1
|
Liang S, Zhao Y, Liu X, Wang Y, Yang H, Zhuo D, Fan F, Guo M, Luo G, Fan Y, Zhang L, Lv X, Chen X, Li SS, Jin X. Prenatal progesterone treatment modulates fetal brain transcriptome and impacts adult offspring behavior in mice. Physiol Behav 2024; 281:114549. [PMID: 38604593 DOI: 10.1016/j.physbeh.2024.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Maternal exposure to elevated levels of steroid hormones during pregnancy is associated with the development of chronic conditions in offspring that manifest in adulthood. However, the effects of progesterone (P4) administration during early pregnancy on fetal development and subsequent offspring behavior remain poorly understood. In this study, we aimed to investigate the effects of P4 treatment during early pregnancy on the transcript abundance in the fetal brain and assess the behavioral consequences in the offspring during adolescence and adulthood. Using RNA-seq analysis, we examined the impact of P4 treatment on the fetal brain transcriptome in a dosage-dependent manner. Our results revealed differential regulation of genes involved in neurotransmitter transport, synaptic transmission, and transcriptional regulation. Specifically, we observed bidirectional regulation of transcription factors (TFs) by P4 at different doses, highlighting the critical role of these TFs in neurodevelopment. To assess behavioral outcomes, we conducted open field and elevated plus maze tests. Offspring treated with low-dose P4 (LP4) displayed increased exploratory behavior during both adolescence and adulthood. In contrast, the high-dose P4 (HP4) group exhibited impaired exploration and heightened anxiety-like behaviors compared to the control mice. Moreover, in a novel object recognition test, HP4-treated offspring demonstrated impaired object recognition memory during both developmental stages. Additionally, both LP4 and HP4 groups showed reduced social interaction in the three-chamber test. These results suggest that prenatal exposure to P4 exerts a notable influence on the expression of genes associated with neurodevelopment and may induce alterations in behavioral characteristics in progeny, highlighting the need to monitor progesterone levels during pregnancy for long-term impacts on fetal brain development and behavior.
Collapse
Affiliation(s)
- Shuang Liang
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Ying Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Xiuwei Liu
- Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Yan Wang
- Jiujiang Maternal and Child Health Hospital, China
| | | | - Donghai Zhuo
- School of Medicine, Nankai University, Tianjin, China
| | - Feifei Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Miao Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Gan Luo
- Tianjin Medical University, Tianjin, China
| | - Yonggang Fan
- School of Medicine, Nankai University, Tianjin, China
| | - Lingzhu Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Xinxin Lv
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Chen
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Shan-Shan Li
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Jin
- School of Medicine, Nankai University, Tianjin, China; Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China.
| |
Collapse
|
2
|
Grandi G, Del Savio MC, Tassi A, Facchinetti F. Postpartum contraception: A matter of guidelines. Int J Gynaecol Obstet 2024; 164:56-65. [PMID: 37334892 DOI: 10.1002/ijgo.14928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/21/2023]
Abstract
The postpartum period is the perfect time to access family planning services. WHO guidelines contraindicate combined hormonal contraceptives postpartum in breastfeeding patients between 6 weeks and 6 months after delivery (Medical Eligibility Criteria category 3). On the contrary, the Faculty of Sexual and Reproductive Healthcare and the Centers for Disease Control and Prevention guidelines do not contraindicate their use in women who breastfeed from 6 weeks to 6 months postpartum. New combined hormonal contraceptives with natural estrogens have never been studied in this setting. Guidelines agree on the prescription of the progestin-only pill postpartum in non-breastfeeding women (category 1). Differences are found in women who breastfeed. In non-breastfeeding women, an implant is considered safe (category 1) by all guidelines, without any distinction in time. Regarding postpartum breastfeeding women, the guidelines for implants give quite different indications but are still permissive. Intrauterine devices are viable options for postpartum contraception but guidelines give different indications about the timing of insertion. Postplacental intrauterine device placement can reduce the subsequent unintended pregnancy rate, particularly in settings at greatest risk of not having recommended postpartum controls. However, it has yet to be understood whether this approach can really have an advantage in high-income countries. Postpartum contraception is not a 'matter of guidelines': it is the best customization for each woman, as early as possible but at the ideal timing.
Collapse
Affiliation(s)
- Giovanni Grandi
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Maria C Del Savio
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Alice Tassi
- Clinic of Obstetrics and Gynecology, DAME, University Hospital of Udine, Udine, Italy
| | - Fabio Facchinetti
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| |
Collapse
|
3
|
Joshi S, Williams CL, Kapur J. Limbic progesterone receptors regulate spatial memory. Sci Rep 2023; 13:2164. [PMID: 36750584 PMCID: PMC9905062 DOI: 10.1038/s41598-023-29100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Progesterone and its receptors (PRs) participate in mating and reproduction, but their role in spatial declarative memory is not understood. Male mice expressed PRs, predominately in excitatory neurons, in brain regions that support spatial memory, such as the hippocampus and entorhinal cortex (EC). Furthermore, segesterone, a specific PR agonist, activates neurons in both the EC and hippocampus. We assessed the contribution of PRs in promoting spatial and non-spatial cognitive learning in male mice by examining the performance of mice lacking this receptor (PRKO), in novel object recognition, object placement, Y-maze alternation, and Morris-Water Maze (MWM) tasks. In the recognition test, the PRKO mice preferred the familiar object over the novel object. A similar preference for the familiar object was also seen following the EC-specific deletion of PRs. PRKO mice were also unable to recognize the change in object position. We confirmed deficits in spatial memory of PRKO mice by testing them on the Y-maze forced alternation and MWM tasks; PR deletion affected animal's performance in both these tasks. In contrast to spatial tasks, PR removal did not alter the response to fear conditioning. These studies provide novel insights into the role of PRs in facilitating spatial, declarative memory in males, which may help with finding reproductive partners.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia, Health Sciences Center, P.O. Box 801330, Charlottesville, VA, 22908, USA.
| | - Cedric L Williams
- Department of Psychology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Health Sciences Center, P.O. Box 801330, Charlottesville, VA, 22908, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.,UVA Brain Institute, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
4
|
Kheloui S, Smith A, Ismail N. Combined oral contraceptives and mental health: Are adolescence and the gut-brain axis the missing links? Front Neuroendocrinol 2023; 68:101041. [PMID: 36244525 DOI: 10.1016/j.yfrne.2022.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Combined oral contraceptives (containing synthetic forms of estradiol and progestins) are one of the most commonly used drugs among females. However, their effects on the gut-brain axis have not been investigated to a great extent despite clear evidence that suggest bi-directional interactions between the gut microbiome and endogenous sex hormones. Moreover, oral contraceptives are prescribed during adolescence, a critical period of development during which several brain structures and systems, such as hypothalamic-pituitary-gonadal axis, undergo maturation. Considering that oral contraceptives could impact the developing adolescent brain and that these effects may be mediated by the gut-brain axis, further research investigating the effects of oral contraceptives on the gut-brain axis is imperative. This article briefly reviews evidence from animal and human studies on the effects of combined oral contraceptives on the brain and the gut microbiota particularly during adolescence.
