1
|
Williams MD, Morgan JS, Bullock MT, Poovey CE, Wisniewski ME, Francisco JT, Barajas-Nunez JA, Hijazi AM, Theobald D, Sriramula S, Mansfield KD, Holland NA, Tulis DA. pH-sensing GPR68 inhibits vascular smooth muscle cell proliferation through Rap1A. Am J Physiol Heart Circ Physiol 2024; 327:H1210-H1229. [PMID: 39269448 PMCID: PMC11560072 DOI: 10.1152/ajpheart.00413.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Phenotypic transformation of vascular smooth muscle (VSM) from a contractile state to a synthetic, proliferative state is a hallmark of cardiovascular disease (CVD). In CVD, diseased tissue often becomes acidic from altered cellular metabolism secondary to compromised blood flow, yet the contribution of local acid/base imbalance to the disease process has been historically overlooked. In this study, we examined the regulatory impact of the pH-sensing G protein-coupled receptor GPR68 on vascular smooth muscle (VSM) proliferation in vivo and in vitro in wild-type (WT) and GPR68 knockout (KO) male and female mice. Arterial injury reduced GPR68 expression in WT vessels and exaggerated medial wall remodeling in GPR68 KO vessels. In vitro, KO VSM cells showed increased cell-cycle progression and proliferation compared with WT VSM cells, and GPR68-inducing acidic exposure reduced proliferation in WT cells. mRNA and protein expression analyses revealed increased Rap1A in KO cells compared with WT cells, and RNA silencing of Rap1A reduced KO VSM cell proliferation. In sum, these findings support a growth-inhibitory capacity of pH-sensing GPR68 and suggest a mechanistic role for the small GTPase Rap1A in GPR68-mediated VSM growth control. These results shed light on GPR68 and its effector Rap1A as potential targets to combat pathological phenotypic switching and proliferation in VSM.NEW & NOTEWORTHY Extracellular acidosis remains an understudied feature of many pathologies. We examined a potential regulatory role for pH-sensing GPR68 in vascular smooth muscle (VSM) growth in the context of CVD. With in vivo and in vitro growth models with GPR68-deficient mice and GPR68 induction strategies, novel findings revealed capacity of GPR68 to attenuate growth through the small GTPase Rap1A. These observations highlight GPR68 and its effector Rap1A as possible therapeutic targets to combat pathological VSM growth.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Hydrogen-Ion Concentration
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- rap1 GTP-Binding Proteins/metabolism
- rap1 GTP-Binding Proteins/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Madison D Williams
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael T Bullock
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Cere E Poovey
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Michael E Wisniewski
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Jerry A Barajas-Nunez
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Amira M Hijazi
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Drew Theobald
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Kyle D Mansfield
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States
| |
Collapse
|
2
|
Li Y, Deng P, Chen C, Ma Q, Pi H, He M, Lu Y, Gao P, Zhou C, He Z, Zhang Y, Yu Z, Zhang L. 1,800 MHz Radiofrequency Electromagnetic Irradiation Impairs Neurite Outgrowth With a Decrease in Rap1-GTP in Primary Mouse Hippocampal Neurons and Neuro2a Cells. Front Public Health 2021; 9:771508. [PMID: 34881219 PMCID: PMC8646047 DOI: 10.3389/fpubh.2021.771508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the global popularity of communication devices such as mobile phones, there are increasing concerns regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on the brain, one of the most important organs sensitive to RF-EMR exposure at 1,800 MHz. However, the effects of RF-EMR exposure on neuronal cells are unclear. Neurite outgrowth plays a critical role in brain development, therefore, determining the effects of 1,800 MHz RF-EMR exposure on neurite outgrowth is important for exploring its effects on brain development. Objectives: We aimed to investigate the effects of 1,800 MHz RF-EMR exposure for 48 h on neurite outgrowth in neuronal cells and to explore the associated role of the Rap1 signaling pathway. Material and Methods: Primary hippocampal neurons from C57BL/6 mice and Neuro2a cells were exposed to 1,800 MHz RF-EMR at a specific absorption rate (SAR) value of 4 W/kg for 48 h. CCK-8 assays were used to determine the cell viability after 24, 48, and 72 h of irradiation. Neurite outgrowth of primary hippocampal neurons (DIV 2) and Neuro2a cells was observed with a 20 × optical microscope and recognized by ImageJ software. Rap1a and Rap1b gene expressions were detected by real-time quantitative PCR. Rap1, Rap1a, Rap1b, Rap1GAP, and p-MEK1/2 protein expressions were detected by western blot. Rap1-GTP expression was detected by immunoprecipitation. The role of Rap1-GTP was assessed by transfecting a constitutively active mutant plasmid (Rap1-Gly_Val-GFP) into Neuro2a cells. Results: Exposure to 1,800 MHz RF-EMR for 24, 48, and 72 h at 4 W/kg did not influence cell viability. The neurite length, primary and secondary neurite numbers, and branch points of primary mouse hippocampal neurons were significantly impaired by 48-h RF-EMR exposure. The neurite-bearing cell percentage and neurite length of Neuro2a cells were also inhibited by 48-h RF-EMR exposure. Rap1 activity was inhibited by 48-h RF-EMR with no detectable alteration in either gene or protein expression of Rap1. The protein expression of Rap1GAP increased after 48-h RF-EMR exposure, while the expression of p-MEK1/2 protein decreased. Overexpression of constitutively active Rap1 reversed the decrease in Rap1-GTP and the neurite outgrowth impairment in Neuro2a cells induced by 1,800 MHz RF-EMR exposure for 48 h. Conclusion: Rap1 activity and related signaling pathways are involved in the disturbance of neurite outgrowth induced by 48-h 1,800 MHz RF-EMR exposure. The effects of RF-EMR exposure on neuronal development in infants and children deserve greater focus.
