1
|
Edelmann MR, Erny J, Guba W, Hierl M. Tritium Labeling of Neuromedin S by Conjugation with [ 3H] N-Succinimidyl Propionate. ACS OMEGA 2023; 8:2367-2376. [PMID: 36687043 PMCID: PMC9851027 DOI: 10.1021/acsomega.2c06758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The human neuropeptide neuromedin S (NMS) consists of 33 amino acids. The introduction of tritium atoms into NMS has not been described so far. This represents a gap for using [3H]NMS in radioreceptor binding assays or in tracking and monitoring their metabolic pathway. Two approaches for the incorporation of tritium into NMS were explored in this study: (1) halogenation at the His-18 residue followed by catalyzed iodine-127/tritium exchange and (2) conjugation of tritiated N-succinimidyl-[2,3-3H3]propionate ([3H]NSP) to at least one of the three available primary amines of amino acids Ile-1, Lys-15, and Lys-16 in the peptide sequence. Although iodination of histidine was achieved, subsequent iodine-127/deuterium exchange was unsuccessful. Derivatization at the three possible amino positions in the peptide using nonradioactive NSP resulted in a mixture of unconjugated NSM and 1- to 3-conjugations at different amino acids in the peptide sequence. Each labeling position in the mixture was assigned following detailed LC-MS/MS analysis. After separating the mixture, it was shown in an in vitro fluorometric imaging plate reader (FLIPR) and in a competitive binding assay that the propionyl-modified NMS derivatives were comparable to the unlabeled NMS, regardless of the degree of labeling and the labeling position(s). A molecular simulation with NMS in the binding pocket of the protein neuromedin U receptor 2 (NMUR2) confirmed that the possible labeling positions are located outside the binding region of NMUR2. Tritium labeling was achieved at the N-terminal Ile-1 using [3H]NSP in 7% yield with a radiochemical purity of >95% and a molar activity of 90 Ci/mmol. This approach provides access to tritiated NMS and enables new investigations to characterize NMS or corresponding NMS ligands.
Collapse
Affiliation(s)
- Martin R. Edelmann
- Department
of Pharmacy and Pharmacology, University
of Bath, BathBA2 7AY, U.K.
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel,
Therapeutic Modalities, Small Molecule Research, Isotope Synthesis, F. Hoffmann-La Roche Ltd., CH-4070Basel, Switzerland
| | - Johannes Erny
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel,
Therapeutic Modalities, Small Molecule Research, Lead Discovery, F. Hoffmann-La Roche Ltd., CH-4070Basel, Switzerland
| | - Wolfgang Guba
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel,
Therapeutic Modalities, Small Molecule Research, Computer Aided Drug
Design, F. Hoffmann-La Roche Ltd., CH-4070Basel, Switzerland
| | - Markus Hierl
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel,
Therapeutic Modalities, Small Molecule Research, Lead Discovery, F. Hoffmann-La Roche Ltd., CH-4070Basel, Switzerland
| |
Collapse
|
2
|
Structural insights into the peptide selectivity and activation of human neuromedin U receptors. Nat Commun 2022; 13:2045. [PMID: 35440625 PMCID: PMC9019041 DOI: 10.1038/s41467-022-29683-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/16/2022] [Indexed: 01/14/2023] Open
Abstract
Neuromedin U receptors (NMURs), including NMUR1 and NMUR2, are a group of Gq/11-coupled G protein-coupled receptors (GPCRs). NMUR1 and NMUR2 play distinct, pleiotropic physiological functions in peripheral tissues and in the central nervous system (CNS), respectively, according to their distinct tissue distributions. These receptors are stimulated by two endogenous neuropeptides, neuromedin U and S (NMU and NMS) with similar binding affinities. NMURs have gathered attention as potential drug targets for obesity and inflammatory disorders. Specifically, selective agonists for NMUR2 in peripheral tissue show promising long-term anti-obesity effects with fewer CNS-related side effects. However, the mechanisms of peptide binding specificity and receptor activation remain elusive. Here, we report four cryo-electron microscopy structures of Gq chimera-coupled NMUR1 and NMUR2 in complexes with NMU and NMS. These structures reveal the conserved overall peptide-binding mode and the mechanism of peptide selectivity for specific NMURs, as well as the common activation mechanism of the NMUR subfamily. Together, these findings provide insights into the molecular basis of the peptide recognition and offer an opportunity for the design of the selective drugs targeting NMURs. Neuromedin U receptors (NMURs) are potential drug targets for obesity and inflammatory disorders. Here, the authors report structural basis for neuromedin recognition and activation mechanism of NMURs.
