1
|
Zhao T, Li Y, Tian J, Kang Y, Xu J, Shao H, Zhou J, Xia C, Wang Y, Zhang J. Unraveling the relationship between serum parathyroid hormone levels and trabecular bone score: a cross-sectional study. Sci Rep 2024; 14:13065. [PMID: 38844829 PMCID: PMC11156926 DOI: 10.1038/s41598-024-63979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
The TBS is a new method for clinicians to assess the bone quality. It is directly related to the mechanical strength of bone and helps predict fracture risk. The present analysis aimed to investigate the associations between serum PTH levels and TBS by analyzing data from the National Health and Nutrition Examination Survey (NHANES). A total of 3516 participants from the NHANES 2005-2006 were included in this cross-sectional study. The independent variable was serum PTH, and the outcome variable was TBS. The associations of serum PTH levels with TBS were examined using multivariable linear regression models. After adjusting for covariates, there was a negative association between serum PTH level and TBS (β = - 0.0034; 95% confidence interval, - 0.0050 to - 0.0017). However, in the subgroup analysis stratified by gender, race, and age, this association became negative only in Non-Hispanic White (β = - 0.0047, 95% CI: - 0.0071 to - 0.0048) and young people (age < 60) (β = - 0.0036, 95% CI: - 0.0057, - 0.0016), regardless of gender. In addition, the association of serum PTH with TBS was an U-shaped curve, with a point of inflection at 6.71 pmol/L. This study showed that serum PTH level was negatively associated with TBS. Maintaining PTH levels in a lower reasonable clinical range may be beneficial to bone health, especially for young non-Hispanic white.
Collapse
Affiliation(s)
- Tingxiao Zhao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanlei Li
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jinlong Tian
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yao Kang
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jiongnan Xu
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Haiyu Shao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jinlei Zhou
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Chen Xia
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yongguang Wang
- Department of Orthopedics, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Linping District, No.60, Baojian Road, Hangzhou, 311199, Zhejiang, China.
| | - Jun Zhang
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.
- Department of Orthopedics, Zhejiang Provincial People's Hospital Bijie Hospital, Guanghui Road 112#, Bijie, Guizhou, 551700, China.
| |
Collapse
|
2
|
Bolamperti S, Saito H, Heerdmann S, Hesse E, Taipaleenmäki H. Tgif1-deficiency impairs cytoskeletal architecture in osteoblasts by activating PAK3 signaling. eLife 2024; 13:RP94265. [PMID: 38661167 PMCID: PMC11045221 DOI: 10.7554/elife.94265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.
Collapse
Affiliation(s)
- Simona Bolamperti
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Hiroaki Saito
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Sarah Heerdmann
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Eric Hesse
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma Surgery and Orthopedics, University Medical Center Hamburg-EppendorfHamburgGermany
- Institute of Musculoskeletal Medicine, LMU University Hospital, LMU MunichMunichGermany
- Musculoskeletal University Center Munich, LMU University Hospital, LMU MunichMunichGermany
| |
Collapse
|
3
|
Liu H, Liu L, Rosen CJ. PTH and the Regulation of Mesenchymal Cells within the Bone Marrow Niche. Cells 2024; 13:406. [PMID: 38474370 PMCID: PMC10930661 DOI: 10.3390/cells13050406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Parathyroid hormone (PTH) plays a pivotal role in maintaining calcium homeostasis, largely by modulating bone remodeling processes. Its effects on bone are notably dependent on the duration and frequency of exposure. Specifically, PTH can initiate both bone formation and resorption, with the outcome being influenced by the manner of PTH administration: continuous or intermittent. In continuous administration, PTH tends to promote bone resorption, possibly by regulating certain genes within bone cells. Conversely, intermittent exposure generally favors bone formation, possibly through transient gene activation. PTH's role extends to various aspects of bone cell activity. It directly influences skeletal stem cells, osteoblastic lineage cells, osteocytes, and T cells, playing a critical role in bone generation. Simultaneously, it indirectly affects osteoclast precursor cells and osteoclasts, and has a direct impact on T cells, contributing to its role in bone resorption. Despite these insights, the intricate mechanisms through which PTH acts within the bone marrow niche are not entirely understood. This article reviews the dual roles of PTH-catabolic and anabolic-on bone cells, highlighting the cellular and molecular pathways involved in these processes. The complex interplay of these factors in bone remodeling underscores the need for further investigation to fully comprehend PTH's multifaceted influence on bone health.
Collapse
Affiliation(s)
- Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Linyi Liu
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| | - Clifford J. Rosen
- Maine Medical Center, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA;
| |
Collapse
|
4
|
Xin H, Tomaskovic-Crook E, Al Maruf DSA, Cheng K, Wykes J, Manzie TGH, Wise SG, Crook JM, Clark JR. From Free Tissue Transfer to Hydrogels: A Brief Review of the Application of the Periosteum in Bone Regeneration. Gels 2023; 9:768. [PMID: 37754449 PMCID: PMC10530949 DOI: 10.3390/gels9090768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
The periosteum is a thin layer of connective tissue covering bone. It is an essential component for bone development and fracture healing. There has been considerable research exploring the application of the periosteum in bone regeneration since the 19th century. An increasing number of studies are focusing on periosteal progenitor cells found within the periosteum and the use of hydrogels as scaffold materials for periosteum engineering and guided bone development. Here, we provide an overview of the research investigating the use of the periosteum for bone repair, with consideration given to the anatomy and function of the periosteum, the importance of the cambium layer, the culture of periosteal progenitor cells, periosteum-induced ossification, periosteal perfusion, periosteum engineering, scaffold vascularization, and hydrogel-based synthetic periostea.
Collapse
Affiliation(s)
- Hai Xin
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Family Biomedical Innovation Hub, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (E.T.-C.); (J.M.C.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Kai Cheng
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Royal Prince Alfred Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| | - James Wykes
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Timothy G. H. Manzie
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Jeremy M. Crook
- Arto Hardy Family Biomedical Innovation Hub, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (E.T.-C.); (J.M.C.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Jonathan R. Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW 2050, Australia; (D.S.A.A.M.); (K.C.); (J.W.); (T.G.H.M.); (J.R.C.)
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Lu S, Liu X, Niu Y, Li F, Gong M, Zha Y, Chao Q, Lu B, Zhang B, Li N, Chen J, Liu Q, Yuan R, Jiang X. Short-term effect of apparent temperature on daily hospitalizations for osteoporotic fractures in Beijing, China: A retrospective observational study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162583. [PMID: 36870481 DOI: 10.1016/j.scitotenv.2023.162583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Studies on the associations between temperature and osteoporotic fractures (OF) hospitalizations are limited. This study aimed to assess the short-term effect of apparent temperature (AT) on the risk of OF hospitalizations. METHODS This retrospective observational study was conducted in Beijing Jishuitan Hospital from 2004 to 2021. Daily OF hospitalizations, meteorological variables and fine particulate matter were collected. A Poisson generalized linear regression model combined with a distributed lag non-linear model was applied to analyze the lag-exposure-response relationship between AT and the number of OF hospitalizations. Subgroup analysis by gender, age and fracture type was also conducted. RESULTS Total daily hospitalization visits for OF during the studied period were 35,595. The exposure-response curve of AT and OF presented a non-linear relationship, with optimum apparent temperature (OAT) at 28.40 °C. Taking OAT as the reference, the cold effect (-10.58 °C, 2.5th percentage) on single lag day had statistical significance from the current day of exposure (RR = 1.18, 95 % CI: 1.08-1.28) to lag 4 day (RR = 1.04, 95 % CI: 1.01-1.08), while the cumulative cold effect increased the risk of OF hospitalization visits from lag 0 to 14 days, with the maximum RR over lag 0-14 days (RR = 1.84, 95 % CI: 1.21-2.79). There were no significant risks of OF hospitalizations for warm effects (32.53 °C, 97.5th percentage) on single or cumulative lag days. The cold effect might be more evident among females, patients aged 80 years or older, and patients with hip fractures. CONCLUSION Exposure to cold temperatures is associated with an increased risk of OF hospitalizations. Females, patients aged 80 years or older and patients with hip fractures might be more vulnerable to the cold effect of AT.
Collapse
Affiliation(s)
- Shuai Lu
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xuejiao Liu
- Department of Medical Record Management and Statistics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yanlin Niu
- Beijing Center for Disease Prevention and Control, Institute for Nutrition and Food Hygiene, Beijing 100035, China
| | - Feng Li
- Department of Orthopedics, The Third People's Hospital of Xiao Shan Hangzhou, Hangzhou 311251, China
| | - Maoqi Gong
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yejun Zha
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Qingchen Chao
- China National Climate Center, Beijing 100081, China
| | - Bo Lu
- China National Climate Center, Beijing 100081, China
| | - Baichao Zhang
- China National Climate Center, Beijing 100081, China
| | - Ning Li
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Jia Chen
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Rui Yuan
- Department of Medical Record Management and Statistics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xieyuan Jiang
- Department of Orthopedic Trauma, Beijing Jishuitan Hospital, Beijing 100035, China.
| |
Collapse
|
6
|
Adeoye AO, Hadie SNH, Munajat I, Mohd Zaharri NI, Zawawi MSF, Tuan Sharif SE, Sulaiman AR. Periosteum: Functional Anatomy and Clinical Application. MALAYSIAN JOURNAL OF MEDICINE AND HEALTH SCIENCES 2023; 19:362-374. [DOI: 10.47836/mjmhs.19.3.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Periosteum is a connective tissue that envelopes the outer surface of bones and is tightly bound to the underlying bone by Sharpey’s fibers. It is composed of two layers, the outer fibrous layer and the inner cambium layer. The periosteum is densely vascularised and contains an osteoprogenitor niche that serves as a repository for bone-forming cells, which makes it an essential bone-regenerating tissue and has immensely contributed to fracture healing. Due to the high vascularity of inner cambium layer of the periosteum, periosteal transplantation has been widely used in the management of bone defects and fracture by orthopedic surgeons. Nevertheless, the use of periosteal graft in the management of bone defect is limited due to its contracted nature after being harvested. This review summarizes the current state of knowledge about the structure of periosteum, and how periosteal transplantation have been used in clinical practices, with special reference on its expansion.