Collapse
Affiliation(s)
- Yanqi Li
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Qinlong Ma
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Mindi He
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Yonghui Lu
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Zhixin He
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Yanwen Zhang
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| | - Lei Zhang
- Key Laboratory of Medical Protection for Electromagnetic Radiation, Department of Occupational Health, Ministry of Education, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Bessaguet F, Magy L, Desmoulière A, Demiot C. The therapeutic potential of renin angiotensin aldosterone system (RAAS) in chronic pain: from preclinical studies to clinical trials. Expert Rev Neurother 2016; 16:331-9. [DOI: 10.1586/14737175.2016.1150179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T. AT(2) receptor and tissue injury: therapeutic implications. Curr Hypertens Rep 2014; 16:416. [PMID: 24414230 PMCID: PMC3906548 DOI: 10.1007/s11906-013-0416-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans with a variety of clinical indications.
Collapse
Affiliation(s)
- Pawel Namsolleck
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
5
|
Guimond MO, Wallinder C, Alterman M, Hallberg A, Gallo-Payet N. Comparative functional properties of two structurally similar selective nonpeptide drug-like ligands for the angiotensin II type-2 (AT2) receptor. Effects on neurite outgrowth in NG108-15 cells. Eur J Pharmacol 2013; 699:160-71. [DOI: 10.1016/j.ejphar.2012.11.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 11/11/2012] [Accepted: 11/13/2012] [Indexed: 01/12/2023]
|
6
|
The Angiotensin II Type 2 Receptor in Brain Functions: An Update. Int J Hypertens 2012; 2012:351758. [PMID: 23320146 PMCID: PMC3540774 DOI: 10.1155/2012/351758] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.
Collapse
|
7
|
Jiang L, Teng GMK, Chan EYM, Au SWN, Wise H, Lee SST, Cheung WT. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor. PLoS One 2012; 7:e47016. [PMID: 23056563 PMCID: PMC3466278 DOI: 10.1371/journal.pone.0047016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/11/2012] [Indexed: 12/19/2022] Open
Abstract
Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2) receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.
