1
|
Li S, Li X, Wang Q, Jiang Q, Wang Z, Xu L, Huang Y, Lei T. The Activation of p300 Enhances the Sensitivity of Pituitary Adenomas to Dopamine Agonist Treatment by Regulating the Transcription of DRD2. Int J Mol Sci 2024; 25:12483. [PMID: 39684198 DOI: 10.3390/ijms252312483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Prolactinomas are commonly treated with dopamine receptor agonists (DAs), such as bromocriptine (BRC) and cabergoline (CAB). However, 10-30% of patients exhibit resistance to DA therapies. DA resistance is largely associated with reduced dopamine D2 receptor (DRD2) expression, potentially regulated by epigenetic modifications, though the underlying mechanisms are still unclear. Clinical samples were assessed for p300 expression. MMQ and AtT-20 cells were engineered to overexpress either wild-type p300 or a histone acetyltransferase (HAT) domain-mutant form of p300. Mechanistic studies included cell proliferation assays, flow cytometry, immunohistochemistry, immunofluorescence, co-immunoprecipitation, chromatin immunoprecipitation followed by quantitative PCR, reverse transcription quantitative PCR, and Western blotting. Additionally, an in vivo nude mouse xenograft model was used to confirm the in vitro findings. DAs downregulated p300 through the cAMP-PKA-CREB pathway. Activation of the HAT domain of p300 increased H3K18/27 acetylation, promoted DRD2 transcription, and worked synergistically with DA to exert anti-tumor effects both in vitro and in vivo. Tanshinone IIA (Tan IIA) upregulated p300 and DRD2, enhancing the therapeutic efficacy of BRC. These findings highlight the role of p300 in regulating DRD2 transcription in DA-resistant prolactinomas. Combining Tan IIA with BRC may offer a promising strategy to overcome DA resistance.
Collapse
Affiliation(s)
- Sihan Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingbo Li
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quanji Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Jiang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zihan Wang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linpeng Xu
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yimin Huang
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Lei
- Sino-German Neuro-Oncology Molecular Laboratory, Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Cai L, Chen J, Lu J, Li Q, Chen X, Zhang L, Wu J, Zheng W, Wang C, Su Z. Tumor stem-like cells isolated from MMQ cells resist to dopamine agonist treatment. Mol Cell Endocrinol 2021; 535:111396. [PMID: 34271069 DOI: 10.1016/j.mce.2021.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Although tumor stem-like cells (TSLCs) have been studied in a range of malignant tumors, evidence for the presence of these cells in pituitary adenomas needs further exploration. Here, we identified a small subset of sphere-forming cells possess tumor stem-like cell properties in rat prolactinoma MMQ cells, which resist to dopamine agonist treatment. Comparing to MMQ cells, sphere-forming cells showed higher cell viability after dopamine agonist (DA) treatment. Furthermore, the cells showed lower expression of prolactin (PRL) and dopamine 2 receptor (D2R). On the contrary, the daughter tumor cells differentiated from these cells restored the sensitivity to DA and showed high expression of PRL and D2R. The lower D2R expression and DA resistance might be due to DNA hypermethylation of D2R promoter. Our study demonstrates that the sphere-forming cells isolated from MMQ cells possess the trait of TSLCs and resist to DA treatment, which offers the opportunity to further investigate the mechanisms underlying tumor recurrence based on TSLCs.