Collapse
Affiliation(s)
- Sarah Kheloui
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Andra Smith
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada; uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada; uOttawa Brain and Mind Research Institute, Ottawa, ON, Canada; LIFE Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Jacquens A, Needham EJ, Zanier ER, Degos V, Gressens P, Menon D. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci 2022; 23:11193. [PMID: 36232495 PMCID: PMC9570205 DOI: 10.3390/ijms231911193] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Head trauma is the most common cause of disability in young adults. Known as a silent epidemic, it can cause a mosaic of symptoms, whether neurological (sensory-motor deficits), psychiatric (depressive and anxiety symptoms), or somatic (vertigo, tinnitus, phosphenes). Furthermore, cranial trauma (CT) in children presents several particularities in terms of epidemiology, mechanism, and physiopathology-notably linked to the attack of an immature organ. As in adults, head trauma in children can have lifelong repercussions and can cause social and family isolation, difficulties at school, and, later, socio-professional adversity. Improving management of the pre-hospital and rehabilitation course of these patients reduces secondary morbidity and mortality, but often not without long-term disability. One hypothesized contributor to this process is chronic neuroinflammation, which could accompany primary lesions and facilitate their development into tertiary lesions. Neuroinflammation is a complex process involving different actors such as glial cells (astrocytes, microglia, oligodendrocytes), the permeability of the blood-brain barrier, excitotoxicity, production of oxygen derivatives, cytokine release, tissue damage, and neuronal death. Several studies have investigated the effect of various treatments on the neuroinflammatory response in traumatic brain injury in vitro and in animal and human models. The aim of this review is to examine the various anti-inflammatory therapies that have been implemented.
Collapse
Affiliation(s)
- Alice Jacquens
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Edward J. Needham
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| | - Elisa R. Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Vincent Degos
- Unité de Neuroanesthésie-Réanimation, Hôpital de la Pitié Salpêtrière 43-87, Boulevard de l’Hôpital, F-75013 Paris, France
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - Pierre Gressens
- Inserm, Maladies Neurodéveloppementales et Neurovasculaires, Université Paris Cité, F-75019 Paris, France
| | - David Menon
- Division of Anaesthesia, Addenbrooke’s Hospital, University of Cambridge, Box 93, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
6
|
Androgens Tend to Be Higher, but What about Altered Progesterone Metabolites in Boys and Girls with Autism? Life (Basel) 2022; 12:life12071004. [PMID: 35888093 PMCID: PMC9324026 DOI: 10.3390/life12071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Evidence exists that steroid hormones are altered in individuals with autism, especially androgens. Despite lower prevalence in girls than boys, evidence of potential alterations in progesterone metabolites is sparse, so the aim of this study was to elucidate different progesterone metabolites in affected children with autism versus healthy controls. Material and Methods: Circadian urine samples from 48 boys and 16 girls with autism spectrum disorders and a matched case−control group were analysed for progesterone metabolites by gas chromatography−mass spectrometry and normalised for creatinine excretion. Results: In boys with autism, the majority of progesterone metabolites were reduced, such as progesterone, 6a-OH-3a5b-TH-progesterone, or 20a-DH-progesterone (p < 0.01 for all). In girls with autism, a similar pattern of reduction in progesterone metabolites was detected; however, potentially due to the relatively small sample, this pattern was only detectable on the level of a trend. Discussion: As stated, androgen levels are higher in boys and girls with autism, but evidence for progesterone metabolites is much sparser. The pattern of a decrease in progesterone metabolites suggests the existence of an altered routing of steroid metabolites, probably in combination with a dysregulation of the HPAG axis. As, recently, increased CYP17A1 activity has been suggested, the stronger routing towards androgens is further implied in line with our findings of lower progesterone concentrations in boys and girls with autism than healthy controls.
Collapse
|
7
|
Forbes-Lorman RM. Sex-specific effects of neonatal progestin receptor antagonism on juvenile social play behavior in rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:10. [PMID: 34740365 PMCID: PMC8571883 DOI: 10.1186/s12993-021-00183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Developing mammals are exposed to progesterone through several sources; however, the role of progesterone in early development is not well understood. Males express more progestin receptors (PRs) than females within several brain regions during early postnatal life, suggesting that PRs may be important for the organization of the sex differences in the brain and behavior. Indeed, previous studies showed cognitive impairments in male rats treated neonatally with a PR antagonist. In the present study, we examined the role of PRs in organizing juvenile behaviors. Social play behavior and social discrimination were examined in juvenile male and female rats that had been treated with CDB, a PR antagonist, during the first week of postnatal life. Interestingly, neonatal PR antagonism altered different juvenile behaviors in males and females. A transient disruption in PR signaling during development had no effect on social discrimination but increased play initiation and pins in females. These data suggest that PRs play an important role in the organization of sex differences in some social behaviors.
Collapse
Affiliation(s)
- R M Forbes-Lorman
- Department of Biology, Ripon College, 300 W Seward St., Ripon, WI, 54971, USA.