Collapse
|
7
|
Chen X, Yu B, Wang Z, Li Q, Dai C, Wei J. Progress of Periosteal Osteogenesis: The Prospect of In Vivo Bioreactor. Orthop Surg 2022; 14:1930-1939. [PMID: 35794789 PMCID: PMC9483074 DOI: 10.1111/os.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Repairing large segment bone defects is still a clinical challenge. Bone tissue prefabrication shows great translational potentials and has been gradually accepted clinically. Existing bone reconstruction strategies, including autologous periosteal graft, allogeneic periosteal transplantation, xenogeneic periosteal transplantation, and periosteal cell tissue engineering, are all clinically valuable treatments and have made significant progress in research. Herein, we reviewed the research progress of these techniques and briefly explained the relationship among in vivo microenvironment, mechanical force, and periosteum osteogenesis. Moreover, we also highlighted the importance of the critical role of periosteum in osteogenesis and explained current challenges and future perspective.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Baofu Yu
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Zi Wang
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Chuanchang Dai
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| | - Jiao Wei
- Department of Plastic and Reconstructive Surgery, The Ninth Affiliated Hospital of Shanghai Jiaotong Medicine University, Shanghai, China
| |
Collapse
|
8
|
Zhang F, Zhang X, Zhou G, Zhao G, Zhu S, Zhang X, Xiang N, Zhu W. Is Cold Apparent Temperature Associated With the Hospitalizations for Osteoporotic Fractures in the Central Areas of Wuhan? A Time-Series Study. Front Public Health 2022; 10:835286. [PMID: 35284367 PMCID: PMC8904880 DOI: 10.3389/fpubh.2022.835286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis is alarming problem due to aggravation of global aging, especially in China. Osteoporotic fracture (OF) is one of the most severe consequents of osteoporosis. Many previous studies found that environmental factors had adverse effects on human health. Cold temperature was associated with OF and bone metabolism in prior observational and experimental researches. However, few studies had been conducted on the acute effect of low temperature and OF. Data on daily meteorological factors and hospitalizations for OF were collected from Wuhan, China, between January 1, 2017 to December 24, 2019. Apparent temperature (AT), comprehensively considered a variety of environmental factors, was calculated by ambient temperature, relative humidity and wind speed. A generalized linear regression model combined with distributed lag non-linear regression model (DLNM) with quasi-Poisson link was used to explore the association between AT and the number of hospitalizations for OF. Subgroup analyses stratified by gender, age and the history of fracture were applied for detecting susceptible people. The exposure-response curve of AT and OF were generally U-shaped with lowest point at 25.8°C. The significant relationship of AT-OF existed only in cold effect (-2.0 vs. 25.8°C) while not in warm effect (37.0 vs. 25.8°C). Statistically significant risks of OF for cold effects were only found in females [RR = 1.12 (95%CI: 1.02, 1.24) at lag 2 day], aged <75 years old [RR = 1.18 (95%CI: 1.04, 1.33) and 1.17 (95%CI: 1.04, 1.33) at lag 2 and 3 days, respectively] and people with history of fracture [RR = 1.39 (95%CI: 1.02, 1.90) and 1.27 (95%CI: 1.05, 1.53) at lag 1 and 2 days, respectively]. The significant associations of AT on OF were only found in cold effect. The females, people aged <75 years and people with history of fracture possibly appeared to be more vulnerable. Public health departments should pay attention to the negative effect of cold AT and take measures in time.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, China
| | - Guangwen Zhou
- Department of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| | - Nan Xiang
- Department of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Li C, Fennessy P. The periosteum: a simple tissue with many faces, with special reference to the antler-lineage periostea. Biol Direct 2021; 16:17. [PMID: 34663443 PMCID: PMC8522104 DOI: 10.1186/s13062-021-00310-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Periosteum is a thin membrane covering bone surfaces and consists of two layers: outer fibrous layer and inner cambium layer. Simple appearance of periosteum has belied its own complexity as a composite structure for physical bone protection, mechano-sensor for sensing mechanical loading, reservoir of biochemical molecules for initiating cascade signaling, niche of osteogenic cells for bone formation and repair, and "umbilical cord" for nourishing bone tissue. Periosteum-derived cells (PDCs) have stem cell attributes: self-renewal (no signs of senescence until 80 population doublings) and multipotency (differentiate into fibroblasts, osteoblasts, chondrocytes, adipocytes and skeletal myocytes). In this review, we summarized the currently available knowledge about periosteum and with special references to antler-lineage periostea, and demonstrated that although periosteum is a type of simple tissue in appearance, with multiple faces in functions; antler-lineage periostea add another dimension to the properties of somatic periostea: capable of initiation of ectopic organ formation upon transplantation and full mammalian organ regeneration when interacted with the covering skin. Very recently, we have translated this finding into other mammals, i.e. successfully induced partial regeneration of the amputated rat legs. We believe further refinement along this line would greatly benefit human health.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, 1345 Pudong Rd., Changchun, 130000, Jilin, China.
| | - Peter Fennessy
- AbacusBio Limited, 442 Moray Place, Dunedin, New Zealand
| |
Collapse
|
10
|
Watanabe-Takano H, Ochi H, Chiba A, Matsuo A, Kanai Y, Fukuhara S, Ito N, Sako K, Miyazaki T, Tainaka K, Harada I, Sato S, Sawada Y, Minamino N, Takeda S, Ueda HR, Yasoda A, Mochizuki N. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep 2021; 36:109380. [PMID: 34260913 DOI: 10.1016/j.celrep.2021.109380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Collapse
Affiliation(s)
- Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan.
| | - Hiroki Ochi
- Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Ayano Chiba
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Ayaka Matsuo
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Naoki Ito
- Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keisuke Sako
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
| | - Ichiro Harada
- Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
| | - Shingo Sato
- Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yasuhiro Sawada
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan; Department of Rehabilitation for Motor Functions, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Naoto Minamino
- Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
| | - Shu Takeda
- Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
| | - Hiroki R Ueda
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Yasoda
- Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
11
|
Ait Oumghar I, Barkaoui A, Chabrand P. Toward a Mathematical Modeling of Diseases' Impact on Bone Remodeling: Technical Review. Front Bioeng Biotechnol 2020; 8:584198. [PMID: 33224935 PMCID: PMC7667152 DOI: 10.3389/fbioe.2020.584198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
A wide variety of bone diseases have hitherto been discovered, such as osteoporosis, Paget's disease, osteopetrosis, and metastatic bone disease, which are not well defined in terms of changes in biochemical and mechanobiological regulatory factors. Some of these diseases are secondary to other pathologies, including cancer, or to some clinical treatments. To better understand bone behavior and prevent its deterioration, bone biomechanics have been the subject of mathematical modeling that exponentially increased over the last years. These models are becoming increasingly complex. The current paper provides a timely and critical analysis of previously developed bone remodeling mathematical models, particularly those addressing bone diseases. Besides, mechanistic pharmacokinetic/pharmacodynamic (PK/PD) models, which englobe bone disease and its treatment's effect on bone health. Therefore, the review starts by presenting bone remodeling cycle and mathematical models describing this process, followed by introducing some bone diseases and discussing models of pathological mechanisms affecting bone, and concludes with exhibiting the available bone treatment procedures considered in the PK/PD models.
Collapse
Affiliation(s)
- Imane Ait Oumghar
- Laboratoire des Energies Renouvelables et Matériaux Avancés (LERMA), Université Internationale de Rabat, Rabat-Sala El Jadida, Morocco
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Abdelwahed Barkaoui
- Laboratoire des Energies Renouvelables et Matériaux Avancés (LERMA), Université Internationale de Rabat, Rabat-Sala El Jadida, Morocco
| | - Patrick Chabrand
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| |
Collapse
|
12
|
Yang H, Sun L, Cai W, Gu J, Xu D, Deb A, Duan J. DDR2, a discoidin domain receptor, is a marker of periosteal osteoblast and osteoblast progenitors. J Bone Miner Metab 2020; 38:670-677. [PMID: 32415375 PMCID: PMC7581459 DOI: 10.1007/s00774-020-01108-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The periosteum has a bilayered structure that surrounds cortical bone. The outer layer is rich in connective tissue and fibroblasts, while the inner layer in contact with the cortical surface of the bone predominantly consists of osteoblasts and osteoblast progenitors. The identification of cell-specific surface markers of the bilayered structure of the periosteum is important for the purpose of tissue regeneration. MATERIALS AND METHODS We investigated the expression of the discoidin domain tyrosine kinase receptor DDR2, fibroblast specific protein-1 (FSP-1) and alkaline phosphatase (ALP) in the periosteum of cortical bone by immunohistochemistry. Osteogenic differentiation was compared between DDR2- and FSP-1-expressing cells flow-sorted from the periosteum. RESULTS We showed that DDR2 predominantly labeled osteogenic cells residing in the inner layer of the periosteum and that Pearson's coefficient of colocalization indicated a significant correlation with the expression of ALP. The mineralization of DDR2-expressing osteogenic cells isolated from the periosteum was significantly induced. In contrast, FSP-1 predominantly labeled the outer layer of periosteal fibroblasts, and Pearson's coefficient of colocalization indicated that FSP-1 was poorly correlated with the expression of DDR2 and ALP. FSP-1-expressing periosteal fibroblasts did not exhibit osteogenic differentiation for the induction of bone mineralization. CONCLUSION DDR2 is a novel potential cell surface marker for identifying and isolating osteoblasts and osteoblast progenitors within the periosteum that can be used for musculoskeletal regenerative therapies.
Collapse
Affiliation(s)
- Haili Yang
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Lei Sun
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Wenqian Cai
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Jingkai Gu
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Dacai Xu
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
- Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, 200031, China
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, Department of Molecular Cell and Developmental Biology, UCLA Cardiovascular Medicine Research Theme, Eli and Edythe Broad Institute of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, 675 Charles E Young Drive S, MRL 3609, Los Angeles, CA, 90095, USA.