Collapse
Affiliation(s)
- Lin Cai
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jianglong Lu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qun Li
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianbin Chen
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Linlin Zhang
- Department of Stomatology, Shanghai Minhang District Dental Clinic, Fudan University, Shanghai, 201100, China
| | - Jinsen Wu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weiming Zheng
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chengde Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
3
|
Wu Z, Gu W. Autophagy and Pituitary Adenoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:183-194. [PMID: 32671747 DOI: 10.1007/978-981-15-4272-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pituitary adenomas (PAs) are common, benign intracranial tumors that are usually effectively controlled with surgery, pharmacotherapy or radiotherapy. Some PAs against which conventional treatment is ineffective are great clinical challenges at present. Autophagy is a widespread physiological process in cells. Through autophagy, cells can degrade damaged or redundant proteins and organelles and achieve the recycling of intracellular substances to maintain the homeostasis of the intracellular environment. An increasing number of studies have demonstrated the importance of autophagy in tumor therapy. Both radiotherapy and chemotherapy can induce autophagy, which plays different roles in the course of therapy. In recent years, there has been growing interest in the role of autophagy during the treatment of PAs. This chapter reviews the recent progress of research on autophagy in PA and the autophagic mechanisms in the treatment of PA.
Collapse
Affiliation(s)
- Zhebao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weiting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
The KBTBD6/7-DRD2 axis regulates pituitary adenoma sensitivity to dopamine agonist treatment. Acta Neuropathol 2020; 140:377-396. [PMID: 32572597 DOI: 10.1007/s00401-020-02180-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenoma (PA) is one of the most common intracranial tumors, and approximately 40% of all PAs are prolactinomas. Dopamine agonists (DAs), such as cabergoline (CAB), have been successfully used in the treatment of prolactinomas. The expression of dopamine type 2 receptor (DRD2) determines the therapeutic effect of DAs, but the molecular mechanisms of DRD2 regulation are not fully understood. In this study, we first demonstrated that DRD2 underwent proteasome-mediated degradation. We further employed the yeast two-hybrid system and identified kelch repeat and BTB (POZ) domain containing 7 (KBTBD7), a substrate adaptor for the CUL3-RING ubiquitin (Ub) ligase complex, as a DRD2-interacting protein. KBTBD6/7 directly interacted with, and ubiquitinated DRD2 at five ubiquitination sites (K221, K226, K241, K251, and K258). CAB, a high-affinity DRD2 agonist, induced DRD2 internalization, and cytoplasmic DRD2 was degraded via ubiquitination under the control of KBTBD6/7, the activity of which attenuated CAB-mediated inhibition of the AKT/mTOR pathway. KBTBD7 knockout (KO) mice were generated using the CRISPR-Cas9 technique, in which the static level of DRD2 protein was elevated in the pituitary gland, thalamus, and heart, compared to that of WT mice. Consistently, the expression of KBTBD6/7 was negatively correlated with that of DRD2 in human pituitary tumors. Moreover, KBTBD7 was highly expressed in dopamine-resistant prolactinomas, but at low levels in dopamine-sensitive prolactinomas. Knockdown of KBTBD6/7 sensitized MMQ cells and primary pituitary tumor cells to CAB treatment. Conversely, KBTBD7 overexpression increased CAB resistance of estrogen-induced in situ rat prolactinoma model. Together, our findings have uncovered the novel mechanism of DRD2 protein degradation and shown that the KBTBD6/7-DRD2 axis regulates PA sensitivity to DA treatment. KBTBD6/7 may thus become a promising therapeutic target for pituitary tumors.
