 2007; 290:59-64. [PMID: 17441198 PMCID: PMC2571076 DOI: 10.1002/ar.20409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of these investigations was to characterize ovarian responses to hormonal stimulation in TP53-deficient mice. TP53-deficient (KO) and wild-type (WT) mice were induced to ovulate with pregnant mare serum gonadotropin followed by human chorionic gonadotropin. Effect of estradiol on ovarian morphology was determined in induced and control mice implanted with estradiol-containing or placebo pellets. Blood was collected and mice were killed 7 days following implantation. Preserved ovaries were serially sectioned and stained. Numbers of follicles (all classifications) decreased with ovulation induction, but did not differ between WT and KO mice. Numbers of corpora lutea (CL) were less in ovulation-induced KO mice treated with estradiol compared to WT mice. Area of individual CL and serum concentrations of progesterone were greater in ovulation-induced KO mice given estradiol compared to WT mice. Ovulation-induced KO mice had more, larger hemorrhagic follicles than similarly treated WT mice, but hemorrhagic follicles were not influenced by estradiol. Proliferation of ovarian surface epithelial cells did not differ between KO and WT mice induced to ovulate and given estradiol. Ovaries from TP53 gene knockout mice (n = 4) induced to ovulate and given a 21-day estradiol implant three times over 58 days were observed for precursor lesions. There was no indication of precursor lesions in any TP53 KO or WT mouse. TP53 status did not influence recruitment of follicles, but TP53 deficiency hindered the ability of human chorionic gonadotropin to cause ovulation.
Collapse
Affiliation(s)
- Brenda M Alexander
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | | | | | |
Collapse
|
45
|
Fleming JS, McQuillan HJ, Millier MJ, Beaugié CR, Livingstone V. E-cadherin expression and bromodeoxyuridine incorporation during development of ovarian inclusion cysts in age-matched breeder and incessantly ovulated CD-1 mice. Reprod Biol Endocrinol 2007; 5:14. [PMID: 17425809 PMCID: PMC1855058 DOI: 10.1186/1477-7827-5-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 04/11/2007] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Female CD-1/Swiss Webster mice subjected to incessant ovulation for 8 months and 12-month breeder mice both developed ovarian inclusion cysts similar to serous cystadenomas. The majority of cysts appeared to be dilated rete ovarii tubules, but high ovulation number resulted in more cortical inclusion cysts. We hypothesized that comparison of inclusion cyst pathology in animals of the same age, but with differences in total lifetime ovulation number, might allow us to determine distinguishing characteristics of the two types of cyst. METHODS Ovaries from breeder mice (BR) or females subjected to incessant ovulation (IO) were compared at 6-, 9- and 12-months of age. Ovaries were serially sectioned and cysts characterized with regard to location and histology, E-cadherin immunoreactivity and rates of BrdU incorporation. RESULTS Inclusion cysts developed with age in BR and IO ovaries. The majority of cysts were connected to the ovarian hilus. Two cortical inclusion cysts were observed in ten IO ovaries and one in ten BR ovaries. Low or no E-cadherin immuno-staining was seen in the OSE of all mice studied. Conversely, strong membrane immuno-staining was observed in rete ovarii epithelial cells. Variable E-cadherin immunoreactivity was seen in cells of hilar inclusion cysts, with strong staining observed in cuboidal ciliated cells and little or no staining in flat epithelial cells. Two of the three cortical cysts contained papillae, which showed E-cadherin immuno-staining at the edge of cells. However hilar and cortical cysts were not distinguishable by morphology, cell type or E-cadherin immunoreactivity. BrdU incorporation in cyst cells (1.4% [95% CI: 1.0 to 2.1]) was greater than in OSE (0.7% [95% CI: 0.4 to 1.2]) and very few BrdU-labeled cells were observed in rete ovarii at any age. Incessant ovulation significantly increased BrdU incorporation in OSE of older animals. CONCLUSION These experiments confirm ovarian inclusion cysts develop with age in the CD-1 mouse strain, irrespective of total ovulation burden. We conclude longer periods of incessant ovulation do not lead to significant changes in inclusion cyst formation or steroidogenesis in CD-1 mice and inclusion cyst type can not be distinguished by morphology, cell proliferation rate or E-cadherin immunoreactivity.
Collapse
Affiliation(s)
- Jean S Fleming
- Eskitis Institute of Cell & Molecular Therapies, Griffith University Nathan campus, Nathan, QLD 4111, Australia
| | - H James McQuillan
- Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, PO Box 913, Dunedin, New Zealand
| | - Melanie J Millier
- Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, PO Box 913, Dunedin, New Zealand
| | - Clare R Beaugié
- Department of Anatomy and Structural Biology, University of Otago School of Medical Sciences, PO Box 913, Dunedin, New Zealand
| | - Vicki Livingstone
- Department of Preventive & Social Medicine, University of Otago Health Sciences, PO Box 913, Dunedin, New Zealand
| |
Collapse
|