Collapse
Affiliation(s)
- Lili Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gladys M. K. Teng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Elaine Y. M. Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Shannon W. N. Au
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Helen Wise
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Susanna S. T. Lee
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail: (WTC); (SL)
| | - Wing-Tai Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- * E-mail: (WTC); (SL)
| |
Collapse
|
8
|
Zhao H, Yao X, Wang TX, Jin WM, Ji QQ, Yang X, Duan QH, Yao LJ. PKCα regulates vasopressin-induced aquaporin-2 trafficking in mouse kidney collecting duct cells in vitro via altering microtubule assembly. Acta Pharmacol Sin 2012; 33:230-6. [PMID: 22212389 DOI: 10.1038/aps.2011.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM Aquaporin-2 (AQP2) is a vasopressin-regulated water channel located in the collecting tubule and collecting duct cells of mammalian kidney. The aim of this study is to investigate whether PKCα plays a role in vasopressin-induced AQP2 trafficking in mouse inner medullary collecting duct 3 (mIMCD3) cells. METHODS AQP2-mIMCD3 stable cell line was constructed by transfection of mouse inner medullary collecting duct 3 (mIMCD3) cells with AQP2-GFP construct. Then the cells were transfected with PKCα shRNA, PKCα A/25E, or PKCα scrambled shRNA. The expression levels of PKCα, AQP2, and phospho-S256-AQP2 were analyzed using Western blot. The interaction between AQP2 and PKCα was examined using immunoprecipitation. The distribution of AQP2 and microtubules was studied using immunocytochemistry. The AQP2 trafficking was examined using the biotinylation of surface membranes. RESULTS Treatment of AQP2-mIMCD3 cells with 100 μmol/L of 1-desamino-8-D-arginine vasopressin (DdAVP) for 30 min stimulated the translocation of AQP2 from the cytoplasm to plasma membrane through influencing the microtubule assembly. Upregulation of active PKCα by transfection with PKCα A/25E plasmids resulted in de-polymerization of α-tubulin and redistributed AQP2 in the cytoplasm. Down-regulation of PKCα by PKCα shRNA partially inhibited DdAVP-stimulated AQP2 trafficking without altering α-tubulin distribution. Although 100 μmol/L of DdAVP increased AQP2 phosphorylation at serine 256, down-regulation of PKCα by PKCα shRNA did not influence DdAVP-induced AQP2 phosphorylation, suggesting that AQP2 phosphorylation at serine 256 was independent of PKCα. Moreover, PKCα did not physically interact with AQP2 in the presence or absence of DdAVP. CONCLUSION Our results suggested that PKCα regulates AQP2 trafficking induced by DdAVP via microtubule assembly.
Collapse
|
9
|
Guimond MO, Gallo-Payet N. How does angiotensin AT(2) receptor activation help neuronal differentiation and improve neuronal pathological situations? Front Endocrinol (Lausanne) 2012; 3:164. [PMID: 23267346 PMCID: PMC3525946 DOI: 10.3389/fendo.2012.00164] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023] Open
Abstract
The angiotensin type 2 (AT(2)) receptor of angiotensin II has long been thought to be limited to few tissues, with the primary effect of counteracting the angiotensin type 1 (AT(1)) receptor. Functional studies in neuronal cells have demonstrated AT(2) receptor capability to modulate neuronal excitability, neurite elongation, and neuronal migration, suggesting that it may be an important regulator of brain functions. The observation that the AT(2) receptor was expressed in brain areas implicated in learning and memory led to the hypothesis that it may also be implicated in cognitive functions. However, linking signaling pathways to physiological effects has always proven challenging since information relative to its physiological functions has mainly emerged from indirect observations, either from the blockade of the AT(1) receptor or through the use of transgenic animals. From a mechanistic standpoint, the main intracellular pathways linked to AT(2) receptor stimulation include modulation of phosphorylation by activation of kinases and phosphatases or the production of nitric oxide and cGMP, some of which are associated with the Gi-coupling protein. The receptor can also interact with other receptors, either G protein-coupled such as bradykinin, or growth factor receptors such as nerve growth factor or platelet-derived growth factor receptors. More recently, new advances have also led to identification of various partner proteins, thus providing new insights into this receptor's mechanism of action. This review summarizes the recent advances regarding the signaling pathways induced by the AT(2) receptor in neuronal cells, and discussed the potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT(2) receptor activation by non-peptide and selective agonists could represent new pharmacological tools that may help to improve impaired cognitive performance in Alzheimer's disease and other neurological cognitive disorders.
Collapse
Affiliation(s)
| | - Nicole Gallo-Payet
- *Correspondence: Nicole Gallo-Payet, Service d’Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada J1H 5N4. e-mail:
| |
Collapse
|
10
|
Diacylglycerol kinase inhibitor R59022-induced autophagy and apoptosis in the neuronal cell line NG108-15. Arch Biochem Biophys 2011; 509:197-201. [DOI: 10.1016/j.abb.2011.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/08/2011] [Accepted: 02/11/2011] [Indexed: 11/21/2022]
|
11
|
Guimond MO, Roberge C, Gallo-Payet N. Fyn is involved in angiotensin II type 2 receptor-induced neurite outgrowth, but not in p42/p44mapk in NG108-15 cells. Mol Cell Neurosci 2010; 45:201-12. [PMID: 20600928 DOI: 10.1016/j.mcn.2010.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 06/14/2010] [Accepted: 06/15/2010] [Indexed: 12/17/2022] Open
Abstract
In NG108-15 cells, activation of p42/p44(mapk) is essential for induction of neurite outgrowth by angiotensin II (Ang II) type 2 receptor (AT(2)). The aim was to verify whether Fyn, a member of the Src family kinases (SFK), is involved in neurite outgrowth induced by AT(2) activation. Preincubation of cells with PP1, a general inhibitor of the SKF, decreased activation of Rap1 and p42/p44(mapk) and abolished TrkA activation by Ang II or by the AT(2) agonist, CGP42112A. NG108-15 cells were transfected with a Fyn-WT and a Fyn-DN expressing vector. Fyn-WT was sufficient to induce neurite outgrowth, although transfection with Fyn-DN abolished neurite elongation. However, the Fyn-DN form failed to affect activation of TrkA, Rap1 or p42/p44(mapk) by Ang II. Thus, although SKF activity is required to achieve AT(2)-induced activation of TrkA, Rap1 and p42/p44(mapk), Fyn is essential for AT(2) receptor-induced neurite outgrowth, but not in AT(2) signaling leading to p42/p44(mapk) activation.