| |
Collapse
|
8
|
Halane HIM, Hargreave M, Kjaer SK, Christensen J, Mørch LS. Maternal use of hormonal contraception and epilepsy in offspring. Hum Reprod 2021; 36:1674-1681. [PMID: 33580954 DOI: 10.1093/humrep/deab023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Is maternal use of hormonal contraception associated with the development of epilepsy in the offspring? SUMMARY ANSWER We found that maternal use of hormonal contraception was associated with a slightly increased risk of epilepsy in the offspring. WHAT IS KNOWN ALREADY Foetal exposure to exogenous hormones has been associated with changes in brain development. However, little is known about maternal hormonal contraception use and development of epilepsy in the offspring. STUDY DESIGN, SIZE, DURATION A nationwide cohort of all live born children born in Denmark between 1 January 1998 and 31 December 2014, was followed from day 29 after birth for epilepsy (first diagnosis of epilepsy or first redeemed prescription for anti-epileptic medication) to censoring (emigration, death) or 31 December 2015, whichever occurred first. PARTICIPANTS/MATERIALS, SETTING, METHODS Diagnoses of epilepsy were obtained from the National Patient Registry. The Danish National Prescription Registry supplied information on redeemed prescriptions for hormonal contraception and anti-epileptic medication. Maternal hormonal contraception use was categorized as never use (reference group), previous use (prescriptions redeemed >3 months before pregnancy start) and recent use (prescriptions redeemed ≤3 months before or during pregnancy). MAIN RESULTS AND THE ROLE OF CHANCE The data show that 17 585 children developed epilepsy during a median follow-up of 9.2 years (9 732 635 person-years). The hazard ratio (HR) for epilepsy was 1.07 (95% CI 1.02-1.13) in children of mothers who had used any type of hormonal contraception recently, compared with children of mothers who had not used hormonal contraception. The HR was similar for recent use of oral combined products, while the HRs for recent or previous use of non-oral combined products were 1.32 (95% CI 0.98-1.77) and 1.16 (95% CI 1.02-1.32), respectively. For non-oral progestin-only products, the HRs were 1.19 (95% CI 1.04-1.38) and 1.53 (95% CI 1.31-1.80), respectively, for recent and previous use. LIMITATIONS, REASONS FOR CAUTION There may be some misclassification of maternal hormonal contraception use, as some women may not have used the redeemed prescriptions or used them at a different point in time; potentially leading to an attenuation of the estimates. In addition, although we were able to account for known risk factors for epilepsy, unknown or residual confounding cannot be ruled out. WIDER IMPLICATIONS OF THE FINDINGS Our findings are based on nationwide population-based data and can therefore be applied to other similar populations. However, as this is the first study in this field, further studies are needed to confirm our findings. STUDY FUNDING/COMPETING INTEREST(S) No specific funding was obtained for this study, which was supported by internal funding at the Unit of Virus, Lifestyle and Genes. All authors report no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- H I M Halane
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, 2100 Copenhagen O, Denmark
| | - M Hargreave
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, 2100 Copenhagen O, Denmark
| | - S K Kjaer
- Virus, Lifestyle and Genes, Danish Cancer Society Research Center, 2100 Copenhagen O, Denmark.,Department of Gynaecology, Rigshospitalet, 2100 Copenhagen O, Denmark
| | - J Christensen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark.,Department of Neurology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - L S Mørch
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, 2100 Copenhagen O, Denmark
| |
Collapse
|
9
|
Ali AA, Cui X, Pertile RAN, Li X, Medley G, Alexander SA, Whitehouse AJO, McGrath JJ, Eyles DW. Developmental vitamin D deficiency increases foetal exposure to testosterone. Mol Autism 2020; 11:96. [PMID: 33298169 PMCID: PMC7727109 DOI: 10.1186/s13229-020-00399-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders which are more common in males. The ‘prenatal sex steroid’ hypothesis links excessive sex-steroid exposure during foetal life with the behavioural differences observed in ASD. However, the reason why sex steroid exposure may be excessive remains unclear. Epidemiological studies have identified several environmental risk factors associated with ASD, including developmental vitamin D (DVD) deficiency. We have demonstrated in an animal model that DVD-deficiency is associated with a hyper-inflammatory response in placentas from male but not female foetuses. Vitamin D also regulates the expression of several steroidogenic enzymes in vitro. Therefore using this animal model, we have examined whether DVD-deficiency leads to increased sex-steroid levels in both the maternal and foetal compartments. Methods Female rats are fed a vitamin D deficient diet from 6 weeks before mating until tissue collection at embryonic day 18. We examined the levels of testosterone, androstenedione and corticosterone in maternal plasma, foetal brains and amniotic fluid. We further examined gene expressions of steroidogenic enzymes and DNA methylation of aromatase promoters in foetal brains as a potential molecular mechanism regulating testosterone expression. Results We show that DVD-deficiency increases testosterone levels in maternal blood. We also show elevated levels of testosterone and androstenedione in the amniotic fluid of female but not male DVD-deficient foetuses. Testosterone levels were also elevated in DVD-deficient male brains. Vitamin D, like other steroid-related hormones, regulates gene expression via methylation. Therefore we examined whether the significant elevation in testosterone in male brains was due to such a potential gene-silencing mechanism. We show that the promoter of aromatase was hyper-methylated compared to male controls. Limitations A reduction in aromatase, in addition to causing excessive testosterone, could also lead to a reduction in estradiol which was not examined here. Conclusions This study is the first to show how an epidemiologically established environmental risk factor for ASD may selectively elevate testosterone in male embryonic brains. These findings provide further mechanistic support for the prenatal sex steroid theory of ASD.
Collapse
Affiliation(s)
- Asad Amanat Ali
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | | | - Xiang Li
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Gregory Medley
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Suzanne Adele Alexander
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia
| | - Andrew J O Whitehouse
- Telethon Kids Institute, The University of Western Australia, Perth, WA, 6009, Australia
| | - John Joseph McGrath
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia.,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.,NCRR-National Centre for Register-Based Research, Department of Economics and Business Economics, Aarhus University, Aarhus C, Denmark
| | - Darryl Walter Eyles
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia. .,Queensland Centre for Mental Health Research, The Park Centre for Mental Health, Wacol, QLD, Australia.
| |
Collapse
|
10
|
Lupu D, Andersson P, Bornehag CG, Demeneix B, Fritsche E, Gennings C, Lichtensteiger W, Leist M, Leonards PEG, Ponsonby AL, Scholze M, Testa G, Tresguerres JAF, Westerink RHS, Zalc B, Rüegg J. The ENDpoiNTs Project: Novel Testing Strategies for Endocrine Disruptors Linked to Developmental Neurotoxicity. Int J Mol Sci 2020; 21:ijms21113978. [PMID: 32492937 PMCID: PMC7312023 DOI: 10.3390/ijms21113978] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Ubiquitous exposure to endocrine-disrupting chemicals (EDCs) has caused serious concerns about the ability of these chemicals to affect neurodevelopment, among others. Since endocrine disruption (ED)-induced developmental neurotoxicity (DNT) is hardly covered by the chemical testing tools that are currently in regulatory use, the Horizon 2020 research and innovation action ENDpoiNTs has been launched to fill the scientific and methodological gaps related to the assessment of this type of chemical toxicity. The ENDpoiNTs project will generate new knowledge about ED-induced DNT and aims to develop and improve in vitro, in vivo, and in silico models pertaining to ED-linked DNT outcomes for chemical testing. This will be achieved by establishing correlative and causal links between known and novel neurodevelopmental endpoints and endocrine pathways through integration of molecular, cellular, and organismal data from in vitro and in vivo models. Based on this knowledge, the project aims to provide adverse outcome pathways (AOPs) for ED-induced DNT and to develop and integrate new testing tools with high relevance for human health into European and international regulatory frameworks.