| | - Jinzhu Duan
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
13
|
Chen J, Lazarenko OP, Zhao H, Wankhade UD, Pedersen K, Watt J, Ronis MJJ. Nox4 Expression Is Not Required for OVX-Induced Osteoblast Senescence and Bone Loss in Mice. JBMR Plus 2020; 4:e10376. [PMID: 32803108 PMCID: PMC7422714 DOI: 10.1002/jbm4.10376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/12/2022] Open
Abstract
Estrogen deficiency and aging play critical roles in the pathophysiology of bone as a result of increased oxidative stress. It has been suggested that prevention of NADPH oxidase- (Nox-) dependent accumulation of ROS may be an approach to potentially minimize bone loss caused by these conditions. Using ovariectomized (OVX) and Nox4 gene-deletion mouse models, we investigated the role of Nox4 in OVX-induced bone loss and osteoblast senescence signaling. Six-month-old WT C57Bl6 mice were allocated to a sham control group, OVX, and OVX plus E2 treatment group for 8 weeks. Decreased bone mass including BMD and BMC were found in the OVX group compared with the sham control (p < 0.05); E2 treatment completely reversed OVX-induced bone loss. Interestingly, the prevention of OVX-induced bone loss by E2 was associated with the elimination of increased senescence signaling in bone osteoblastic cells from the OVX group. E2 blunted OVX-induced p53 and p21 overexpression, but not p16 and Nox4 in bone. In addition, 8- and 11-month-old Nox4 KO female mice were OVX for 8 weeks. Significant bone loss and increased bone osteoblastic cell senescence signaling occurred not only in Nox4 KO OVX mice compared with sham-operated animals, but also in 11-month-old Nox4 KO sham mice compared with 8-month-old Nox4 KO sham mice (p < 0.05). These data suggest that Nox4-mediated ROS in bone osteoblastic cells may be dispensable for sex steroid deficiency-induced bone loss and senescence. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin‐Ran Chen
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Oxana P Lazarenko
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Haijun Zhao
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Umesh D Wankhade
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockARUSA
- Arkansas Children's Nutrition CenterLittle RockARUSA
| | - Kim Pedersen
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - James Watt
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin J J Ronis
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
14
|
Chen JR, Wankhade UD, Alund AW, Blackburn ML, Shankar K, Lazarenko OP. 3-(3-Hydroxyphenyl)-Propionic Acid (PPA) Suppresses Osteoblastic Cell Senescence to Promote Bone Accretion in Mice. JBMR Plus 2019; 3:e10201. [PMID: 31667457 PMCID: PMC6808226 DOI: 10.1002/jbm4.10201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022] Open
Abstract
Phenolic acids (PAs) are metabolites derived from polyphenolic compounds found in fruits and vegetables resulting from the actions of gut bacteria. Previously, we reported that the levels of seven individual PAs were found to be at least 10 times higher in the serum of rats fed a blueberry (BB)‐containing diet compared to those fed a control diet. We have characterized the effects of one such BB‐associated serum PA, 3‐(3‐hydroxyphenyl)‐propionic acid (PPA), on senescence signaling and promotion of mesenchymal stem cell differentiation toward osteoblasts, while suppressing adipogenesis in the stem cells. To better understand the mechanistic actions of PPA on bone formation in vivo, we administered four doses of PPA (0.1, 0.5, 1, and 5 mg/kg/day; daily i.p.) to 1‐month‐old female C57BL6/J mice for 30 days. We did not observe significant effects of PPA on cortical bone; however, there were significantly higher bone volume and trabecular thickness and increased osteoblastic cell number, but decreased osteoclastic cell number in PPA‐treated groups compared to controls. These morphological and cellular outcomes of bone were reflected in changes of bone formation markers in serum and bone marrow plasma. PPA treatment reduced senescence signaling as evaluated by senescence‐associated β‐galactosidase activity, PPARγ, p53, and p21 expression in bone. In conclusion, PPA is capable of altering the mesenchymal stem cell differentiation program and bone cell senescence. This raises the possibility that BB‐rich diets promote bone growth through increasing systemic PAs, a question that merits additional investigation. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Umesh D Wankhade
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Alexander W Alund
- Graduate Program in Interdisciplinary Biomedical Sciences University of Arkansas for Medical Sciences Little Rock AR USA
| | - Michael L Blackburn
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Kartik Shankar
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Oxana P Lazarenko
- Arkansas Children's Nutrition Center Little Rock AR USA.,Department of Pediatrics University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
15
|
Chen S, Yang L, He S, Yang J, Liu D, Bao Q, Qin H, Du W, Zhong X, Chen C, Zong Z. Preactivation of β-catenin in osteoblasts improves the osteoanabolic effect of PTH in type 1 diabetic mice. J Cell Physiol 2019; 235:1480-1493. [PMID: 31301073 DOI: 10.1002/jcp.29068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes (T1D) is correlated with osteopenia primarily due to low bone formation. Parathyroid hormone (PTH) is a known anabolic agent for bone, the anabolic effects of which are partially mediated through the Wnt/β-catenin signaling pathway. In the present study, we first determined the utility of intermittent PTH treatment in a streptozotocin-induced T1D mouse model. It was shown that the PTH-induced anabolic effects on bone mass and bone formation were attenuated in T1D mice compared with nondiabetic mice. Further, PTH treatment failed to activate β-catenin signaling in osteoblasts of T1D mice and was unable to improve osteoblast proliferation and differentiation. Next, the Col1-3.2 kb-CreERTM; β-cateninfx(ex3) mice were used to conditionally activate β-catenin in osteoblasts by injecting tamoxifen, and we addressed whether or not preactivation of β-catenin boosted the anabolic action of PTH on T1D-related bone loss. The results demonstrated that pretreatment with activation of osteoblastic β-catenin followed by PTH treatment outperformed PTH or β-catenin activation monotherapy and led to greatly improved bone structure, bone mass, and bone strength in this preclinical model of T1DM. Further analysis demonstrated that osteoblast proliferation and differentiation, as well as osteoprogenitors in the marrow, were all improved in the combination treatment group. These findings indicated a clear advantage of developing β-catenin as a target to improve the efficacy of PTH in the treatment of T1D-related osteopenia.
Collapse
Affiliation(s)
- Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Orthopedics, The 118th Hospital of the Chinese People's Liberation Army, Zhejiang, Wenzhou, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiazhi Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wenqiong Du
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Xin Zhong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Can Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, China.,Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
16
|
Gao B, Deng R, Chai Y, Chen H, Hu B, Wang X, Zhu S, Cao Y, Ni S, Wan M, Yang L, Luo Z, Cao X. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Invest 2019; 129:2578-2594. [PMID: 30946695 DOI: 10.1172/jci98857] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The periosteum, a thin tissue that covers almost the entire bone surface, accounts for more than 80% of human bone mass and is essential for bone regeneration. Its osteogenic and bone regenerative abilities are well studied, but much is unknown about the periosteum. In this study, we found that macrophage-lineage cells recruit periosteum-derived cells (PDCs) for cortical bone formation. Knockout of colony stimulating factor-1 eliminated macrophage-lineage cells and resulted in loss of PDCs with impaired periosteal bone formation. Moreover, macrophage-lineage TRAP+ cells induced transcriptional expression of periostin and recruitment of PDCs to the periosteal surface through secretion of platelet-derived growth factor-BB (PDGF-BB), where the recruited PDCs underwent osteoblast differentiation coupled with type H vessel formation. We also found that subsets of Nestin+ and LepR+ PDCs possess multipotent and self-renewal abilities and contribute to cortical bone formation. Nestin+ PDCs are found primarily during bone development, whereas LepR+ PDCs are essential for bone homeostasis in adult mice. Importantly, conditional knockout of Pdgfrβ (platelet-derived growth factor receptor beta) in LepR+ cells impaired periosteal bone formation and regeneration. These findings uncover the essential role of periosteal macrophage-lineage cells in regulating periosteum homeostasis and regeneration.
Collapse
Affiliation(s)
- Bo Gao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ruoxian Deng
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yu Chai
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hao Chen
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bo Hu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Wang
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shouan Zhu
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yong Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuangfei Ni
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liu Yang
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhuojing Luo
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xu Cao
- Department of Orthopaedic Surgery, Institute of Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Yukata K, Xie C, Li TF, Brown ML, Kanchiku T, Zhang X, Awad HA, Schwarz EM, Beck CA, Jonason JH, O'Keefe RJ. Teriparatide (human PTH 1-34) compensates for impaired fracture healing in COX-2 deficient mice. Bone 2018; 110:150-159. [PMID: 29408411 PMCID: PMC5878736 DOI: 10.1016/j.bone.2018.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/08/2023]
Abstract
Genetic ablation of cyclooxygenase-2 (COX-2) in mice is known to impair fracture healing. To determine if teriparatide (human PTH1-34) can promote healing of Cox-2-deficient fractures, we performed detailed in vivo analyses using a murine stabilized tibia fracture model. Periosteal progenitor cell proliferation as well as bony callus formation was markedly reduced in Cox-2-/- mice at day 10 post-fracture. Remarkably, intermittent PTH1-34 administration increased proliferation of periosteal progenitor cells, restored callus formation on day 7, and enhanced bone formation on days 10, 14 and 21 in Cox-2-deficient mice. PTH1-34 also increased biomechanical torsional properties at days 10 or 14 in all genotypes, consistent with enhanced bony callus formation by radiologic examinations. To determine the effects of intermittent PTH1-34 for callus remodeling, TRAP staining was performed. Intermittent PTH1-34 treatment increased the number of TRAP positive cells per total callus area on day 21 in Cox-2-/- fractures. Taken together, the present findings indicate that intermittent PTH1-34 treatment could compensate for COX-2 deficiency and improve impaired fracture healing in Cox-2-deficient mice.
Collapse
Affiliation(s)
- Kiminori Yukata
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Tian-Fang Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Matthew L Brown
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Tsukasa Kanchiku
- Department of Orthopedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A Beck
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer H Jonason
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Regis J O'Keefe
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Zhang W, Zhu J, Ma T, Liu C, Hai B, Du G, Wang H, Li N, Leng H, Xu Y, Song C. Comparison of the effects of once-weekly and once-daily rhPTH (1-34) injections on promoting fracture healing in rodents. J Orthop Res 2018; 36:1145-1152. [PMID: 28960481 DOI: 10.1002/jor.23750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
To compare the efficacy of once-weekly and once-daily subcutaneous injections of teriparatide (recombinant human parathyroid hormone 1-34) on fracture healing, 50 adult male Sprague-Dawley rats were subjected to a unilateral tibia fracture and received internal fixation with a Kirschner needle. Based on the injection dose and frequency, the rats were randomly divided into five groups (n = 10 each): subcutaneous injections of saline or 10 µg/kg/w, 20 µg/kg/w, 10 µg/kg/d, and 20 µg/kg/d teriparatide. Four weeks later, the rats were euthanatized, and the fractured tibiae were assessed using X-rays, dual-energy X-ray absorptiometry, micro-computed tomography, the three-point bending biomechanics test, and histology. Compared to the saline control group, either daily or weekly subcutaneous injections of teriparatide significantly increased bone mass, improved the bone microarchitecture, and promoted fracture healing (p < 0.05). There were no significant differences in bone mineral density (BMD), bone microstructure or bone strength between the 20 µg/kg/w and 10 µg/kg/d groups (p > 0.05). Teriparatide 20 µg weekly injections promoted bone fracture healing to the same extent as teriparatide 10 µg daily injections, which can dramatically decrease the cumulative dosage of teriparatide injections. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1145-1152, 2018.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Junxiong Zhu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Teng Ma
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Can Liu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Bao Hai
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Guohong Du
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Hong Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Nan Li
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| | - Yingsheng Xu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Chunli Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Spinal Diseases, 49 North Garden Rd Haidian District, Beijing, China
| |
Collapse
|
19
|
Intermittent Administration of Parathyroid Hormone 1-34 Enhances Osteogenesis of Human Mesenchymal Stem Cells by Regulating Protein Kinase Cδ. Int J Mol Sci 2017; 18:ijms18102221. [PMID: 29064396 PMCID: PMC5666900 DOI: 10.3390/ijms18102221] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 12/13/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) can differentiate into osteoblasts and are regulated by chemical cues. The recombinant N-terminal (1–34 amino acids) fragment of the parathyroid hormone (PTH (1–34)) is identified to promote osteogenesis. The osteoanabolic effects of intermittent PTH (1–34) treatment are linked to a complex consisting of signaling pathways; additionally, protein kinase C (PKC) act as mediators of multifunctional signaling transduction pathways, but the role of PKC δ (PKCδ), a downstream target in regulating osteoblast differentiation during intermittent administration of PTH (1–34) is less studied and still remains elusive. The purpose of this study is to examine the role of PKCδ during intermittent and continuous PTH (1–34) administration using osteoblast-lineage-committed hMSCs. Relative gene expression of osteoblast-specific genes demonstrated significant upregulation of RUNX2, type I Collagen, ALP, and Osterix and increased alkaline phosphatase activity in the presence of PTH (1–34). Intermittent PTH (1–34) administration increased PKC activity at day 7 of osteogenic differentiation, whereas inhibition of PKC activity attenuated these effects. In addition, the specific isoform PKCδ was activated upon treatment. These findings demonstrate that intermittent PTH (1–34) treatment enhances the osteogenesis of hMSCs by upregulating osteoblast-specific genes via PKCδ activation.