Collapse
Affiliation(s)
- M-O Guimond
- Service d'Endocrinologie, Département de Médecine Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, Québec, Canada.
| | | | | |
Collapse
|
12
|
Pawlowski TL, Heringer-Walther S, Cheng CH, Archie JG, Chen CF, Walther T, Srivastava AK. Candidate Agtr2 influenced genes and pathways identified by expression profiling in the developing brain of Agtr2(-/y) mice. Genomics 2009; 94:188-95. [PMID: 19501643 DOI: 10.1016/j.ygeno.2009.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 11/19/2022]
Abstract
Intellectual disability (ID) is a common developmental disability observed in 1 to 3% of the human population. A possible role for the Angiotensin II type 2 receptor (AGTR2) in brain function, affecting learning, memory, and behavior, has been suggested in humans and rodents. Mice lacking the Agtr2 gene (Agtr2(-/y)) showed significant impairment in their spatial memory and exhibited abnormal dendritic spine morphology. To identify Agtr2 influenced genes and pathways, we performed whole genome microarray analysis on RNA isolated from brains of Agtr2(-/y) and control male mice at embryonic day 15 (E15) and postnatal day one (P1). The gene expression profiles of the Agtr2(-/y) brain samples were significantly different when compared to profiles of the age-matched control brains. We identified 62 differently expressed genes (p< or =0.005) at E15 and in P1 brains of the Agtr2(-/y) mice. We verified the differential expression of several of these genes in brain samples using quantitative RT-PCR. Differentially expressed genes encode molecules involved in multiple cellular processes including microtubule functions associated with dendritic spine morphology. This study provides insight into Agtr2 influenced candidate genes and suggests that expression dysregulation of these genes may modulate Agtr2 actions in the brain that influences learning and memory.
Collapse
Affiliation(s)
- Traci L Pawlowski
- J. C. Self Research Institute of Human Genetics, Greenwood Genetic Center, SC, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Differential involvement of PKC-dependent MAPKs activation in lipopolysaccharide-induced AP-1 expression in human tracheal smooth muscle cells. Cell Signal 2009; 21:1385-95. [PMID: 19426800 DOI: 10.1016/j.cellsig.2009.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 04/29/2009] [Indexed: 12/21/2022]
Abstract
Lipopolysaccharide (LPS) has been shown to up-regulate the expression of vascular cell adhesion molecule (VCAM)-1 which contributes to the occurrence of airway inflammatory diseases. Genetic analysis reveals the existence of activator protein-1 (AP-1) binding site on VCAM-1 promoter region. However, the role of AP-1 in LPS-induced VCAM-1 expression in human tracheal smooth muscle cells (HTSMCs) is not known. Here, we show that LPS increased VCAM-1 expression and adhesiveness of HTSMCs through AP-1, since pretreatment with an AP-1 inhibitor tanshinone attenuated LPS-induced VCAM-1 expression and leukocytes adhesion. The implication of AP-1 in LPS-induced VCAM-1 expression was confirmed by animal studies showing that pretreatment of mice with tanshinone attenuated LPS-induced VCAM-1 mRNA expression in airway tissues and accumulation of leukocytes in bronchoalveolar lavage. By using the pharmacological inhibitors and transfection with siRNA of PKC, p42, p38, or JNK2, LPS-induced expression of c-Fos was mediated through protein kinase C (PKC), p42/p44 MAPK and p38 MAPK. While, c-Jun expression was mediated through PKC and mitogen-activated protein kinases (MAPKs, p42/p44 MAPK, p38 MAPK and JNK) in HTSMCs. Pretreatment with the inhibitors of PKCs or MAPKs attenuated LPS-stimulated nuclear translocation and VCAM-1 promoter binding abilities of AP-1, which attenuated promoter activity and gene expression of VCAM-1 and the adhesiveness between HTSMCs and leukocytes. These results indicated that differential regulation of AP-1 through PKCs-dependent MAPKs activation plays central roles in LPS-induced VCAM-1 expression. The altered modulation of this axis with inhibitors or siRNAs may contribute to the improvement of airway inflammatory diseases.