Collapse
Affiliation(s)
- Diana Lupu
- Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
- Institute of Environmental Medicine, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Toxicology, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Correspondence:
| | - Patrik Andersson
- Faculty of Science and Technology, Umeå University, 90187 Umeå, Sweden;
| | | | - Barbara Demeneix
- Evolution of Endocrine Regulations UMR 7221, Centre National de la Recherche Scientifique, 75005 Paris, France;
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | | - Marcel Leist
- In Vitro Toxicology and Biomedicine, University of Konstanz, D-78457 Konstanz, Germany;
| | - Pim E. G. Leonards
- Department Environment and Health, Vrije University, 1081HV Amsterdam, The Netherlands;
| | - Anne-Louise Ponsonby
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria 3052, Australia;
| | - Martin Scholze
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy;
| | - Jesus A. F. Tresguerres
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Remco H. S. Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Bernard Zalc
- Sorbonne Université, Inserm, CNRS, ICM-GH Pitié-Salpêtrière, 75651 Paris, France;
| | - Joëlle Rüegg
- Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden;
- Institute of Environmental Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
11
|
Pisu MG, Boero G, Garau A, Casula C, Cisci S, Biggio F, Concas A, Follesa P, Maciocco E, Porcu P, Serra M. Are preconceptional stressful experiences crucial elements for the aetiology of autism spectrum disorder? Insights from an animal model. Neuropharmacology 2019; 157:107686. [PMID: 31247268 DOI: 10.1016/j.neuropharm.2019.107686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by changes in social interactions, impaired language and communication, fear responses and presence of repetitive behaviours. Although the genetic bases of ASD are well documented, the recent increase in clinical cases of idiopathic ASD indicates that several environmental risk factors could play a role in ASD aetiology. Among these, maternal exposure to psychosocial stressors during pregnancy has been hypothesized to affect the risk for ASD in offspring. Here, we tested the hypothesis that preconceptional stressful experiences might also represent crucial elements in the aetiology of ASD. We previously showed that social isolation stress during adolescence results in a marked decrease in the brain and plasma concentrations of progesterone and in the quality of maternal care that these female rats later provide to their young. Here we report that male offspring of socially isolated parents showed decreased agonistic behaviour and social transmission of flavour preference, impairment in reversal learning, increased seizure susceptibility, reduced plasma oxytocin levels, and increased plasma and brain levels of BDNF, all features resembling an ASD-like phenotype. These alterations came with no change in spatial learning, aggression, anxiety and testosterone plasma levels, and were sex-dependent. Altogether, the results suggest that preconceptional stressful experiences should be considered as crucial elements for the aetiology of ASD, and indicate that male offspring of socially isolated parents may be a useful animal model to further study the neurobiological bases of ASD, avoiding the adaptations that may occur in other genetic or pharmacologic experimental models of these disorders.
Collapse
Affiliation(s)
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Anna Garau
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Claudia Casula
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Sonia Cisci
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Francesca Biggio
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| | - Elisabetta Maciocco
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environment Sciences and Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy; Center of Excellence for Neurobiology of Dependence, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
González-Orozco JC, Camacho-Arroyo I. Progesterone Actions During Central Nervous System Development. Front Neurosci 2019; 13:503. [PMID: 31156378 PMCID: PMC6533804 DOI: 10.3389/fnins.2019.00503] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Although progesterone is a steroid hormone mainly associated with female reproductive functions, such as uterine receptivity and maintenance of pregnancy, accumulating data have shown its physiological actions to extend to several non-reproductive functions in the central nervous system (CNS) both in males and females. In fact, progesterone is de novo synthesized in specific brain regions by neurons and glial cells and is involved in the regulation of various molecular and cellular processes underlying myelination, neuroprotection, neuromodulation, learning and memory, and mood. Furthermore, progesterone has been reported to be implicated in critical developmental events, such as cell differentiation and neural circuits formation. This view is supported by the increase in progesterone synthesis observed during pregnancy in both the placenta and the fetal brain. In the present review, we will focus on progesterone actions during CNS development.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
Accioly NE, Guedes RCA. Neonatal treatment with ovarian hormones and suckling among distinct litter sizes: Differential effects on recognition memory and spreading depression at adulthood. Nutr Neurosci 2019; 22:174-184. [PMID: 28891432 DOI: 10.1080/1028415x.2017.1358472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Ovarian hormones (OH) and early malnutrition may affect the developing brain, with repercussions on behavioral and excitability-dependent processes. However, the possible synergistic effects of both factors have not been analyzed. In this study, we investigated the effect of treatment in early life with OH and suckling among distinct litter sizes on recognition memory, anxiety behavior, and the excitability-dependent phenomenon known as cortical spreading depression (CSD). METHODS Female Wistar rats were suckled under favorable and unfavorable lactation, corresponding to litters with 9 and 15 pups (L9 and L15 groups, respectively). From postnatal days (P) 7 to 21, the animals received 50 µg/kg of β-estradiol or progesterone. From P80 to P84, we tested behavioral reactions. From P90 to P120, we analyzed CSD parameters. RESULTS Compared with the corresponding L9 groups, the OH-treated L15 groups performed worse in recognition memory tasks. No intergroup difference in the anxiety parameters was observed. Compared with naive and vehicle-treated controls, OH-treated groups displayed higher CSD velocities and amplitudes and shorter CSD durations. DISCUSSION Early treatment with OH facilitates recognition memory and CSD, and in association with unfavorable lactation (L15) impaired recognition memory, but not anxiety behavior, in the adult brain. OH treatment and L15 lactation condition seem to interact regarding OH action on memory, but not on CSD. Data suggest a long-lasting differential effect that might be related to the lasting hormonal action on brain excitability. We postulate and discuss the possibility that these findings may be implicated in human neurological diseases.
Collapse
|
14
|
Abstract
Preterm birth (PTB) remains a major obstetric healthcare problem and a significant contributor to perinatal morbidity, mortality, and long-term disability. Over the past few decades, the perinatal outcomes of preterm neonates have improved markedly through research and advances in neonatal care, whereas rates of spontaneous PTB have essentially remained static. However, research into causal pathways and new diagnostic and treatment modalities is now bearing fruit and translational initiatives are beginning to impact upon PTB rates. Successful PTB prevention requires a multifaceted approach, combining public health and educational programs, lifestyle modification, access to/optimisation of obstetric healthcare, effective prediction and diagnostic modalities, and the application of effective, targeted interventions. Progress has been made in some of these areas, although there remain areas of controversy and uncertainty. Attention is now being directed to areas where greater gains can be achieved. In this mini-review, we will briefly and selectively review a range of PTB prevention strategies and initiatives where progress has been made and where exciting opportunities await exploitation, evaluation, and implementation.
Collapse
Affiliation(s)
- Jeff A Keelan
- Division of Obstetrics & Gynaecology, School of Medicine, University of Western Australia King Edward Memorial Hospital, Perth, Australia
| | - John P Newnham
- Division of Obstetrics & Gynaecology, School of Medicine, University of Western Australia King Edward Memorial Hospital, Perth, Australia
| |
Collapse
|
15
|
Reinisch JM, Mortensen EL, Sanders SA. Prenatal Exposure to Progesterone Affects Sexual Orientation in Humans. ARCHIVES OF SEXUAL BEHAVIOR 2017; 46:1239-1249. [PMID: 28374065 DOI: 10.1007/s10508-016-0923-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 06/07/2023]
Abstract
Prenatal sex hormone levels affect physical and behavioral sexual differentiation in animals and humans. Although prenatal hormones are theorized to influence sexual orientation in humans, evidence is sparse. Sexual orientation variables for 34 prenatally progesterone-exposed subjects (17 males and 17 females) were compared to matched controls (M age = 23.2 years). A case-control double-blind design was used drawing on existing data from the US/Denmark Prenatal Development Project. Index cases were exposed to lutocyclin (bioidentical progesterone = C21H30O2; M W : 314.46) and no other hormonal preparation. Controls were matched on 14 physical, medical, and socioeconomic variables. A structured interview conducted by a psychologist and self-administered questionnaires were used to collect data on sexual orientation, self-identification, attraction to the same and other sex, and history of sexual behavior with each sex. Compared to the unexposed, fewer exposed males and females identified as heterosexual and more of them reported histories of same-sex sexual behavior, attraction to the same or both sexes, and scored higher on attraction to males. Measures of heterosexual behavior and scores on attraction to females did not differ significantly by exposure. We conclude that, regardless of sex, exposure appeared to be associated with higher rates of bisexuality. Prenatal progesterone may be an underappreciated epigenetic factor in human sexual and psychosexual development and, in light of the current prevalence of progesterone treatment during pregnancy for a variety of pregnancy complications, warrants further investigation. These data on the effects of prenatal exposure to exogenous progesterone also suggest a potential role for natural early perturbations in progesterone levels in the development of sexual orientation.