Collapse
|
20
|
Inhibition of substance P signaling aggravates the bone loss in ovariectomy-induced osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:112-121. [PMID: 27237582 DOI: 10.1016/j.pbiomolbio.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/24/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Substance P signaling regulates the functions of both osteoblast and osteoclast. Available reports on the effects of substance P on bone mass are contradictory. The objective of this study was to determine the change of substance P expression in the osteoporotic bone of OVX mice. The effects of substance P signaling blockade by using its specific receptor antagonist L-703606 on bone remodeling in sham-operated mice and OVX mice were also investigated. METHODS Forty-eight nine-week-old female C57BL/6J mice were evenly distributed into three groups with sham surgery, OVX or OVX with estrogen replacement. Substance P expression in the bones of each group of mice was evaluated by immunohistochemistry and enzyme immunoassay. Another thirty-two nine-week-old female C57BL/6J mice were divided into a SHAM group (sham surgery followed by vehicle treatment with DMSO), a SHAM + L group (sham surgery followed by 15 mg/kg/d L-703606 repeated intraperitoneal injections), an OVX group (ovariectomy with the same vehicle treatment) and an OVX + L group (ovariectomy with the same L-703606 injections), with 8 mice in each group. Treatment started 3 weeks after surgery and last for 3 weeks. A 2 × 2 factorial experimental design was used to detect the effects of substance P signaling blockade on bone remodeling in sham-operated mice and OVX mice. Techniques including micro-computed tomography, biomechanical testing, histomorphometric analysis, enzyme immunoassay, and real-time PCR were employed. RESULTS Immunohistochemistry and enzyme immunoassay revealed that substance P expression significantly decreased in the bones of OVX mice both at 3 weeks and 6 weeks after surgery. Micro-CT tomography demonstrated that application of L-703606 led to bone loss in sham-operated mice, and aggravated the micro-structural deterioration of bones in OVX mice. This was shown by reduced BV/TV (Mean bone volume fraction), Tb.N (Mean trabecular number) and Tb.Th (Mean trabecular thickness), and increased Tb.Sp (Mean trabecular separation). Biomechanical analysis demonstrated that blockade of substance P signaling reduced the maximum stress and maximum load of L3 vertebrae and tibiae. Inhibited recruitment of bone mesenchymal stem cells (BMSCs) to bone remodeling sites, which was evidenced by increased number of osteoclasts, decreased number of osteoblasts and increased osteoid volume in the secondary spongiosa, was observed in the mice treated with L-703606. A significant decrease of OPG/RANKL ratio was also found in the bones of mice treated with L-703606. Body weight, uterine weight and serum estradiol level were not significantly different between the mice treated with L-703606 and those treated with vehicle. CONCLUSION The results demonstrated that blocking substance P signaling led to bone loss in sham-operated mice, and exacerbated the bone loss in OVX mice. Substance P signaling had an important role in the maintenance of bone mass.
Collapse
|
21
|
Mastaglia S, Mautalen C. Regression of an ossifying fibroma of the tibia after a fracture involving the lesion. Possible role of the periostina. CLINICAL CASES IN MINERAL AND BONE METABOLISM 2016; 12:262-4. [PMID: 26811709 DOI: 10.11138/ccmbm/2015.12.3.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ossifying fibroma (OF) of the long bones is a benign fibro-osseous lesion typically seen in the first decade of life. OF usually progresses until the age of 10 years, but is occasionally found to regress spontaneously after puberty. The pathogenesis of OF is unknown; however, it has been suggested that the basic defect is in the periosteum. We present the radiological course of an OF of the tibia in a young patient, showing a rapid almost complete regression of the lesion after a tibial fracture at the lesion site. We postulate that the fracture-induced activation of the periosteum in a growing skeleton was fundamental to the regression of the lesion.
Collapse
Affiliation(s)
- Silvina Mastaglia
- Metabolic Bone Diseases Laboratory, Institute of Immunology, Genetic and Metabolism (INIGEM), CONICET-UBA, Buenos Aires, Argentina
| | | |
Collapse
|
22
|
Gafni RI, Guthrie LC, Kelly MH, Brillante BA, Christie CM, Reynolds JC, Yovetich NA, James R, Collins MT. Transient Increased Calcium and Calcitriol Requirements After Discontinuation of Human Synthetic Parathyroid Hormone 1-34 (hPTH 1-34) Replacement Therapy in Hypoparathyroidism. J Bone Miner Res 2015; 30:2112-8. [PMID: 25990370 DOI: 10.1002/jbmr.2555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 11/06/2022]
Abstract
Synthetic human PTH 1-34 (hPTH 1-34) replacement therapy in hypoparathyroidism maintains eucalcemia and converts quiescent bone to high-turnover bone. However, the skeletal and metabolic effects of drug discontinuation have not been reported. Nine subjects with hypoparathyroidism received subcutaneous injections of hPTH 1-34 two to three times daily for 19.8 to 61.3 months and then transitioned back to calcium and calcitriol. Biochemistries and bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA) were assessed at baseline, while on treatment, and at follow-up 3 to 12 months after drug discontinuation. Two subjects developed hypocalcemia when hPTH 1-34 was abruptly discontinued. Thus, to avoid hypocalcemia, subjects were slowly weaned from hPTH 1-34 over several weeks. When hPTH 1-34 was stopped, subjects were requiring two to three times pretreatment doses of calcitriol and calcium to maintain blood calcium levels. Doses were gradually reduced over many weeks until calcium levels were stable on doses similar to baseline. Bone-specific alkaline phosphatase (BSAP), N-telopeptide (NTX), and osteocalcin (OC) increased significantly with hPTH 1-34; at follow-up, BSAP and NTX had returned to baseline while OC was still slightly elevated. During treatment, BMD was unchanged at the hip and lateral spine but declined at the anterior-posterior (AP) spine, radius, and total body. During weaning, BMD increased, with the hip and lateral spine exceeding pre-hPTH 1-34 values and the whole body returning to baseline. AP spine was increased non-significantly compared to baseline at follow-up. hPTH 1-34 must be gradually weaned in hypoparathyroid patients with high doses of oral medications given to avoid hypocalcemia. The transient increased requirements accompanied by increased BMD after long-term hPTH 1-34 therapy suggest a reversal of the expanded remodeling space favoring bone formation as the skeleton returns to a low-turnover state, reminiscent of the hungry bone syndrome. Further study and close monitoring is required to ensure safe transition to conventional therapy and to elucidate the physiological mechanism of this phenomenon.
Collapse
Affiliation(s)
- Rachel I Gafni
- Skeletal Clinical Studies Unit (SCSU), Craniofacial and Skeletal Diseases Branch (CSDB), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lori C Guthrie
- Skeletal Clinical Studies Unit (SCSU), Craniofacial and Skeletal Diseases Branch (CSDB), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Marilyn H Kelly
- Skeletal Clinical Studies Unit (SCSU), Craniofacial and Skeletal Diseases Branch (CSDB), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Beth A Brillante
- Skeletal Clinical Studies Unit (SCSU), Craniofacial and Skeletal Diseases Branch (CSDB), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - James C Reynolds
- Clinical Center (CC)/Nuclear Medicine Department (NMD), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Michael T Collins
- Skeletal Clinical Studies Unit (SCSU), Craniofacial and Skeletal Diseases Branch (CSDB), National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
23
|
Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 2015; 22:41-50. [PMID: 25854704 DOI: 10.1016/j.coph.2015.03.005] [Citation(s) in RCA: 322] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/24/2015] [Indexed: 12/16/2022]
Abstract
Parathyroid hormone (PTH) is essential for the maintenance of calcium homeostasis through, in part, its actions to regulate bone remodeling. While PTH stimulates both bone formation and bone resorption, the duration and periodicity of exposure to PTH governs the net effect on bone mass, that is whether it is catabolic or anabolic. PTH receptor signaling in osteoblasts and osteocytes can increase the RANKL/OPG ratio, increasing both osteoclast recruitment and osteoclast activity, and thereby stimulating bone resorption. In contrast, PTH-induced bone formation is explained, at least in part, by its ability to downregulate SOST/sclerostin expression in osteocytes, permitting the anabolic Wnt signaling pathway to proceed. The two modes of administration of PTH, that is, continuous vs. intermittent, can regulate, in bone cells, different sets of genes; alternatively, the same sets of genes exposed to PTH in sustained vs. transient way, will favor bone resorption or bone formation, respectively. This article reviews the effects of PTH on bone cells that lead to these dual catabolic and anabolic actions on the skeleton.