Collapse
|
5
|
Orrillo SJ, de Dios N, Asad AS, De Fino F, Imsen M, Romero AC, Zárate S, Ferraris J, Pisera D. Anterior pituitary gland synthesises dopamine from l-3,4-dihydroxyphenylalanine (l-dopa). J Neuroendocrinol 2020; 32:e12885. [PMID: 32671919 DOI: 10.1111/jne.12885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Prolactin (PRL) is a hormone principally secreted by lactotrophs of the anterior pituitary gland. Although the synthesis and exocytosis of this hormone are mainly under the regulation of hypothalamic dopamine (DA), the possibility that the anterior pituitary synthesises this catecholamine remains unclear. The present study aimed to determine if the anterior pituitary produces DA from the precursor l-3,4-dihydroxyphenylalanine (l-dopa). Accordingly, we investigated the expression of aromatic l-amino acid decarboxylase (AADC) enzyme and the transporter vesicular monoamine transporter 2 (VMAT2) in the anterior pituitary, AtT20 and GH3 cells by immunofluorescence and western blotting. Moreover, we investigated the production of DA from l-dopa and its release in vitro. Then, we explored the effects of l-dopa with respect to the secretion of PRL from anterior pituitary fragments. We observed that the anterior pituitary, AtT20 and GH3 cells express both AADC and VMAT2. Next, we detected an increase in DA content after anterior pituitary fragments were incubated with l-dopa. Also, the presence of l-dopa increased DA levels in incubation media and reduced PRL secretion. Likewise, the content of cellular DA increased after AtT20 cells were incubated with l-dopa. In addition, l-dopa reduced corticotrophin-releasing hormone-stimulated adrenocorticotrophic hormone release from these cells after AADC activity was inhibited by NSD-1015. Moreover, DA formation from l-dopa increased apoptosis and decreased proliferation. However, in the presence of NSD-1015, l-dopa decreased apoptosis and increased proliferation rates. These results suggest that the anterior pituitary synthesises DA from l-dopa by AADC and this catecholamine can be released from this gland contributing to the control of PRL secretion. In addition, our results suggest that l-dopa exerts direct actions independently from its metabolisation to DA.
Collapse
Affiliation(s)
- Santiago Jordi Orrillo
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nataly de Dios
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Sofía Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda De Fino
- Instituto de Investigaciones Farmacológicas (ININFA, UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes Imsen
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Clara Romero
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Ferraris
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Szabó B, Németh K, Mészáros K, Szücs N, Czirják S, Reiniger L, Rajnai H, Krencz I, Karászi K, Krokker L, Patócs A, Butz H. Demethylation Status of Somatic DNA Extracted From Pituitary Neuroendocrine Tumors Indicates Proliferative Behavior. J Clin Endocrinol Metab 2020; 105:5813957. [PMID: 32232382 DOI: 10.1210/clinem/dgaa156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/27/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Cytosine intermediaries 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC), epigenetic hallmarks, have never been investigated in pituitary neuroendocrine tumors (PitNET). OBJECTIVE To examine methylation-demethylation status of global deoxyribonucleic acid (DNA) in PitNET tissues and to assess its correlation with clinical and biological parameters. MATERIALS AND METHODS Altogether, 57 PitNET and 25 corresponding plasma samples were collected. 5mC and 5hmC were investigated using liquid chromatography-tandem mass spectrometry. Expression of DNA methyltransferase 1 (DNMT1); tet methylcytosine dioxygenase 1 through 3 (TET1-3); and ubiquitin-like, containing PHD and RING finger domains 1 and 2 (UHRF1-2) were measured by reverse transcription-polymerase chain reaction. Levels of 5hmC and UHRF1-2 were explored by immunohistochemistry. Effect of demethylating agent decitabine was tested on pituitary cell lines. RESULTS 5hmC/5mC ratio was higher in less differentiated PitNET samples. A negative correlation between Ki-67 proliferation index and 5hmC, 5hmC to 5mC ratio were revealed. Higher 5mC was observed in SF-1 + gonadotroph adenomas with a higher Ki-67 index. Expressions of TET2 and TET3 were significantly higher in adenomas with higher proliferation rate. UHRF1 showed gradually increased expression in higher proliferative adenoma samples, and a significant positive correlation was detected between UHRF2 expression and 5hmC level. Decitabine treatment significantly decreased 5mC and increased 5hmC levels in both cell lines, accompanied with decreased cell viability and proliferation. CONCLUSION The demethylation process negatively correlated with proliferation rate and the ratio of 5hmC to 5mC was higher in less differentiated adenomas. Therefore, epigenetic markers can be potential biomarkers for PitNET behavior. Altering the epigenome in adenoma cells by decitabine decreased proliferation, suggesting that this treatment might be a novel medical treatment for PitNET.