Collapse
Affiliation(s)
- June M Reinisch
- The Kinsey Institute for Research in Sex, Gender and Reproduction, Indiana University, Morrison Hall 313, Bloomington, IN, 47405, USA.
- The Museum of Sex, New York, NY, USA.
- Institute of Preventive Medicine, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Erik Lykke Mortensen
- Institute of Preventive Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Stephanie A Sanders
- The Kinsey Institute for Research in Sex, Gender and Reproduction, Indiana University, Morrison Hall 313, Bloomington, IN, 47405, USA
- Department of Gender Studies, Indiana University, Bloomington, IN, USA
| |
Collapse
|
16
|
O’Brien JM, Lewis DF. Prevention of preterm birth with vaginal progesterone or 17-alpha-hydroxyprogesterone caproate: a critical examination of efficacy and safety. Am J Obstet Gynecol 2016; 214:45-56. [PMID: 26558340 DOI: 10.1016/j.ajog.2015.10.934] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022]
Abstract
Progestogens are the first drugs to demonstrate reproducibly a reduction in the rate of early preterm birth. The efficacy and safety of progestogens are related to individual pharmacologic properties of each drug within this class of medication and characteristics of the population that is treated. The synthetic 17-hydroxyprogesterone caproate and natural progesterone have been studied with the use of a prophylactic strategy in women with a history of preterm birth and in women with a multiple gestation. Evidence from a single large comparative efficacy trial suggests that vaginal natural progesterone is superior to 17-hydroxyprogesterone caproate as a prophylactic treatment in women with a history of mid-trimester preterm birth. Progestogen therapy is indicated for women with this highest risk profile based on evidence from 2 trials. A therapeutic approach based on the identification of a sonographic short cervix has been studied in several phase III trials. Independent phase III trials and an individual patient metaanalysis suggest that vaginal progesterone is efficacious and safe in women with a singleton and a short cervix. Two trials that tested 17-hydroxyprogesterone caproate in women with a short cervix showed no benefit. No consistent benefit for the prophylactic or therapeutic use of progestogens has been demonstrated in larger trials of women whose pregnancies were complicated by a multiple gestation (twins or triplets), preterm labor, or preterm rupture of membranes. Unfortunately, several large randomized trials in multiple gestations have identified harm related to 17-hydroxyprogesterone caproate exposure, and the synthetic drug is contraindicated in this population. The current body of evidence is evaluated by the Grading of Recommendations Assessment, Development, and Evaluation guidelines to derive the strength of recommendation in each of these populations. A large confirmatory trial that is testing 17-hydroxyprogesterone caproate exposure in women with a singleton pregnancy and a history of preterm birth is near completion. Additional study of the efficacy and safety of progestogens is suggested in well-selected populations based on the presence of biomarkers.
Collapse
|
17
|
Role of sex steroids and their receptors in human preterm infants: Impacts on future treatment strategies for cerebral development. Biochem Pharmacol 2015; 98:556-63. [DOI: 10.1016/j.bcp.2015.08.093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022]
|
18
|
Peterson BL, Won S, Geddes RI, Sayeed I, Stein DG. Sex-related differences in effects of progesterone following neonatal hypoxic brain injury. Behav Brain Res 2015; 286:152-65. [PMID: 25746450 DOI: 10.1016/j.bbr.2015.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Abstract
There is no satisfactory therapeutic intervention for neonatal hypoxic-ischemic (HI) encephalopathy. Progesterone is known to be effective in treating traumatic brain injury in adult animals but its effects in neonatal brains have not been reported. Brain injuries were induced by a unilateral common carotid artery ligation plus hypoxia exposure. Progesterone was administered immediately after hypoxia and daily for 5 days at 8 mg/kg, followed by a tapered dose for two days. At six weeks post-injury, lesion size and inflammatory factors were evaluated. Progesterone-treated, HI-injured male animals, but not females, showed significant long-term tissue protection compared to vehicle, suggesting an important sex difference in neuroprotection. Progesterone-treated, HI-injured male rats had fewer activated microglia in the cortex and hippocampus compared to controls. The rats were tested for neurological reflexes, motor asymmetry, and cognitive performance at multiple time points. The injured animals exhibited few detectable motor deficits, suggesting a high level of age- and injury-related neuroplasticity. There were substantial sex differences on several behavioral tests, indicating that immature males and females should be analyzed separately. Progesterone-treated animals showed modest beneficial effects in both sexes compared to vehicle-treated injured animals. Sham animals given progesterone did not behave differently from vehicle-treated sham animals on any measures.
Collapse
Affiliation(s)
- Bethany L Peterson
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Soonmi Won
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rastafa I Geddes
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
19
|
Abstract
OBJECTIVE To provide an overview of the preclinical literature on progesterone for neuroprotection after traumatic brain injury and to describe unique features of developmental brain injury that should be considered when evaluating the therapeutic potential for progesterone treatment after pediatric traumatic brain injury. DATA SOURCES National Library of Medicine PubMed literature review. STUDY SELECTION The mechanisms of neuroprotection by progesterone are reviewed, and the preclinical literature using progesterone treatment in adult animal models of traumatic brain injury is summarized. Unique features of the developing brain that could either enhance or limit the efficacy of neuroprotection by progesterone are discussed, and the limited preclinical literature using progesterone after acute injury to the developing brain is described. Finally, the current status of clinical trials of progesterone for adult traumatic brain injury is reviewed. DATA EXTRACTION AND DATA SYNTHESIS Progesterone is a pleiotropic agent with beneficial effects on secondary injury cascades that occur after traumatic brain injury, including cerebral edema, neuroinflammation, oxidative stress, and excitotoxicity. More than 40 studies have used progesterone for treatment after traumatic brain injury in adult animal models, with results summarized in tabular form. However, very few studies have evaluated progesterone in pediatric animal models of brain injury. To date, two human phase II trials of progesterone for adult traumatic brain injury have been published, and two multicenter phase III trials are underway. CONCLUSIONS The unique features of the developing brain from that of a mature adult brain make it necessary to independently study progesterone in clinically relevant, immature animal models of traumatic brain injury. Additional preclinical studies could lead to the development of a novel neuroprotective therapy that could reduce the long-term disability in head-injured children and could potentially provide benefit in other forms of pediatric brain injury (global ischemia, stroke, and statue epilepticus).