Collapse
Affiliation(s)
- Barbara C Silva
- Santa Casa de Belo Horizonte and Felicio Rocho Hospital, Division of Endocrinology, Brazil
| | - John P Bilezikian
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, Columbia University, United States.
| |
Collapse
|
24
|
Heo SC, Shin WC, Lee MJ, Kim BR, Jang IH, Choi EJ, Lee JS, Kim JH. Periostin accelerates bone healing mediated by human mesenchymal stem cell-embedded hydroxyapatite/tricalcium phosphate scaffold. PLoS One 2015; 10:e0116698. [PMID: 25775460 PMCID: PMC4361583 DOI: 10.1371/journal.pone.0116698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 12/12/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Periostin, an extracellular matrix protein, is expressed in bone, more specifically, the periosteum and periodontal ligaments, and plays a key role in formation and metabolism of bone tissues. Human adipose tissue-derived mesenchymal stem cells (hASCs) have been reported to differentiate into osteoblasts and stimulate bone repair. However, the role of periostin in hASC-mediated bone healing has not been clarified. In the current study, we examined the effect of periostin on bone healing capacity of hASCs in a critical size calvarial defect model. METHODS AND RESULTS Recombinant periostin protein stimulated migration, adhesion, and proliferation of hASCs in vitro. Implantation of either hASCs or periostin resulted in slight, but not significant, stimulation of bone healing, whereas co-implantation of hASCs together with periostin further potentiated bone healing. In addition, the number of Ki67-positive proliferating cells was significantly increased in calvarial defects by co-implantation of both hASCs and periostin. Consistently, proliferation of administered hASCs was stimulated by co-implantation with periostin in vivo. In addition, co-delivery of hASCs with periostin resulted in markedly increased numbers of CD31-positive endothelial cells and α-SMA-positive arterioles in calvarial defects. CONCLUSIONS These results suggest that recombinant periostin potentiates hASC-mediated bone healing by stimulating proliferation of transplanted hASCs and angiogenesis in calvarial defects.
Collapse
Affiliation(s)
- Soon Chul Heo
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Won Chul Shin
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Mi Jeong Lee
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Ba Reun Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Il Ho Jang
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Eun-Jung Choi
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
| | - Jung Sub Lee
- Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
- * E-mail: (JHK); (JSL)
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Gyeongsangnam-do, Republic of Korea
- Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 626-770, Gyeongsangnam-do, Republic of Korea
- * E-mail: (JHK); (JSL)
| |
Collapse
|
25
|
Roberts SJ, van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone 2015; 70:10-8. [PMID: 25193160 DOI: 10.1016/j.bone.2014.08.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/14/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022]
Abstract
The cartilage- and bone-forming properties of the periosteum have long since been recognized. As one of the major sources of skeletal progenitor cells, the periosteum plays a crucial role not only in bone development and growth, but also during bone fracture healing. Aided by the continuous expansion of tools and techniques, we are now starting to acquire more insight into the specific role and regulation of periosteal cells. From a therapeutic point of view, the periosteum has attracted much attention as a cell source for bone tissue engineering purposes. This interest derives not only from the physiological role of the periosteum during bone repair, but is also supported by the unique properties and marked bone-forming potential of expanded periosteum-derived cells. We provide an overview of the current knowledge of periosteal cell biology, focusing on the cellular composition and molecular regulation of this remarkable tissue, as well as the application of periosteum-derived cells in regenerative medicine approaches. This article is part of a Special Issue entitled "Stem Cells and Bone".
Collapse
Affiliation(s)
- Scott J Roberts
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, Middlesex HA7 4LP, UK
| | - Nick van Gastel
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Clinical and Experimental Endocrinology, KU Leuven, O&N 1 Herestraat 49 bus 902, 3000 Leuven, Belgium
| | - Geert Carmeliet
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Clinical and Experimental Endocrinology, KU Leuven, O&N 1 Herestraat 49 bus 902, 3000 Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1 Herestraat 49 bus 813, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Hu F, Wang W, Zhou HC, Shang XF. High expression of periostin is dramatically associated with metastatic potential and poor prognosis of patients with osteosarcoma. World J Surg Oncol 2014; 12:287. [PMID: 25224568 PMCID: PMC4247611 DOI: 10.1186/1477-7819-12-287] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/02/2014] [Indexed: 01/26/2023] Open
Abstract
Background Recent studies have found that periostin (PN), as a kind of secreted glycoprotein, is closely related to the metastatic potential and prognosis of many kinds of tumors. This study aimed to examine the expression of PN in patients with osteosarcoma and explore the relationship of PN expression with clinicopathologic factors and prognosis. Methods PN was detected by histopathological and immunohistochemical methods in 62 cases of osteosarcoma and 62 of osteochondroma. Detailed pathological and clinical data were collected by reviewing medical records. Results The results showed that increased PN protein expression was prevalent in osteosarcoma and was significantly associated with pathologic subtype (P =0.000), tumor size (P =0.016) and Enneking stage (P =0.047). Additionally, expression of PN was found to be an independent prognostic factor in osteosarcoma patients. High expression of PN protein is closely correlated to the tumor progression and poor survival of osteosarcoma. Conclusions Our data suggest that PN is a promising biomarker for identifying individuals with poor prognostic potential and suggests its possible use as a prognostic marker in patients with osteosarcoma.
Collapse
Affiliation(s)
- Fei Hu
- Department of Orthopedics, Anhui Provincial Hospital, Anhui Medical University, 17# Lujiang Road, Hefei 230001, People's Republic of China.
| | | | | | | |
Collapse
|
27
|
Abou-Khalil R, Colnot C. Cellular and molecular bases of skeletal regeneration: what can we learn from genetic mouse models? Bone 2014; 64:211-21. [PMID: 24709685 DOI: 10.1016/j.bone.2014.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Although bone repairs through a very efficient regenerative process in 90% of the patients, many factors can cause delayed or impaired healing. To date, there are no reliable biological parameters to predict or diagnose bone repair defects. Orthopedic surgeons mostly base their diagnoses on radiographic analyses. With the recent progress in our understanding of the bone repair process, new methods may be envisioned. Animal models have allowed us to define the key steps of bone regeneration and the biological and mechanical factors that may influence bone healing in positive or negative ways. Most importantly, small animal models such as mice have provided powerful tools to apprehend the genetic bases of normal and impaired bone healing. The current review presents a state of the art of the genetically modified mouse models that have advanced our understanding of the cellular and molecular components of bone regeneration and repair. The review illustrates the use of these models to define the role of inflammation, skeletal cell lineages, signaling pathways, the extracellular matrix, osteoclasts and angiogenesis. These genetic mouse models promise to change the field of orthopedic surgery to help establish genetic predispositions for delayed repair, develop models of non-union that mimic the human conditions and elaborate new therapeutic approaches to enhance bone regeneration.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Céline Colnot
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
28
|
Osteoblastic Differentiation and Mineralization Ability of Periosteum-Derived Cells Compared With Bone Marrow and Calvaria-Derived Cells. J Oral Maxillofac Surg 2014; 72:694.e1-9. [DOI: 10.1016/j.joms.2013.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/21/2022]
|
29
|
Chen JR, Lazarenko OP, Zhang J, Blackburn ML, Ronis MJJ, Badger TM. Diet-derived phenolic acids regulate osteoblast and adipocyte lineage commitment and differentiation in young mice. J Bone Miner Res 2014; 29:1043-53. [PMID: 23832484 DOI: 10.1002/jbmr.2034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/04/2013] [Accepted: 06/29/2013] [Indexed: 11/05/2022]
Abstract
A blueberry (BB)-supplemented diet has been previously shown to significantly stimulate bone formation in rapidly growing male and female rodents. Phenolic acids (PAs) are metabolites derived from polyphenols found in fruits and vegetables as a result of the actions of gut bacteria, and they were found in the serum of rats fed BB-containing diet. We conducted in vitro studies with PAs and demonstrated stimulation of osteoblast differentiation and proliferation. On the other hand, adipogenesis was inhibited. To more fully understand the mechanistic actions of PAs on bone formation, we administered hippuric acid, one of the major metabolites found in animal circulation after BB consumption, to prepubertal female mice for 2 weeks. We found that hippuric acid was able to stimulate bone-forming gene expression but suppress PPARγ expression, leading to increased bone mass dose-dependently. Cellular signaling studies further suggested that the skeletal effects of PAs appeared to be mediated through activation of G-protein-coupled receptor 109A and downstream p38 MAP kinase and osterix. In conclusion, PAs are capable of altering the mesenchymal stem cell differentiation program and merit investigation as potential dietary therapeutic alternatives to drugs for degenerative bone disorders. © 2014 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jin-Ran Chen
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | |
Collapse
|
30
|
Merle B, Bouet G, Rousseau JC, Bertholon C, Garnero P. Periostin and transforming growth factor β-induced protein (TGFβIp) are both expressed by osteoblasts and osteoclasts. Cell Biol Int 2013; 38:398-404. [PMID: 24323465 DOI: 10.1002/cbin.10219] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 11/03/2013] [Indexed: 11/06/2022]
Abstract
Periostin (Postn) and transforming growth factor β-induced protein (TGFβIp) are two closely related extracellular matrix (ECM) proteins predominantly distributed in collagen-rich connective tissues submitted to mechanical strain, including bone and more specifically the periosteum. We have investigated the expression of Postn and TGFβIp mRNA by primary osteoblasts isolated from mouse periosteum and calvaria, or by the osteoblast-like MC3T3-E1 cell line, and by osteoclasts from mouse long bones differentiated in vitro. Secretion of Postn was measured with a specific ELISA. Postn and TGFβIp mRNA were concomitantly expressed in all three osteoblast models all along the differentiation process in a time-dependent manner. Both Postn and TGFβIp transcripts appeared early in osteoblast differentiation, and their expression increased 3-10 times in mature osteoblast cells. Expression decreased after differentiation was achieved and when the cultures mineralised. ELISA for secreted Postn showed a similar pattern. When MC3T3-E1 cells were treated with TGF-β, Postn and TGFβIp mRNA expression and secretion were stimulated, whereas 1.25(OH)(2)D(3) had no detectable effect. Osteoclasts also expressed both Postn and TGFβIp during in vitro differentiation. Expression of both Postn and TGFβIp peaks in the early phases of osteoblast differentiation, and decreases later at the start of mineralisation. A novel finding is that Postn and TGFβIp are expressed by osteoclasts in vitro. Therefore Postn and TGFβIp proteins are potential biomarkers of early osteoblast differentiation and new bone formation.
Collapse
Affiliation(s)
- Blandine Merle
- INSERM Research Unit 1033, Université Lyon 1, Lyon, France
| | | | | | | | | |
Collapse
|
31
|
McCarthy HS, Roberts S. A histological comparison of the repair tissue formed when using either Chondrogide(®) or periosteum during autologous chondrocyte implantation. Osteoarthritis Cartilage 2013; 21:2048-57. [PMID: 24161708 DOI: 10.1016/j.joca.2013.10.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/11/2013] [Accepted: 10/06/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this study, we compare the clinical and histological outcome between periosteum and Chondrogide(®) during autologous chondrocyte implantation (ACI). METHOD This study consisted of 88 patients having received ACI in the knee; 33 treated with Chondrogide(®) (ACI-C) and 55 with periosteum (ACI-P). Post-operative biopsies were taken at a mean of 16.6 ± 8 months (range 7-37 months) and 19 ± 18.4 months (range 4-114) for ACI-C and ACI-P respectively. Histological assessment was performed using the ICRS II and OsScore scoring systems. The immunolocalisation of elastin and collagen types I and II was analysed using specific antibodies. Lysholm scores, a measure of knee function, were obtained pre- and post-operatively at the time of biopsy and annually thereafter. RESULTS Compared with ACI-P, the repair tissue formed from patients treated with ACI-C demonstrated a significantly higher score for cellular morphology (ICRS II score), significantly better surface morphology from medial femoral condyle treated defects (ICRS II score) and a significantly higher proportion of hyaline cartilage formation (OsScore). Elastin fibres were present in both ACI-C and ACI-P samples, although their presence was very variable in quantity, distribution, orientation, thickness and length. Patients treated with ACI-C demonstrated significantly more collagen type II immunolocalisation compared with ACI-P. Both groups exhibited a significant increase in Lysholm score post-ACI. CONCLUSIONS This study demonstrates a significantly better quality of repair tissue formed with ACI-C compared with ACI-P. Hence Chondrogide(®) is perhaps a better alternative to periosteum during ACI.