Collapse
Affiliation(s)
- Borbála Szabó
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Kinga Németh
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Katalin Mészáros
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Nikolette Szücs
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Sándor Czirják
- National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Lilla Reiniger
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Hajnalka Rajnai
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ildikó Krencz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Karászi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lilla Krokker
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology
| | - Henriett Butz
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
- Hereditary Tumours Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology
| |
Collapse
|
7
|
Wei Y, Zhou X, Ren L, Wang C, Li Y. The prolactin‐release inhibitor paeoniflorin suppresses proliferation and induces apoptosis in prolactinoma cells via the mitochondria‐dependent pathway. J Cell Biochem 2018; 119:5704-5714. [DOI: 10.1002/jcb.26752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yuanyi Wei
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Xia Zhou
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Liying Ren
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
| | - Chunxia Wang
- Department of PharmacyNanfang HospitalSouthern Medical UniversityGuangzhouP.R. China
- Guangdong Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouP.R. China
| | - Yuhao Li
- Endocrinology and Metabolism GroupSydney Institute of Health Sciences/Sydney Institute of Traditional Chinese MedicineNew South WalesAustralia
| |
Collapse
|
8
|
Lin SJ, Leng ZG, Guo YH, Cai L, Cai Y, Li N, Shang HB, Le WD, Zhao WG, Wu ZB. Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline. Oncotarget 2016; 6:39329-41. [PMID: 26513171 PMCID: PMC4770775 DOI: 10.18632/oncotarget.5744] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/17/2015] [Indexed: 12/19/2022] Open
Abstract
Cabergoline (CAB), the first-line drug for treatment of prolactinomas, is effective in suppressing prolactin hypersecretion, reducing tumor size, and restoring gonadal function. However, mechanisms for CAB-mediated tumor shrinkage are largely unknown. Here we report a novel cytotoxic mechanism for CAB. CAB induced formation of autophagosome in rat pituitary tumor MMQ and GH3 cells at the early stage through inhibiting mTOR pathway, resulting in higher conversion rates of LC3-I to LC3-II, GFP-LC3 aggregation, and increased autophagosome formation. Interestingly, CAB treatment augmented lysosome acidification and resulted in impaired proteolytic degradation within autolysosomes. This blocked the autophagic flux, leading to the accumulation of p62 aggregation and undigested autolysosomes. Knockdown of ATG7, ATG5, or Becn1, could significantly rescue the CAB-mediated cell death of MMQ cells (p < 0.05). CAB-induced autophagy and blockade of autophagy flux participated in antitumoral action in vivo. In conclusion, our study provides evidence that CAB concomitantly induces autophagy and inhibits the autophagic flux, leading to autophagy-dependent cell death. These findings elucidate novel mechanisms for CAB action.