Collapse
|
3
|
McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Nat Commun 2021; 12:4481. [PMID: 34294692 PMCID: PMC8298587 DOI: 10.1038/s41467-021-24582-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Eurasians have ~2% Neanderthal ancestry, but we lack a comprehensive understanding of the genome-wide influence of Neanderthal introgression on modern human diseases and traits. Here, we quantify the contribution of introgressed alleles to the heritability of more than 400 diverse traits. We show that genomic regions in which detectable Neanderthal ancestry remains are depleted of heritability for all traits considered, except those related to skin and hair. Introgressed variants themselves are also depleted for contributions to the heritability of most traits. However, introgressed variants shared across multiple Neanderthal populations are enriched for heritability and have consistent directions of effect on several traits with potential relevance to human adaptation to non-African environments, including hair and skin traits, autoimmunity, chronotype, bone density, lung capacity, and menopause age. Integrating our results, we propose a model in which selection against introgressed functional variation was the dominant trend (especially for cognitive traits); however, for a few traits, introgressed variants provided beneficial variation via uni-directional (e.g., lightening skin color) or bi-directional (e.g., modulating immune response) effects.
Collapse
Affiliation(s)
- Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, 94107, USA.
| |
Collapse
|
4
|
Chen H, Huang H, Chen X, Deng S, Zhu C, Huang H, Li G. Structural and functional characterization of neuromedin S in the teleost fish, zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2016; 191:76-83. [DOI: 10.1016/j.cbpb.2015.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
|
5
|
Li S, Xiao L, Liu Q, Zheng B, Chen H, Liu X, Zhang Y, Lin H. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper. J Mol Endocrinol 2015; 55:95-106. [PMID: 26162607 DOI: 10.1530/jme-15-0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/29/2022]
Abstract
Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper.
Collapse
Affiliation(s)
- Shuisheng Li
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Ling Xiao
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Qiongyu Liu
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Binbin Zheng
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Xiaochun Liu
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Yong Zhang
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Haoran Lin
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Lee J, Bottje WG, Kong BW. Genome-wide host responses against infectious laryngotracheitis virus vaccine infection in chicken embryo lung cells. BMC Genomics 2012; 13:143. [PMID: 22530940 PMCID: PMC3353197 DOI: 10.1186/1471-2164-13-143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 04/24/2012] [Indexed: 12/20/2022] Open
Abstract
Background Infectious laryngotracheitis virus (ILTV; gallid herpesvirus 1) infection causes high mortality and huge economic losses in the poultry industry. To protect chickens against ILTV infection, chicken-embryo origin (CEO) and tissue-culture origin (TCO) vaccines have been used. However, the transmission of vaccine ILTV from vaccinated- to unvaccinated chickens can cause severe respiratory disease. Previously, host cell responses against virulent ILTV infections were determined by microarray analysis. In this study, a microarray analysis was performed to understand host-vaccine ILTV interactions at the host gene transcription level. Results The 44 K chicken oligo microarrays were used, and the results were compared to those found in virulent ILTV infection. Total RNAs extracted from vaccine ILTV infected chicken embryo lung cells at 1, 2, 3 and 4 days post infection (dpi), compared to 0 dpi, were subjected to microarray assay using the two color hybridization method. Data analysis using JMP Genomics 5.0 and the Ingenuity Pathway Analysis (IPA) program showed that 213 differentially expressed genes could be grouped into a number of functional categories including tissue development, cellular growth and proliferation, cellular movement, and inflammatory responses. Moreover, 10 possible gene networks were created by the IPA program to show intermolecular connections. Interestingly, of 213 differentially expressed genes, BMP2, C8orf79, F10, and NPY were expressed distinctly in vaccine ILTV infection when compared to virulent ILTV infection. Conclusions Comprehensive knowledge of gene expression and biological functionalities of host factors during vaccine ILTV infection can provide insight into host cellular defense mechanisms compared to those of virulent ILTV.
Collapse
Affiliation(s)
- Jeongyoon Lee
- Department of Poultry Science, Division of Agriculture, POSC O-404, 1260 West Maple, Fayetteville, AR 72701, USA
| | | | | |
Collapse
|
7
|
Zhang Y, Wang Z, Parks GS, Civelli O. Novel neuropeptides as ligands of orphan G protein-coupled receptors. Curr Pharm Des 2011; 17:2626-31. [PMID: 21728976 PMCID: PMC5828022 DOI: 10.2174/138161211797416110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 12/13/2010] [Indexed: 12/18/2022]
Abstract
Neuropeptides control a wide spectrum of physiological functions. They are central to our understanding of brain functions. They exert their actions by interacting with specific G protein-coupled receptors. We however have not found all the neuropeptides that exist in organisms. The search for novel neuropeptides is thus of great interest as it will lead to a better understanding of brain function and disorders. In this review, we will discuss the historical as well as the current approaches to neuropeptide discovery, with a particular emphasis on the orphan GPCR-based strategies. We will also discuss two novel peptides, neuropeptide S and neuromedin S, as examples of the impact of neuropeptide discovery on our understanding of brain functions. Finally, the challenges facing neuropeptide discovery will be discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Zhiwei Wang
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Gregory Scott Parks
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| | - Olivier Civelli
- Department of Pharmacology, University of California Irvine, Irvine, CA 92697, United States
| |
Collapse
|