Collapse
Affiliation(s)
- H S McCarthy
- Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust and ISTM, Keele University, Oswestry, Shropshire SY10 7AG, UK.
| | | |
Collapse
|
32
|
Temple DH, Bazaliiskii VI, Goriunova OI, Weber AW. Skeletal growth in early and late Neolithic foragers from the Cis-Baikal region of Eastern Siberia. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 153:377-86. [DOI: 10.1002/ajpa.22436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 11/08/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel H. Temple
- Department of Anthropology; University of North Carolina Wilmington; Wilmington NC 28403-5907
| | | | - Olga I. Goriunova
- Department of Geoarchaeology; Irkutsk State University; Irkutsk 664003 Russia
| | - Andrzej W. Weber
- Department of Anthropology; University of Alberta; Edmonton AB T6G 2H4 Canada
| |
Collapse
|
33
|
The effects of adjunctive parathyroid hormone injection on bisphosphonate-related osteonecrosis of the jaws: an animal study. Int J Oral Maxillofac Surg 2013; 42:1475-80. [DOI: 10.1016/j.ijom.2013.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/03/2013] [Accepted: 05/01/2013] [Indexed: 11/23/2022]
|
34
|
Dogaki Y, Lee SY, Niikura T, Koga T, Okumachi E, Nishida K, Kuroda R, Kurosaka M. Effects of parathyroid hormone 1-34 on osteogenic and chondrogenic differentiation of human fracture haematoma-derived cells in vitro. J Tissue Eng Regen Med 2013; 10:E365-E371. [PMID: 24039091 DOI: 10.1002/term.1818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022]
Abstract
Parathyroid hormone (PTH) 1-34 has been shown to accelerate fracture healing. Previously, we reported that progenitor cells with osteogenic and chondrogenic potential exist in human fracture haematoma, suggesting that the fracture haematoma-derived progenitor cells (HCs) contribute to fracture healing. However, there has been no study investigating the effect of PTH on HCs. We investigated the effect of pulsatile and continuous PTH treatment on human fracture HCs in vitro. HCs were isolated from seven patients. The HCs were divided into four groups: growth medium; control [osteogenic medium (OM) without PTH]; PTH-C (OM with continuous PTH); and PTH-P (OM with pulsatile PTH) groups. Osteogenic differentiation potential and proliferation of HCs were compared among the four groups. For chondrogenesis, the HCs were divided into two groups: control [chondrogenic medium (CM) without PTH]; and PTH-C (CM with continuous PTH) groups, and chondrogenic differentiation potential was analysed. PTH treatment did not affect cell proliferation, regardless of the mode of administration. Osteogenic activity was also not significantly affected by continuous PTH treatment but significantly inhibited by pulsatile PTH treatment. Conversely, chondrogenic differentiation was significantly inhibited by continuous PTH treatment. Our results revealed that PTH treatment on HCs, either continuous or pulsatile, does not exhibit any positive effect, and indicates that exogenous PTH administration after fracture has no effect on HCs. PTH may not have a positive effect at the fracture site during the early stage of fracture healing in which haematoma formation occurs. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoshihiro Dogaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sang Yang Lee
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takaaki Koga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Etsuko Okumachi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
35
|
Matsumoto Y, Otsuka F, Takano-Narazaki M, Katsuyama T, Nakamura E, Tsukamoto N, Inagaki K, Sada KE, Makino H. Estrogen facilitates osteoblast differentiation by upregulating bone morphogenetic protein-4 signaling. Steroids 2013; 78:513-20. [PMID: 23499826 DOI: 10.1016/j.steroids.2013.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/09/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
Imbalanced functions of osteoclasts and osteoblasts are involved in various types of bone damage including postmenopausal osteoporosis. In the present study, we investigated the cellular mechanism by which estrogen interacts in the process of osteoblastic differentiation regulated by BMP-4 using mouse MC3T3-E1 cells that express estrogen receptors (ER) and BMP-4. Estradiol enhanced BMP-4-induced Runx2, osterix, ALP and osteocalcin expression in MC3T3-E1 cells. BMP-4-induced mineralization shown by Alizarin red staining was also facilitated by estrogen treatment. It was revealed that estrogen upregulated BMP-4-induced Smad1/5/8 phosphorylation, BRE-Luc activity and Id-1 mRNA expression. The expression of BMPRII was increased by estrogen in MC3T3-E1 cells, and inhibition of BMPRII or ALK-2/3 signaling impaired the effect of estrogen on BMP-4 signaling. Of note, the enhanced expression of osterix, ALP and osteocalcin mRNAs induced by BMP-4 and estrogen was reversed in the presence of an ER antagonist. Given that membrane-impermeable estrogen also upregulated BMP-4-induced expression of osteoblastic markers and Id-1 mRNA, non-genomic ER activity is involved in the mechanism by which estrogen enhances BMP-4-induced osteoblast differentiation in MC3T3-E1 cells. On the other hand, the expression of ERα and endogenous BMP-4 was suppressed by BMP-4 treatment regardless of the presence of estrogen, implying the presence of a negative feedback loop for osteoblast differentiation. Thus, estrogen is functionally involved in the process of osteoblast differentiation regulated by BMP-4 through upregulating BMP sensitivity of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yoshinori Matsumoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Singhal V, Goh BC, Bouxsein ML, Faugere MC, DiGirolamo DJ. Osteoblast-restricted Disruption of the Growth Hormone Receptor in Mice Results in Sexually Dimorphic Skeletal Phenotypes. Bone Res 2013; 1:85-97. [PMID: 26273494 DOI: 10.4248/br201301006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/26/2013] [Indexed: 11/10/2022] Open
Abstract
Growth hormone (GH) exerts profound anabolic actions during postnatal skeletal development, in part, through stimulating the production of insulin-like growth factor-1 (IGF-1) in liver and skeletal tissues. To examine the requirement for the GH receptor (GHR) in osteoblast function in bone, we used Cre-LoxP methods to disrupt the GHR from osteoblasts, both in vitro and in vivo. Disruption of GHR from primary calvarial osteoblasts in vitro abolished GH-induced signaling, as assessed by JAK2/STAT5 phosphorylation, and abrogated GH-induced proliferative and anti-apoptotic actions. Osteoblasts lacking GHR exhibited reduced IGF-1-induced Erk and Akt phosphorylation and attenuated IGF-1-induced proliferation and anti-apoptotic action. In addition, differentiation was modestly impaired in osteoblasts lacking GHR, as demonstrated by reduced alkaline phosphatase staining and calcium deposition. In order to determine the requirement for the GHR in bone in vivo, we generated mice lacking the GHR specifically in osteoblasts (ΔGHR), which were born at the expected Mendelian frequency, had a normal life span and were of normal size. Three week-old, female ΔGHR mice had significantly reduced osteoblast numbers, consistent with the in vitro data. By six weeks of age however, female ΔGHR mice demonstrated a marked increase in osteoblasts, although mineralization was impaired; a phenotype similar to that observed previously in mice lacking IGF-1R specifically in osteoblasts. The most striking phenotype occurred in male mice however, where disruption of the GHR from osteoblasts resulted in a "feminization" of bone geometry in 16 week-old mice, as observed by μCT. These results demonstrate that the GHR is required for normal postnatal bone development in both sexes. GH appears to serve a primary function in modulating local IGF-1 action. However, the changes in bone geometry observed in male ΔGHR mice suggest that, in addition to facilitating IGF-1 action, GH may function to a greater extent than previously appreciated in establishing the sexual dimorphism of the skeleton.
Collapse
Affiliation(s)
- Vandana Singhal
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Brian C Goh
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, MA, USA
| | | | - Douglas J DiGirolamo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine , Baltimore, MD, USA
| |
Collapse
|
37
|
Galea GL, Meakin LB, Sugiyama T, Zebda N, Sunters A, Taipaleenmaki H, Stein GS, van Wijnen AJ, Lanyon LE, Price JS. Estrogen receptor α mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor β. J Biol Chem 2013; 288:9035-48. [PMID: 23362266 PMCID: PMC3610976 DOI: 10.1074/jbc.m112.405456] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mechanical strain and estrogens both stimulate osteoblast proliferation through estrogen receptor (ER)-mediated effects, and both down-regulate the Wnt antagonist Sost/sclerostin. Here, we investigate the differential effects of ERα and -β in these processes in mouse long bone-derived osteoblastic cells and human Saos-2 cells. Recruitment to the cell cycle following strain or 17β-estradiol occurs within 30 min, as determined by Ki-67 staining, and is prevented by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride. ERβ inhibition with 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-β]pyrimidin-3-yl] phenol (PTHPP) increases basal proliferation similarly to strain or estradiol. Both strain and estradiol down-regulate Sost expression, as does in vitro inhibition or in vivo deletion of ERα. The ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and ERB041 also down-regulated Sost expression in vitro, whereas the ERα agonist 4,4′,4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl]tris-phenol or the ERβ antagonist PTHPP has no effect. Tamoxifen, a nongenomic ERβ agonist, down-regulates Sost expression in vitro and in bones in vivo. Inhibition of both ERs with fulvestrant or selective antagonism of ERβ, but not ERα, prevents Sost down-regulation by strain or estradiol. Sost down-regulation by strain or ERβ activation is prevented by MEK/ERK blockade. Exogenous sclerostin has no effect on estradiol-induced proliferation but prevents that following strain. Thus, in osteoblastic cells the acute proliferative effects of both estradiol and strain are ERα-mediated. Basal Sost down-regulation follows decreased activity of ERα and increased activity of ERβ. Sost down-regulation by strain or increased estrogens is mediated by ERβ, not ERα. ER-targeting therapy may facilitate structurally appropriate bone formation by enhancing the distinct ligand-independent, strain-related contributions to proliferation of both ERα and ERβ.