Collapse
Affiliation(s)
- Shao Jian Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhi Gen Leng
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Hang Guo
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lin Cai
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Han Bing Shang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei-Dong Le
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Guo Zhao
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
9
|
Kitchen MO, Bryan RT, Emes RD, Glossop JR, Luscombe C, Cheng KK, Zeegers MP, James ND, Devall AJ, Mein CA, Gommersall L, Fryer AA, Farrell WE. Quantitative genome-wide methylation analysis of high-grade non-muscle invasive bladder cancer. Epigenetics 2016; 11:237-46. [PMID: 26929985 DOI: 10.1080/15592294.2016.1154246] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
High-grade non-muscle invasive bladder cancer (HG-NMIBC) is a clinically unpredictable disease with greater risks of recurrence and progression relative to their low-intermediate-grade counterparts. The molecular events, including those affecting the epigenome, that characterize this disease entity in the context of tumor development, recurrence, and progression, are incompletely understood. We therefore interrogated genome-wide DNA methylation using HumanMethylation450 BeadChip arrays in 21 primary HG-NMIBC tumors relative to normal bladder controls. Using strict inclusion-exclusion criteria we identified 1,057 hypermethylated CpGs within gene promoter-associated CpG islands, representing 256 genes. We validated the array data by bisulphite pyrosequencing and examined 25 array-identified candidate genes in an independent cohort of 30 HG-NMIBC and 18 low-intermediate-grade NMIBC. These analyses revealed significantly higher methylation frequencies in high-grade tumors relative to low-intermediate-grade tumors for the ATP5G2, IRX1 and VAX2 genes (P<0.05), and similarly significant increases in mean levels of methylation in high-grade tumors for the ATP5G2, VAX2, INSRR, PRDM14, VSX1, TFAP2b, PRRX1, and HIST1H4F genes (P<0.05). Although inappropriate promoter methylation was not invariantly associated with reduced transcript expression, a significant association was apparent for the ARHGEF4, PON3, STAT5a, and VAX2 gene transcripts (P<0.05). Herein, we present the first genome-wide DNA methylation analysis in a unique HG-NMIBC cohort, showing extensive and discrete methylation changes relative to normal bladder and low-intermediate-grade tumors. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination, with more conventional therapeutic options in the treatment of this clinically unpredictable disease.
Collapse
Affiliation(s)
- Mark O Kitchen
- a Institute for Science and Technology in Medicine, Keele University , UK.,b Urology Department , University Hospitals of North Midlands NHS Trust , UK
| | - Richard T Bryan
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK
| | - Richard D Emes
- d Advanced Data Analysis Center, University of Nottingham , UK
| | - John R Glossop
- a Institute for Science and Technology in Medicine, Keele University , UK
| | | | - K K Cheng
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK
| | - Maurice P Zeegers
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK.,e Department of Complex Genetics , Maastricht University Medical Center , The Netherlands.,f NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , The Netherlands.,g CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center , The Netherlands
| | | | - Adam J Devall
- c Institute of Cancer and Genomic Sciences, University of Birmingham , UK
| | - Charles A Mein
- i The Genome Center, Barts and the London School of Medicine and Dentistry , London , UK
| | - Lyndon Gommersall
- b Urology Department , University Hospitals of North Midlands NHS Trust , UK
| | - Anthony A Fryer
- a Institute for Science and Technology in Medicine, Keele University , UK
| | - William E Farrell
- a Institute for Science and Technology in Medicine, Keele University , UK
| |
Collapse
|
10
|
Gangisetty O, Wynne O, Jabbar S, Nasello C, Sarkar DK. Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms. PLoS One 2015; 10:e0140699. [PMID: 26509893 PMCID: PMC4624904 DOI: 10.1371/journal.pone.0140699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells.
Collapse
Affiliation(s)
- Omkaram Gangisetty
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Olivia Wynne
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Shaima Jabbar
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Cara Nasello
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Dipak K. Sarkar
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kitchen MO, Yacqub-Usman K, Emes RD, Richardson A, Clayton RN, Farrell WE. Epidrug mediated re-expression of miRNA targeting the HMGA transcripts in pituitary cells. Pituitary 2015; 18:674-84. [PMID: 25557289 DOI: 10.1007/s11102-014-0630-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Transgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression. RESULTS In a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression. CONCLUSIONS These findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.