Collapse
|
20
|
Abstract
The molecular mechanisms controlling human birth timing at term, or resulting in preterm birth, have been the focus of considerable investigation, but limited insights have been gained over the past 50 years. In part, these processes have remained elusive because of divergence in reproductive strategies and physiology shown by model organisms, making extrapolation to humans uncertain. Here, we summarize the evolution of progesterone signaling and variation in pregnancy maintenance and termination. We use this comparative physiology to support the hypothesis that selective pressure on genomic loci involved in the timing of parturition have shaped human birth timing, and that these loci can be identified with comparative genomic strategies. Previous limitations imposed by divergence of mechanisms provide an important new opportunity to elucidate fundamental pathways of parturition control through increasing availability of sequenced genomes and associated reproductive physiology characteristics across diverse organisms.
Collapse
Affiliation(s)
- Kayleigh A Swaggart
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Mihaela Pavlicev
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229
| |
Collapse
|
21
|
Whitaker-Azmitia PM, Lobel M, Moyer A. Low maternal progesterone may contribute to both obstetrical complications and autism. Med Hypotheses 2014; 82:313-8. [PMID: 24485701 DOI: 10.1016/j.mehy.2013.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 11/17/2022]
Abstract
Studies show increased autism risk among children born to mothers experiencing obstetrical complications. Although this is usually interpreted as suggesting that the obstetrical complications could be causing autism, it is possible that a single factor could be responsible for both complications and autism. We hypothesized that low levels of the hormone progesterone is responsible since it is supplied to the fetus maternally and does not only support pregnancy but also promotes brain development. Following a review of the literature, we report findings from a survey of mothers of autistic children (n=86) compared to mothers of typically-developing children (n=88) regarding obstetrical histories, including five obstetrical risk factors indicative of low progesterone. Using this analysis, the ASD group had significantly more risk factors than controls (1.21 ± 0.09 vs. 0.76 ± 0.08, p<.0001), suggesting low progesterone. Thus, results suggest that low progesterone may be responsible for both obstetrical complications and brain changes associated with autism and that progesterone levels should be routinely monitored in at-risk pregnancies. Our hypothesis also suggests that ensuring adequate levels of progesterone may decrease the likelihood of autism.
Collapse
Affiliation(s)
| | - Marci Lobel
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Anne Moyer
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States
| |
Collapse
|
22
|
O'Brien JM. Medication safety is still an issue in obstetrics 50 years after the Kefauver-Harris amendments: the case of progestogens. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2013; 42:247-253. [PMID: 23495199 DOI: 10.1002/uog.12456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/27/2013] [Accepted: 02/13/2013] [Indexed: 06/01/2023]
Affiliation(s)
- J M O'Brien
- Maternal Fetal Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
23
|
O'Connell LA, Ding JH, Hofmann HA. Sex differences and similarities in the neuroendocrine regulation of social behavior in an African cichlid fish. Horm Behav 2013; 64:468-76. [PMID: 23899762 DOI: 10.1016/j.yhbeh.2013.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 07/21/2013] [Indexed: 01/13/2023]
Abstract
An individual's position in a social hierarchy profoundly affects behavior and physiology through interactions with community members, yet little is known about how the brain contributes to status differences between and within the social states or sexes. We aimed to determine sex-specific attributes of social status by comparing circulating sex steroid hormones and neural gene expression of sex steroid receptors in dominant and subordinate male and female Astatotilapia burtoni, a highly social African cichlid fish. We found that testosterone and 17β-estradiol levels are higher in males regardless of status and dominant individuals regardless of sex. Progesterone was found to be higher in dominant individuals regardless of sex. Based on pharmacological manipulations in males and females, progesterone appears to be a common mechanism for promoting courtship in dominant individuals. We also examined expression of androgen receptors, estrogen receptor α, and the progesterone receptor in five brain regions that are important for social behavior. Most of the differences in brain sex steroid receptor expression were due to sex rather than status. Our results suggest that the parvocellular preoptic area is a core region for mediating sex differences through androgen and estrogen receptor expression, whereas the progesterone receptor may mediate sex and status behaviors in the putative homologs of the nucleus accumbens and ventromedial hypothalamus. Overall our results suggest sex differences and similarities in the regulation of social dominance by gonadal hormones and their receptors in the brain.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78705, USA; Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | | | | |
Collapse
|
24
|
Ferrero DM, Liberles SD. Animal behavior: shifting neural circuits with sex hormones. Curr Biol 2013; 23:R621-3. [PMID: 23885881 DOI: 10.1016/j.cub.2013.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Male and female mice behave differently when encountering a male. A recent study identifies progesterone receptor-expressing neurons in the hypothalamus that are required for sexual behavior and male aggression. These findings provide insight into how neural circuits control sexually dimorphic behaviors.
Collapse
Affiliation(s)
- David M Ferrero
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Abd El Hameed AA. Vaginal versus intramuscular progesterone in the prevention of preterm labor and their effect on uterine and fetal blood flow. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2012. [DOI: 10.1016/j.mefs.2011.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
26
|
Menger Y, Bettscheider M, Murgatroyd C, Spengler D. Sex differences in brain epigenetics. Epigenomics 2012; 2:807-21. [PMID: 22122084 DOI: 10.2217/epi.10.60] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Sexual differentiation of the brain takes place during a perinatal-sensitive time window as a result of gonadal hormone-induced activational and organizational effects on neuronal substrates. Increasing evidence suggests that epigenetic mechanisms can contribute to the establishment and maintenance of some aspects of these processes, and that these epigenetic mechanisms may themselves be under the control of sex hormones. Epigenetic programming of neuroendocrine and behavioral phenotypes frequently occurs sex specifically, pointing to sex differences in brain epigenetics as a possible determinant. Understanding how sex-specific epigenomes and sex-biased responses to environmental cues contribute to the development of brain diseases might provide new insights for epigenetic therapy.
Collapse
Affiliation(s)
- Yannick Menger
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | | | |
Collapse
|
27
|
Breton AB, Austin KJ, Leedy MG, Alexander BM. Effects of progesterone and RU486 on the development and expression of adult male sexual behaviour and gene expression in the amygdala and preoptic area of the hypothalamus. Reprod Fertil Dev 2012; 24:916-22. [DOI: 10.1071/rd12006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/09/2012] [Indexed: 01/08/2023] Open
Abstract
The number of progesterone receptors is greater in the male than female neonatal rat hypothalamus. The aims of the present study were to determine developmental effects of progesterone on the expression of adult male sexual behaviour and whether changes in behaviour were reflected by altered gene expression within the hypothalamic preoptic area (POA) or medial amygdala. Male rats were treated with progesterone (40 µg kg–1, i.p.), the progesterone receptor antagonist RU486 (40 µg kg–1, i.p.) or an equal volume of vehicle (10% ethanol, 90% corn oil) on postnatal Days 1–5. Treatment with either progesterone or RU486 inhibited (P ≤ 0.07) the initial expression of consummatory sexual behaviour at 10.5 weeks of age without influencing growth or serum concentrations of testosterone. Sexual interest, as measured by latency to exhibiting mounting behaviour or the number of mounts achieved, was not influenced by treatment with either progesterone or RU486. The effects of treatment with progesterone or RU486 on sexual behaviour were diminished by experience. Microarray analysis of the POA indicated 61 genes that were upregulated and 49 that were downregulated (P ≤ 0.01) following RU486 treatment of male rats. However, the altered expression of selected genes was not confirmed by real-time reverse transcription–polymerase chain reaction. The expression of targeted genes within the amygdala was not influenced by treatment with either progesterone or RU486. Neonatal treatment with RU486, but not progesterone, decreased testes weight (P = 0.02) without affecting testes morphology. The results indicate that altering the progesterone environment during a critical developmental period affects the expression of behaviour, but that changes in behaviour are not mirrored by the altered expression of selected genes.