Collapse
Affiliation(s)
- Gabriel L Galea
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jin WJ, Jiang SD, Jiang LS, Dai LY. Differential responsiveness to 17β-estradiol of mesenchymal stem cells from postmenopausal women between osteoporosis and osteoarthritis. Osteoporos Int 2012; 23:2469-78. [PMID: 22159632 DOI: 10.1007/s00198-011-1859-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 11/22/2011] [Indexed: 02/05/2023]
Abstract
UNLABELLED Differential osteogenic potential and responsiveness to 17β-estradiol (E2) of mesenchymal stem cells (MSCs) were found between postmenopausal women with osteoporosis (OP) and osteoarthritis (OA). These results suggest differential biological mechanisms of estrogen deficiency in regulation of bone remodeling between OP and OA. INTRODUCTION OP and OA are two common disorders in postmenopausal women. The inverse relationship has been suggested between OP and OA, but their mechanisms that relate to estrogen deficiency are not fully understood. The aim of this study was to compare the differential responsiveness to E2 of MSCs from osteoporotic versus osteoarthritic donors. METHODS Twenty postmenopausal patients, ten with osteoporotic hip fractures and ten with hip osteoarthritis, were included into this study. MSCs were derived from cancellous bones of femoral heads from OA and OP donors and cultured in osteogenic and adipogenic medium with or without E2 added. The alkaline phosphatase (ALP) activity, calcium content, calcified nodules, lipid droplets, messenger RNA (mRNA) expression of ALP, osteocalcin (OC), collagen 1α (COL1α), peroxisome proliferators-activated receptor γ2 (PPARγ2) and lipoprotein lipase (LPL) were measured and compared between two groups with OP and OA. RESULTS In osteogenic medium, ALP activity, calcium content and mRNA expression of OC and COL1α in MSCs from OA were significantly higher than those from OP group. In adipogenic condition, there was no significant difference in lipid droplets formation and mRNA expression of PPARγ2 and LPL between OP and OA groups. With E2 added in osteogenic medium, ALP activity, calcium content and OC mRNA were significantly higher in OP group than in OA group, whereas E2 had no significant effect on lipid droplet formation and mRNA expression of PPARγ2 and LPL. CONCLUSION Differential osteogenic potential and responsiveness to E2 of MSCs were found between postmenopausal women with OP and OA. These results may provide information for clinical application of MSCs in the differential setting of estrogen deficiency.
Collapse
Affiliation(s)
- W-J Jin
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | |
Collapse
|
39
|
Yu B, Zhao X, Yang C, Crane J, Xian L, Lu W, Wan M, Cao X. Parathyroid hormone induces differentiation of mesenchymal stromal/stem cells by enhancing bone morphogenetic protein signaling. J Bone Miner Res 2012; 27:2001-14. [PMID: 22589223 PMCID: PMC3423493 DOI: 10.1002/jbmr.1663] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parathyroid hormone (PTH) stimulates bone remodeling and induces differentiation of bone marrow mesenchymal stromal/stem cells (MSCs) by orchestrating activities of local factors such as bone morphogenetic proteins (BMPs). The activity and specificity of different BMP ligands are controlled by various extracellular antagonists that prevent binding of BMPs to their receptors. Low-density lipoprotein receptor-related protein 6 (LRP6) has been shown to interact with both the PTH and BMP extracellular signaling pathways by forming a complex with parathyroid hormone 1 receptor (PTH1R) and sharing common antagonists with BMPs. We hypothesized that PTH-enhanced differentiation of MSCs into the osteoblast lineage through enhancement of BMP signaling occurs by modifying the extracellular antagonist network via LRP6. In vitro studies using multiple cell lines, including Sca-1(+) CD45(-) CD11b(-) MSCs, showed that a single injection of PTH enhanced phosphorylation of Smad1 and could also antagonize the inhibitory effect of noggin. PTH treatment induced endocytosis of a PTH1R/LRP6 complex and resulted in enhancement of phosphorylation of Smad1 that was abrogated by deletion of PTH1R, β-arrestin, or chlorpromazine. Deletion of LRP6 alone led to enhancement of pSmad1 levels that could not be further increased with PTH treatment. Finally, knockdown of LRP6 increased the exposure of endogenous cell-surface BMP receptor type II (BMPRII) significantly in C2C12 cells, and PTH treatment significantly enhanced cell-surface binding of (125) I-BMP2 in a dose- and time-dependent manner, implying that LRP6 organizes an extracellular network of BMP antagonists that prevent access of BMPs to BMP receptors. In vivo studies in C57BL/6J mice and of transplanted green fluorescent protein (GFP)-labeled Sca-1(+) CD45(-) CD11b(-) MSCs into the bone marrow cavity of Rag2(-/-) immunodeficient mice showed that PTH enhanced phosphorylation of Smad1 and increased commitment of MSCs to osteoblast lineage, respectively. These data demonstrate that PTH enhancement of MSC differentiation to the osteoblast lineage occurs through a PTH- and LRP6-dependent pathway by endocytosis of the PTH1R/LRp6 complex, allowing enhancement of BMP signaling.
Collapse
Affiliation(s)
- Bing Yu
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoli Zhao
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Chaozhe Yang
- Center for Clinical and Community Research, Children’s National Medical Center, Washington, DC, USA
| | - Janet Crane
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lingling Xian
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William Lu
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 2012; 109:15048-53. [PMID: 22927401 DOI: 10.1073/pnas.1203085109] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Periostin (Postn) is a matricellular protein preferentially expressed by osteocytes and periosteal osteoblasts in response to mechanical stimulation and parathyroid hormone (PTH). Whether and how periostin expression influences bone anabolism, however, remains unknown. We investigated the skeletal response of adult Postn(-/-) and Postn(+/+) mice to intermittent PTH. Compared with Postn(+/+), Postn(-/-) mice had a lower bone mass, cortical bone volume, and strength response to PTH. PTH-stimulated bone-forming indices were all significantly lower in Postn(-/-) mice, particularly at the periosteum. Furthermore, in vivo stimulation of Wnt-β-catenin signaling by PTH, as evaluated in TOPGAL reporter mice, was inhibited in the absence of periostin (TOPGAL;Postn(-/-) mice). PTH stimulated periostin and inhibited MEF2C and sclerostin (Sost) expression in bone and osteoblasts in vitro. Recombinant periostin also suppressed Sost expression, which was mediated through the integrin αVβ3 receptor, whereas periostin-blocking antibody prevented inhibition of MEF2C and Sost by PTH. In turn, administration of a Sost-blocking antiboby partially restored the PTH-mediated increase in bone mass in Postn(-/-) mice. In addition, primary osteoblasts from Postn(-/-) mice showed a lower proliferation, mineralization, and migration, both spontaneously and in response to PTH. Osteoblastic gene expression levels confirmed a defect of Postn(-/-) osteoblast differentiation with and without PTH, as well as an increased osteoblast apoptosis in the absence of periostin. These data elucidate the complex role of periostin on bone anabolism, through the regulation of Sost, Wnt-β-catenin signaling, and osteoblast differentiation.
Collapse
|
41
|
Bonnet N, Conway SJ, Ferrari SL. Regulation of beta catenin signaling and parathyroid hormone anabolic effects in bone by the matricellular protein periostin. Proc Natl Acad Sci U S A 2012. [DOI: 10.107310.1073/pnas.1203085109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Periostin (Postn) is a matricellular protein preferentially expressed by osteocytes and periosteal osteoblasts in response to mechanical stimulation and parathyroid hormone (PTH). Whether and how periostin expression influences bone anabolism, however, remains unknown. We investigated the skeletal response of adult
Postn
−/−
and
Postn
+/+
mice to intermittent PTH. Compared with
Postn
+/+
,
Postn
−/−
mice had a lower bone mass, cortical bone volume, and strength response to PTH. PTH-stimulated bone-forming indices were all significantly lower in
Postn
−/−
mice, particularly at the periosteum. Furthermore, in vivo stimulation of Wnt-β-catenin signaling by PTH, as evaluated in TOPGAL reporter mice, was inhibited in the absence of periostin (
TOPGAL;Postn
−/−
mice). PTH stimulated periostin and inhibited
MEF2C
and sclerostin (Sost) expression in bone and osteoblasts in vitro. Recombinant periostin also suppressed Sost expression, which was mediated through the integrin αVβ3 receptor, whereas periostin-blocking antibody prevented inhibition of
MEF2C
and
Sost
by PTH. In turn, administration of a Sost-blocking antiboby partially restored the PTH-mediated increase in bone mass in
Postn
−/−
mice. In addition, primary osteoblasts from
Postn
−/−
mice showed a lower proliferation, mineralization, and migration, both spontaneously and in response to PTH. Osteoblastic gene expression levels confirmed a defect of
Postn
−/−
osteoblast differentiation with and without PTH, as well as an increased osteoblast apoptosis in the absence of periostin. These data elucidate the complex role of periostin on bone anabolism, through the regulation of Sost, Wnt-β-catenin signaling, and osteoblast differentiation.
Collapse
Affiliation(s)
- Nicolas Bonnet
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, World Health Organization Collaborating Center for Osteoporosis Prevention, Geneva University Hospital and Faculty of Medicine, Geneva 14, Switzerland; and
| | - Simon J. Conway
- Program in Developmental Biology and Neonatal Medicine, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Serge L. Ferrari
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, World Health Organization Collaborating Center for Osteoporosis Prevention, Geneva University Hospital and Faculty of Medicine, Geneva 14, Switzerland; and
| |
Collapse
|
42
|
Chang H, Knothe Tate ML. Concise review: the periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl Med 2012. [PMID: 23197852 DOI: 10.5966/sctm.2011-0056] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Elucidation of the periosteum and its regenerative potential has become a hot topic in orthopedics. Yet few review articles address the unique features of periosteum-derived cells, particularly in light of translational therapies and engineering solutions inspired by the periosteum's remarkable regenerative capacity. This review strives to define periosteum-derived cells in light of cumulative research in the field; in addition, it addresses clinical translation of current insights, hurdles to advancement, and open questions in the field. First, we examine the periosteal niche and its inhabitant cells and the key characteristics of these cells in the context of mesenchymal stem cells and their relevance for clinical translation. We compare periosteum-derived cells with those derived from the marrow niche in in vivo studies, addressing commonalities as well as features unique to periosteum cells that make them potentially ideal candidates for clinical application. Thereafter, we review the differentiation and tissue-building properties of periosteum cells in vitro, evaluating their efficacy in comparison with marrow-derived cells. Finally, we address a new concept of banking periosteum and periosteum-derived cells as a novel alternative to currently available autogenic umbilical blood and perinatal tissue sources of stem cells for today's population of aging adults who were "born too early" to bank their own perinatal tissues. Elucidating similarities and differences inherent to multipotent cells from distinct tissue niches and their differentiation and tissue regeneration capacities will facilitate the use of such cells and their translation to regenerative medicine.