Collapse
Affiliation(s)
- Mark O Kitchen
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, Staffordshire, ST4 7QB, UK
| | | | | | | | | | | |
Collapse
|
12
|
Kitchen MO, Bryan RT, Haworth KE, Emes RD, Luscombe C, Gommersall L, Cheng KK, Zeegers MP, James ND, Devall AJ, Fryer AA, Farrell WE. Methylation of HOXA9 and ISL1 Predicts Patient Outcome in High-Grade Non-Invasive Bladder Cancer. PLoS One 2015; 10:e0137003. [PMID: 26332997 PMCID: PMC4558003 DOI: 10.1371/journal.pone.0137003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/11/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction Inappropriate DNA methylation is frequently associated with human tumour development, and in specific cases, is associated with clinical outcomes. Previous reports of DNA methylation in low/intermediate grade non-muscle invasive bladder cancer (NMIBC) have suggested that specific patterns of DNA methylation may have a role as diagnostic or prognostic biomarkers. In view of the aggressive and clinically unpredictable nature of high-grade (HG) NMIBC, and the current shortage of the preferred treatment option (Bacillus:Calmette-Guerin), novel methylation analyses may similarly reveal biomarkers of disease outcome that could risk-stratify patients and guide clinical management at initial diagnosis. Methods Promoter-associated CpG island methylation was determined in primary tumour tissue of 36 initial presentation high-grade NMIBCs, 12 low/intermediate-grade NMIBCs and 3 normal bladder controls. The genes HOXA9, ISL1, NKX6-2, SPAG6, ZIC1 and ZNF154 were selected for investigation on the basis of previous reports and/or prognostic utility in low/intermediate-grade NMIBC. Methylation was determined by Pyrosequencing of sodium-bisulphite converted DNA, and then correlated with gene expression using RT-qPCR. Methylation was additionally correlated with tumour behaviour, including tumour recurrence and progression to muscle invasive bladder cancer or metastases. Results The ISL1 genes’ promoter-associated island was more frequently methylated in recurrent and progressive high-grade tumours than their non-recurrent counterparts (60.0% vs. 18.2%, p = 0.008). ISL1 and HOXA9 showed significantly higher mean methylation in recurrent and progressive tumours compared to non-recurrent tumours (43.3% vs. 20.9%, p = 0.016 and 34.5% vs 17.6%, p = 0.017, respectively). Concurrent ISL1/HOXA9 methylation in HG-NMIBC reliably predicted tumour recurrence and progression within one year (Positive Predictive Value 91.7%), and was associated with disease-specific mortality (DSM). Conclusions In this study we report methylation differences and similarities between clinical sub-types of high-grade NMIBC. We report the potential ability of methylation biomarkers, at initial diagnosis, to predict tumour recurrence and progression within one year of diagnosis. We found that specific biomarkers reliably predict disease outcome and therefore may help guide patient treatment despite the unpredictable clinical course and heterogeneity of high-grade NMIBC. Further investigation is required, including validation in a larger patient cohort, to confirm the clinical utility of methylation biomarkers in high-grade NMIBC.
Collapse
Affiliation(s)
- Mark O Kitchen
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom; Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Richard T Bryan
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kim E Haworth
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - Richard D Emes
- Advanced Data Analysis Centre, University of Nottingham, Nottingham, United Kingdom
| | - Christopher Luscombe
- Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - Lyndon Gommersall
- Urology Department, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, United Kingdom
| | - K K Cheng
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maurice P Zeegers
- Department of Complex Genetics, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Nicholas D James
- Cancer Research Unit, University of Warwick, Coventry, United Kingdom
| | - Adam J Devall
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anthony A Fryer
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| | - William E Farrell
- Institute for Science and Technology in Medicine, Keele University, Stoke-on-Trent, United Kingdom
| |
Collapse
|
13