Collapse
|
28
|
Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: linking maternal stress and hormone-mediated maternal effects. PLoS One 2011; 6:e23824. [PMID: 21886826 PMCID: PMC3160319 DOI: 10.1371/journal.pone.0023824] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 07/27/2011] [Indexed: 12/26/2022] Open
Abstract
Despite considerable research on hormone-mediated maternal effects in birds, the underlying physiology remains poorly understood. This study investigated a potential regulation mechanism for differential accumulation of gonadal hormones in bird eggs. Across vertebrates, glucocorticoids can suppress reproduction by downregulating gonadal hormones. Using the chicken as a model species, we therefore tested whether elevated levels of plasma corticosterone in female birds influence the production of gonadal steroids by the ovarian follicles and thus the amount of reproductive hormones in the egg yolk. Adult laying hens of two different strains (ISA brown and white Leghorn) were implanted subcutaneously with corticosterone pellets that elevated plasma corticosterone concentrations over a period of nine days. Steroid hormones were subsequently quantified in plasma and yolk. Corticosterone-implanted hens of both strains had lower plasma progesterone and testosterone levels and their yolks contained less progesterone and testosterone. The treatment also reduced egg and yolk mass. Plasma estrogen concentrations decreased in white Leghorns only whereas in both strains yolk estrogens were unaffected. Our results demonstrate for the first time that maternal plasma corticosterone levels influence reproductive hormone concentrations in the yolk. Maternal corticosterone could therefore mediate environmentally induced changes in yolk gonadal hormone concentrations. In addition, stressful situations experienced by the bird mother might affect the offspring via reduced amounts of reproductive hormones present in the egg as well as available nutrients for the embryo.
Collapse
|
29
|
Abstract
The developing mammalian cerebral cortex contains a distinct class of cells, subplate neurons (SPns), that play an important role during early development. SPns are the first neurons to be generated in the cerebral cortex, they reside in the cortical white matter, and they are the first to mature physiologically. SPns receive thalamic and neuromodulatory inputs and project into the developing cortical plate, mostly to layer 4. Thus SPns form one of the first functional cortical circuits and are required to relay early oscillatory activity into the developing cortical plate. Pathophysiological impairment or removal of SPns profoundly affects functional cortical development. SPn removal in visual cortex prevents the maturation of thalamocortical synapses, the maturation of inhibition in layer 4, the development of orientation selective responses and the formation of ocular dominance columns. SPn removal also alters ocular dominance plasticity during the critical period. Therefore, SPns are a key regulator of cortical development and plasticity. SPns are vulnerable to injury during prenatal stages and might provide a crucial link between brain injury in development and later cognitive malfunction.
Collapse
Affiliation(s)
- Patrick O Kanold
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
30
|
Barda G, Ben-Haroush A, Barkat J, Malinger G, Luria O, Golan A, Bar J. Effect of vaginal progesterone, administered to prevent preterm birth, on impedance to blood flow in fetal and uterine circulation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2010; 36:743-748. [PMID: 20196070 DOI: 10.1002/uog.7606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2010] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To evaluate the effect on the maternal and fetal circulation of progesterone administered to prevent preterm birth. METHODS We used an observational cohort study design. The study group included 44 women at 18-32 weeks' gestation who presented with an episode of preterm labor, with or without history of delivery before 34 weeks' gestation, or an incidental finding of short cervix (≤ 25 mm). Doppler flow assessment of the umbilical artery, fetal middle cerebral artery and uterine arteries was performed before and 24 h after vaginal administration of progesterone. RESULTS Seventeen (38.6%) women gave birth before term, but only nine (20.4%) did so before 34 weeks' gestation. Following progesterone treatment, there was a statistically significant decrease in the pulsatility index of the fetal middle cerebral artery (mean reduction, 18.2%; mean change in pulsatility index, 0.44 (95% CI, 0.25-0.63), P < 0.001), with no changes in the other vessels. Comparison of the women who gave birth before with those who delivered at term yielded no significant differences in Doppler flow parameters in any vessel examined, either before or after progesterone treatment. CONCLUSION Treatment with vaginal progesterone is associated with a lower pulsatility index in the fetal middle cerebral artery, suggesting a vasodilatory effect on the fetal circulation.
Collapse
Affiliation(s)
- G Barda
- Department of Obstetrics and Gynecology, Edith Wolfson Medical Center, Holon, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Sex-specific effects of early neonatal progesterone treatment on dopamine and serotonin metabolism in rat striatum and frontal cortex. Life Sci 2010; 87:738-42. [DOI: 10.1016/j.lfs.2010.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/04/2010] [Accepted: 10/15/2010] [Indexed: 11/22/2022]
|
32
|
Etgen T, Bickel H, Förstl H. Metabolic and endocrine factors in mild cognitive impairment. Ageing Res Rev 2010; 9:280-8. [PMID: 20109582 DOI: 10.1016/j.arr.2010.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 01/19/2010] [Accepted: 01/20/2010] [Indexed: 12/22/2022]
Abstract
Mild cognitive impairment (MCI) is a heterogeneous condition with cognitive changes between normal aging and dementia. Some forms of MCI are regarded as potential preclinical forms of dementia. The control of treatable somatic risk factors is of great relevance in patients with MCI, particularly as there is insufficient evidence for the efficacy of interventions targeting neurodegenerative processes, as used in manifest dementia. The etiology of MCI is varied including cerebrovascular risk factors and is also associated with metabolic and endocrine factors. Chronic kidney disease is a newly identified and independent risk factor for MCI. Testosterone substitution is useful if a low testosterone level is present but general screening for testosterone deficiency is not yet recommended. A relationship between MCI and vitamin D or subclinical thyroid dysfunction may exist, but the value of substitution is doubtful and requires large randomized placebo-controlled trials. Although an association between vitamin B12 deficiency or hyperhomocysteinemia and MCI is present, substitution of vitamin B12 or folate does not appear to prevent cognitive decline. Estrogen-only hormone replacement therapy may be considered only in younger postmenopausal women, but may have detrimental effects on cognitive function in older postmenopausal women. Other less familiar or unknown risk factors contributing to cognitive dysfunction should be identified as they are a potential target of prevention or intervention of MCI or dementia.