Collapse
|
14
|
Downie LE, Vessey K, Miller A, Ward MM, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL. Neuronal and glial cell expression of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the rat retina. Neuroscience 2009; 161:195-213. [PMID: 19298848 DOI: 10.1016/j.neuroscience.2009.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 02/27/2009] [Accepted: 02/28/2009] [Indexed: 10/21/2022]
Abstract
The bio-active peptide, angiotensin II (Ang II), has been suggested to exert a neuromodulatory effect on inner retinal neurons. In this study, we examined the distribution of angiotensin receptors (ATRs) in the developing and mature rat retina and optic nerve using immunofluorescence immunocytochemistry. Double-labeling experiments were performed with established markers to identify different retinal cell populations. In adult retinae, ATRs were observed on neurons involved in "ON" pathways of neurotransmission. Angiotensin II type 1 receptors (AT(1)Rs) were expressed by a sub-population of "ON" cone bipolar cells that also labeled for G alpha(0) and islet-1. Extra-neuronal expression of AT(1)Rs was evident on retinal astrocytes, Müller cells and blood vessels. Immunoreactivity for the angiotensin II type 2 receptor (AT(2)R) was observed on conventional and displaced GABAergic amacrine cells. Co-localization studies showed that AT(2)R-expressing amacrine cells constituted at least two separate sub-populations. Cell counts revealed that all wide-field amacrine cells expressing protein kinase C-alpha were also AT(2)R-positive; a further subset of amacrine cells expressing AT(2)Rs and stratifying in sublamina "b" of the inner plexiform layer (IPL) was identified. Developmental expression of AT(1)Rs was dynamic, involving multiple inner neuronal classes. At postnatal day 8 (P8), AT(1)R immunoreactivity was observed on putative ganglion cells. The characteristic bipolar cell labeling observed in adults was not evident until P13. In contrast, AT(2)Rs were detected as early as P2 and localized specifically to amacrine cells from this age onward. These data provide further evidence for the potential role of angiotensin II in the modulation of retinal neurons and glia. The differential pattern of expression of these receptors across these cell types is similar to that observed in the brain and suggests that a similar functional role for Ang II may also exist within the retina.
Collapse
Affiliation(s)
- L E Downie
- Department of Anatomy and Cell Biology, The University of Melbourne, Grattan Street, Parkville 3010, Victoria, Australia 3010
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Plouffe B, Guimond MO, Beaudry H, Gallo-Payet N. Role of tyrosine kinase receptors in angiotensin II AT2 receptor signaling: involvement in neurite outgrowth and in p42/p44mapk activation in NG108-15 cells. Endocrinology 2006; 147:4646-54. [PMID: 16809450 DOI: 10.1210/en.2005-1315] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NG108-15 cells, which have a rounding-up morphology when cultured in serum-supplemented medium, extend neurites when stimulated for 3 d with angiotensin II (Ang II). The aim of the present study was to investigate whether growth factor receptors are necessary for mediating the effects of Ang II. A 3-d treatment with AG879, an inhibitor of nerve growth factor receptor TrkA, strongly affected neurite outgrowth and phosphorylation of p42/p44(mapk) induced by Ang II. PD168393, an inhibitor of epidermal growth factor (EGF) receptor slightly decreased Ang II-induced neurite outgrowth, whereas AG213, an inhibitor of both platelet-derived growth factor receptor and EGF receptor, stimulated neurite outgrowth and p42/p44(mapk) phosphorylation on its own, without affecting further stimulation with Ang II. Moreover, Ang II induced the phosphorylation of TrkA (maximum at 5 min of incubation in the presence of serum or at 20 min in cells depleted in serum for 2 h) and a rapid increase in Rap1 activity, both effects abolished in cells preincubated with 10 microm AG879. In summary, the present results demonstrate that AT(2) receptor-induced sustained activation of p42/p44(mapk) and corresponding neurite outgrowth are mediated by phosphorylation of the nerve growth factor TrkA receptor. However, the results also point out that the presence of other growth factors, such as EGF or PDFG, may interfere with the effect of Ang II. Altogether, the current findings clearly indicate that the effects of the AT(2) receptor on neurite outgrowth dynamics are modulated by the presence of growth factors in the culture medium.
Collapse
Affiliation(s)
- Bianca Plouffe
- Service of Endocrinology, and Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|