|
Yacqub-Usman K, Pickard MR, Williams GT. Reciprocal regulation of GAS5 lncRNA levels and mTOR inhibitor action in prostate cancer cells. Prostate 2015; 75:693-705. [PMID: 25650269 DOI: 10.1002/pros.22952] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/04/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND New therapies are required for castrate-resistant prostate cancer (CRPC), and growth-arrest specific 5 (GAS5) lncRNA, which riborepresses androgen receptor action, may offer novel opportunities in this regard. This lncRNA promotes the apoptosis of prostate cancer cells and its levels decline as prostate cancer cells acquire castrate-resistance, so that enhancing GAS5 expression may improve the effectiveness of chemotherapies. Since GAS5 is a member of the 5' terminal oligopyrimidine gene family, we have examined mTOR inhibition as a strategy to increase GAS5 expression. Furthermore, we have determined if GAS5 itself mediates the action of mTOR inhibitors, as demonstrated for other chemotherapeutic agents in prostate cancer cells. METHODS The effects of mTOR inhibitors on GAS5 lncRNA levels and cell growth were determined in a range of prostate cancer cell lines. Transfection of cells with GAS5 siRNAs and plasmid constructs was performed to determine the involvement of GAS5 lncRNA in mTOR inhibitor action. RESULTS First generation mTORC1, combined mTORC1/mTORC2 and dual PI3K/mTOR inhibitors all increased cellular GAS5 levels and inhibited culture growth in androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU 145) cell lines. The latter exhibited low endogenous GAS5 expression, and GAS5 silencing in LNCaP and 22Rv1 cells decreased the sensitivity to mTOR inhibitors, whereas transfection of GAS5 lncRNA sensitized PC-3 and DU 145 cells to these agents. CONCLUSION mTOR inhibition enhances GAS5 transcript levels in certain prostate cancer cell lines. This selectivity is likely to be related to endogenous GAS5 expression levels, since GAS5 lncRNA is itself required for mTOR inhibitor action in prostate cancer cells.
Collapse
Affiliation(s)
- Kiren Yacqub-Usman
- School of Life Sciences, Faculty of Natural Sciences and The Institute of Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK
| | | | | |
Collapse
|
14
|
Cuny T, Barlier A, Feelders R, Weryha G, Hofland LJ, Ferone D, Gatto F. Medical therapies in pituitary adenomas: Current rationale for the use and future perspectives. ANNALES D'ENDOCRINOLOGIE 2015; 76:43-58. [DOI: 10.1016/j.ando.2014.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/01/2014] [Accepted: 10/13/2014] [Indexed: 01/07/2023]
|
15
|
Abstract
PURPOSE OF REVIEW To review recent advances in our knowledge and understanding of aberrations that target the epigenome in sporadic pituitary adenomas. RECENT FINDINGS A more complete understanding of the pituitary epigenome has been facilitated by advances in technologies for exploring the tumour-associated epigenomic landscape, and has revealed aberration to the principle targets of these changes, namely, methylation of CpG dinucleotides, modification of histone tails and the expression of target-specific miRNA. Genome-wide investigations, of sporadic pituitary adenoma, have identified novel methylated genes that in some cases are subtype-specific. Recent studies have also shown that silenced genes may be reactivated through epidrug challenges. Moreover, in experimental settings, wherein enforced expression of specific miRNA has been employed, these have been shown to inhibit pituitary cell proliferation in vitro and in vivo. SUMMARY Candidate gene and genome-wide studies reveal frequent epigenetic changes in pituitary adenomas. Aberrations, concurrent with their impact on functional end-points, may display subtype specificity, whereas others appear to be independent of adenoma subtype. Changes to the epigenomic landscape, and apparent as CpG island methylation and/or as histone tail modifications, show sensitivity to epidrug-induced re-expression that concomitantly impacts on cell proliferation. Similarly, enforced expression of silenced miRNA in model systems is also associated with similar end-points. Collectively, emerging data show that these types of manipulation, alone or in combination with a more conventional therapeutic option, offer new avenues for the medical management of these tumours.