Collapse
Affiliation(s)
- Hana Chang
- Departments of Biomedical Engineering and Mechanical & Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
43
|
Buenzli PR, Pivonka P, Gardiner BS, Smith DW. Modelling the anabolic response of bone using a cell population model. J Theor Biol 2012; 307:42-52. [PMID: 22579551 DOI: 10.1016/j.jtbi.2012.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/20/2022]
Abstract
To maintain bone mass during bone remodelling, coupling is required between bone resorption and bone formation. This coordination is achieved by a network of autocrine and paracrine signalling molecules between cells of the osteoclastic lineage and cells of the osteoblastic lineage. Mathematical modelling of signalling between cells of both lineages can assist in the interpretation of experimental data, clarify signalling interactions and help develop a deeper understanding of complex bone diseases. Several mathematical models of bone cell interactions have been developed, some including RANK-RANKL-OPG signalling between cells and systemic parathyroid hormone PTH. However, to our knowledge these models do not currently include key aspects of some more recent biological evidence for anabolic responses. In this paper, we further develop a mathematical model of bone cell interactions by Pivonka et al. (2008) to include the proliferation of precursor osteoblasts into the model. This inclusion is important to be able to account for Wnt signalling, believed to play an important role in the anabolic responses of bone. We show that an increased rate of differentiation to precursor cells or an increased rate of proliferation of precursor osteoblasts themselves both result in increased bone mass. However, modelling these different processes separately enables the new model to represent recent experimental discoveries such as the role of Wnt signalling in bone biology and the recruitment of osteoblast progenitor cells by transforming growth factor β. Finally, we illustrate the power of the new model's capabilities by applying the model to prostate cancer metastasis to bone. In the bone microenvironment, prostate cancer cells are believed to release some of the same signalling molecules used to coordinate bone remodelling (i.e.,Wnt and PTHrP), enabling the cancer cells to disrupt normal signalling and coordination between bone cells. This disruption can lead to either bone gain or bone loss. We demonstrate that the new computational model developed here is capable of capturing some key observations made on the evolution of the bone mass due to metastasis of prostate cancer to the bone microenvironment.
Collapse
Affiliation(s)
- Pascal R Buenzli
- Faculty of Engineering, Computing & Mathematics, The University of Western Australia, WA 6009, Australia.
| | | | | | | |
Collapse
|
44
|
Merle B, Garnero P. The multiple facets of periostin in bone metabolism. Osteoporos Int 2012; 23:1199-212. [PMID: 22310955 DOI: 10.1007/s00198-011-1892-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/22/2011] [Indexed: 01/17/2023]
Abstract
Periostin is a matricellular glutamate-containing protein expressed during ontogenesis and in adult connective tissues submitted to mechanical strains including bone and, more specifically, the periosteum, periodontal ligaments, tendons, heart valves, or skin. It is also expressed in neoplastic tissues, cardiovascular and fibrotic diseases, and during wound repair. Its biological functions are extensively investigated in fields such as cardiovascular physiology or oncology. Despite its initial identification in bone, investigations of periostin functions in bone-related physiopathology are less abundant. Recently, several studies have analyzed the potential role of periostin in bone biology and suggest that periostin may be an important regulator of bone formation. The aim of this article is to provide an extensive review on the implications of periostin in bone biology and its potential use in benign and metabolic bone diseases.
Collapse
Affiliation(s)
- B Merle
- INSERM Research Unit 1033, Pavillon F, Hopital E. Herriot, Place d'Arsonval, 69437, Lyon cédex 03, France.
| | | |
Collapse
|
45
|
Motyl KJ, McCauley LK, McCabe LR. Amelioration of type I diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival. J Cell Physiol 2012; 227:1326-34. [PMID: 21604269 PMCID: PMC4100799 DOI: 10.1002/jcp.22844] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 1 diabetic osteoporosis results from impaired osteoblast activity and death. Therefore, anti-resorptive treatments may not effectively treat bone loss in this patient population. Intermittent parathyroid hormone (PTH) treatment stimulates bone remodeling and increases bone density in healthy subjects. However, PTH effects may be limited in patients with diseases that interfere with its signaling. Here, we examined the ability of 8 and 40 µg/kg intermittent PTH to counteract diabetic bone loss. PTH treatment reduced fat pad mass and blood glucose levels in non-diabetic PTH-treated mice, consistent with PTH-affecting glucose homeostasis. However, PTH treatment did not significantly affect general body parameters, including the blood glucose levels, of type 1 diabetic mice. We found that the high dose of PTH significantly increased tibial trabecular bone density parameters in control and diabetic mice, and the lower dose elevated trabecular bone parameters in diabetic mice. The increased bone density was due to increased mineral apposition and osteoblast surface, all of which are defective in type 1 diabetes. PTH treatment suppressed osteoblast apoptosis in diabetic bone, which could further contribute to the bone-enhancing effects. In addition, PTH treatment (40 µg/kg) reversed preexisting bone loss from diabetes. We conclude that intermittent PTH may increase type 1 diabetic trabecular bone volume through its anabolic effects on osteoblasts.
Collapse
Affiliation(s)
- Katherine J Motyl
- Department of Physiology, Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | |
Collapse
|
46
|
Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest 2011; 34:801-10. [PMID: 21946081 PMCID: PMC4315330 DOI: 10.3275/7925] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PTH, an 84-amino acid peptide hormone synthesized by the parathyroid glands, is essential for the maintenance of calcium homeostasis.While in its traditional metabolic role, PTH helps to maintain the serum calcium concentration within narrow, normal limits and participates as a determinant of bone remodeling, more specific actions, described as catabolic and anabolic are also well known. Clinically, the catabolic effect of PTH is best represented by primary hyperparathyroidism (PHPT), while the osteoanabolic effect of PTH is best seen when PTH or its biological amino-terminal fragment [PTH(1-34)] is used as a therapy for osteoporosis. These dual functions of PTH are unmasked under very specific pathological (PHPT) or therapeutic conditions. At the cellular level, PTH favors bone resorption, mostly by affecting the receptor activator of nuclear factor κ-B (RANK) ligand (RANKL)-osteoprotegerin- RANK system, leading to an increase in osteoclast formation and activity. Increased bone formation due to PTH therapy is explained best by its ability to enhance osteoblastogenesis and/or osteoblast survival. The PTH-induced bone formation is mediated, in part, by a decrease in SOST/sclerostin expression in osteocytes. This review focuses on the dual anabolic and catabolic actions of PTH on bone, situations where one is enhanced over the other, and the cellular and molecular mechanisms by which these actions are mediated.
Collapse
Affiliation(s)
- B C Silva
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, Columbia University, USA
| | | | | | | | | |
Collapse
|
47
|
Rosen V. Harnessing the parathyroid hormone, Wnt, and bone morphogenetic protein signaling cascades for successful bone tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:475-9. [PMID: 21902616 DOI: 10.1089/ten.teb.2011.0265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering holds great promise as a way of enhancing the normal regenerative potential of bone. By deconstructing the skeleton into its components and examining how each component influences the reparative response, it is clear that cells resident in bone, bioactive molecules produced by these cells and those brought into bone via the circulation and the unique extracellular matrix that makes up the bone itself are involved in a continuous and ever-changing set of reciprocal interactions during regeneration. Reviewed here is current information regarding the efficacy of 3 prominent signaling cascades that orchestrate bone formation, parathyroid hormone, Wnt and bone morphogenetic proteins, in enhancing bone repair. I suggest how we might successfully generate new bone in increasingly complex clinical situations by modulating the availability of these signals to cells already present within bone tissue.
Collapse
Affiliation(s)
- Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02215, USA.
| |
Collapse
|
48
|
Zhang J, Lazarenko OP, Blackburn ML, Shankar K, Badger TM, Ronis MJJ, Chen JR. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats. PLoS One 2011; 6:e24486. [PMID: 21912699 PMCID: PMC3166322 DOI: 10.1371/journal.pone.0024486] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied. METHODOLOGY AND PRINCIPAL FINDINGS In this report, we show that feeding a high quality diet supplemented with blueberries (BB) to pre-pubertal rats throughout development or only between postnatal day 20 (PND20) and PND34 prevented ovariectomy (OVX)-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation. CONCLUSIONS/SIGNIFICANCE These results indicate: 1) a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2) the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, United States of America
| | - Oxana P. Lazarenko
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Michael L. Blackburn
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Kartik Shankar
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, United States of America
| | - Thomas M. Badger
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, United States of America
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Martin J. J. Ronis
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, United States of America
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jin-Ran Chen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, United States of America
| |
Collapse
|
49
|
Kim BG, Park YJ, Libermann TA, Cho JY. PTH regulates myleoid ELF-1-like factor (MEF)-induced MAB-21-like-1 (MAB21L1) expression through the JNK1 pathway. J Cell Biochem 2011; 112:2051-61. [DOI: 10.1002/jcb.23124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Alves de Oliveira EC, Szejnfeld VL, Pereira da Silva N, Coelho Andrade LE, Heldan de Moura Castro C. Intermittent PTH1-34 causes DNA and chromosome breaks in osteoblastic and nonosteoblastic cells. Calcif Tissue Int 2010; 87:424-36. [PMID: 20640570 DOI: 10.1007/s00223-010-9396-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 05/30/2010] [Indexed: 12/17/2022]
Abstract
Toxicological studies have demonstrated that intermittent PTH1-34 treatment is associated with an increased incidence of osteosarcoma in Fischer 344 rats. Comet and micronucleus (MN) tests, standard methods to evaluate genotoxic potential of drugs, were used to detect DNA and chromosome breaks, respectively, after PTH1-34 treatment. MC3T3 cells, primary osteoblast calvarial cells, and human osteoblasts were treated with PTH1-34 (50 and 100 nM) for 6 h/day for 21 days to mimic intermittent administration. Genotoxic assays were performed at 6 h and 7, 14, and 21 days. Osteoblasts extracted from bone marrow of mice treated with daily subcutaneous PTH1-34 injections (20 and 40 μg/kg) for 10 weeks as well as Hep-2, HeLa, and Hep-G2 cells were also tested. We observed a significant increase in DNA lesions and MN prevalence in human and murine osteoblasts treated with PTH1-34 compared to controls (P < 0.01). The effect observed in vitro and confirmed in vivo was time- and dose-dependent. For nonosteoblastic Hep-2 and HeLa cells we observed increased DNA damage and MN prevalence only later in the course of the protocol, after 21 days of treatment (P < 0.01). In Hep-G2 cells intermittent PTH1-34 did not induce DNA damage or chromosome breaks. Our results demonstrated that intermittent PTH increases DNA and chromosome breaks in osteoblasts. This genotoxic effect is attenuated in nonosteoblastic cells, and the ability to induce DNA damage is lost in cells with detoxification properties (HepG2 cells) tested in vitro.
Collapse
|