Collapse
|
33
|
Paitz RT, Bowden RM. Progesterone metabolites, "xenobiotic-sensing" nuclear receptors, and the metabolism of maternal steroids. Gen Comp Endocrinol 2010; 166:217-21. [PMID: 19932108 DOI: 10.1016/j.ygcen.2009.11.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/04/2009] [Accepted: 11/12/2009] [Indexed: 12/22/2022]
Abstract
During development, embryos utilize steroid signals to direct sexual differentiation of tissues necessary for reproduction. Disruption of these signals by exogenous substances (both natural and synthetic) frequently produce phenotypic effects that can persist into adulthood and influence reproduction. This paper reviews the evidence that during embryonic development, progesterone metabolites and xenobiotic-sensing nuclear receptors may interact to increase the expression of numerous enzymes responsible for steroid metabolism in oviparous and placental amniotes. In these groups, embryonic development is characterized by (1) elevated progesterone concentrations, (2) 5 beta reduction being the primary metabolic pathway of progesterone, (3) the presence of xenobiotic-sensing nuclear receptors that can bind 5 beta metabolites of progesterone, and (4) increased expression of a suite of enzymes responsible for the metabolism of multiple steroids. We propose that xenobiotic-sensing nuclear receptors initially evolved to buffer the developing embryo from the potentially adverse effects of various maternal steroids on sexual differentiation.
Collapse
Affiliation(s)
- Ryan T Paitz
- School of Biological Sciences, Campus Box 4120, Illinois State University, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
34
|
Progesterone enhances learning and memory of aged wildtype and progestin receptor knockout mice. Neurosci Lett 2010; 472:38-42. [PMID: 20117174 DOI: 10.1016/j.neulet.2010.01.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 12/07/2009] [Accepted: 01/25/2010] [Indexed: 11/21/2022]
Abstract
Progesterone can enhance cognitive performance among young and aged mice; however, the mechanisms underlying these effects of progesterone are not well-understood. Aged, mice which lack functional progestin receptors (PRKO), or wildtype mice were administered progesterone (10mg/kg, SC), or vehicle, and learning/memory was evaluated. Progesterone, compared to vehicle, produced a conditioned place preference in PRKO and wildtype mice. Progesterone improved performance of PRKO and wildtype mice in the object placement, water maze, contextual and cued fear conditioning tasks. PRKO, compared to wildtype, mice performed better in the inhibitory avoidance task, irrespective of progesterone. Thus, progesterone to aged mice enhances performance across a variety of tasks and this may not require actions at PRs.
Collapse
|
35
|
Abstract
Male sex is a well-established risk factor for poor neurodevelopmental outcome after premature birth. The mechanisms behind this sex-related difference are unknown. The damage associated with prematurity can be mimicked in rodents by prolonged exposure to sublethal postnatal hypoxia. This chronic hypoxia leads to anatomical changes in mice that strongly resemble the loss of volume, decreased myelination, and ventriculomegaly seen in preterm newborns. However, no sex differences have been previously noted in this rodent model. We hypothesized that sex comparisons in hypoxic mice would show sex-related differences in brain volume and white matter loss in response to the same degree of hypoxic insult. Mice were placed in chronic sublethal hypoxia from postnatal day 3-11. Cortical, hippocampal, and cerebellar volumes and myelination indices were measured. We found that the male hippocampus, normally larger than the female, undergoes a greater volume loss compared with females (p < 0.05). Myelination, generally greater in males, was significantly disrupted by hypoxia in neonatal male forebrain. These results support the use of this rodent model to investigate the basis of sex-related susceptibility to brain damage and develop new sex-based neuroprotective strategies.
Collapse
Affiliation(s)
- Sonia R. Mayoral
- Neuroscience Program, Stanford University School of Medicine, Stanford, California 94305
| | - Ghezal Omar
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| | - Anna A. Penn
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
36
|
Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Front Neuroendocrinol 2009; 30:188-200. [PMID: 19393685 DOI: 10.1016/j.yfrne.2009.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 04/01/2009] [Accepted: 04/14/2009] [Indexed: 12/18/2022]
Abstract
Synthetic and natural estrogens as well as progestins modulate neuronal development and activity. Neurons and glia are endowed with high-affinity steroid receptors. Besides regulating brain physiology, both steroids conciliate neuroprotection against toxicity and neurodegeneration. The majority of data derive from in vitro studies, although more recently, animal models have proven the efficaciousness of steroids as neuroprotective factors. Indications for a safeguarding role also emerge from first clinical trials. Gender-specific prevalence of degenerative disorders might be associated with the loss of hormonal activity or steroid malfunctions. Our studies and evidence from the literature support the view that steroids attenuate neuroinflammation by reducing the pro-inflammatory property of astrocytes. This effect appears variable depending on the brain region and toxic condition. Both hormones can individually mediate protection, but they are more effective in cooperation. A second research line, using an animal model for multiple sclerosis, provides evidence that steroids achieve remyelination after demyelination. The underlying cellular mechanisms involve interactions with astroglia, insulin-like growth factor-1 responses, and the recruitment of oligodendrocytes.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
37
|
Pistritto G, Papacleovoulou G, Ragone G, Di Cesare S, Papaleo V, Mason JI, Barbaccia ML. Differentiation-dependent progesterone synthesis and metabolism in NT2-N human neurons. Exp Neurol 2009; 217:302-11. [DOI: 10.1016/j.expneurol.2009.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 12/11/2022]
|
38
|
Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2008; 15:119-38. [PMID: 18936037 DOI: 10.1093/humupd/dmn044] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The steroid hormone progesterone is indispensable for mammalian procreation by controlling key female reproductive events that range from ovulation to implantation, maintenance of pregnancy and breast development. In addition to activating the progesterone receptors (PRs)-B and -A, members of the superfamily of ligand-dependent transcription factors, progesterone also elicits a variety of rapid signalling events independently of transcriptional or genomic regulation. This review covers our current knowledge on the mechanisms and relevance of non-genomic progesterone signalling in female reproduction. METHODS PubMed was searched up to August 2008 for papers on progesterone actions in ovary/breast/endometrium/myometrium/brain, focusing primarily on non-genomic signalling mechanisms. RESULTS Convergence and intertwining of rapid non-genomic events and the slower transcriptional actions critically determine the functional response to progesterone in the female reproductive system in a cell-type- and environment-specific manner. Several putative progesterone-binding moieties have been implicated in rapid signalling events, including the 'classical' PR and its variants, progesterone receptor membrane component 1, and the novel family of membrane progestin receptors. Progesterone and its metabolites have also been implicated in the allosteric regulation of several unrelated receptors, such as gamma-aminobutyric acid type A, oxytocin and sigma(1) receptors. CONCLUSIONS Identification of the mechanisms and receptors that relay rapid progesterone signalling is an area of research fraught with difficulties and controversy. More in-depth characterization of the putative receptors is required before the non-genomic progesterone pathway in normal and pathological reproductive function can be targeted for pharmacological intervention.
Collapse
|
39
|
Affiliation(s)
- Jeffrey D Blaustein
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003-9271, USA.
| |
Collapse
|