Collapse
Affiliation(s)
- William E Farrell
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke on Trent, Staffordshire, UK
| |
Collapse
|
16
|
Cuny T, Chanson P. [Aggressive and resistant-to-treatment pituitary tumors]. ANNALES D'ENDOCRINOLOGIE 2013; 74 Suppl 1:S3-12. [PMID: 24356289 DOI: 10.1016/s0003-4266(13)70016-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pituitary adenomas define slow growing tumors developing from anterior pituitary. Most often benign, their treatment and subsequent management are based on transphenoidal surgery and/or medical therapy, generally without difficulties in clinical practice. However, 2 clinicopathological situations, more or less intricated, may considerably complicate the management of these tumors and the patient health condition. Firstly, when the tumor is characterized by an usual aggressive behaviour with a possible extension within the cavernous sinus and a high risk of recurence after well- conducted treatment. Otherwise, in some cases of resistant prolactinomas and somatotropinomas, the specific medical treatment may be unsuccessful for controlling the hormonal hypersecretion and/or the tumoral growth, with subsequent complex therapeutic approach. Progress that have been made in the understanding of aggressive as well as in resistant- to- treatment pituitary tumors, both in histopathology and molecular fields, may constitue new tools for improving knowledge on the profile of these atypical tumors and optimizing their management.
Collapse
Affiliation(s)
- T Cuny
- Service d'endocrinologie et gynécologie médicale, Faculté de médecine de Nancy, Université de Lorraine, Centre hospitalier universitaire de Nancy- Brabois, 54500 Vandoeuvre- les- Nancy, France.
| | - P Chanson
- Université Paris- Sud, Faculté de médecine Paris- Sud, UMR- S693, Le Kremlin-Bicêtre, F- 94276, France; Assistance publique- Hôpitaux de Paris, Hôpitaux universitaires Paris- Sud, Hôpital de Bicêtre, Service d'endocrinologie et des maladies de la reproduction, Le Kremlin-Bicêtre, F- 94275, France
| |
Collapse
|
17
|
Moraes AB, Silva CMDS, Vieira Neto L, Gadelha MR. Giant prolactinomas: the therapeutic approach. Clin Endocrinol (Oxf) 2013; 79:447-56. [PMID: 23662975 DOI: 10.1111/cen.12242] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 04/03/2013] [Accepted: 05/07/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND Giant prolactinomas are an unusual subset of macroprolactinomas and are more commonly found in men. The goal of this review is to propose a giant prolactinoma definition and discuss the available therapeutic options for biochemical and tumour volume control. METHODS A comprehensive search of all published studies was performed between April and November 2012 in electronic databases (PubMed and Ovid). RESULTS A giant prolactinoma should be defined as an adenoma with a maximum diameter of more than 4 cm that is associated with serum prolactin above 5300 mIU/l. Regarding treatment, cabergoline is the preferred dopamine agonist for medical management of giant prolactinomas because of its excellent efficacy and tolerability. Normalization of prolactin level and significant tumour reduction may be achieved in the majority of patients. Combined therapy, particularly cabergoline and surgery, may be necessary due to the large tumour load. Radiotherapy and temozolomide may be used for patients with aggressive giant prolactinomas in whom tumour volume control is not achieved with cabergoline and surgery. CONCLUSION There is a scarcity of large studies about the management of giant prolactinoma. Cabergoline is the first-line treatment. However, caution should be exercised when comparing efficacy rates among the different treatment modalities due to the variability in study design and data quality. In this scenario, a 'standard' definition for giant prolactinomas and larger series may be helpful to assess the real efficacy and safety of each therapeutic modality.
Collapse
Affiliation(s)
- Aline B Moraes
- Department of Internal Medicine and Endocrine Unit, Medical School and Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
18
|
Yacqub-Usman K, Duong CV, Clayton RN, Farrell WE. Preincubation of pituitary tumor cells with the epidrugs zebularine and trichostatin A are permissive for retinoic acid-augmented expression of the BMP-4 and D2R genes. Endocrinology 2013; 154:1711-21. [PMID: 23539512 DOI: 10.1210/en.2013-1061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinoic acid (RA)-induced expression of bone morphogenetic protein-4 (BMP-4) inhibits in vitro and in vivo cell proliferation and ACTH synthesis in corticotroph-derived tumor cells. Reduced expression of BMP-4 in this adenoma subtype is associated with epigenomic silencing, and similar silencing mechanisms are also associated with the RA-responsive dopamine D2 receptor (D2R) in somatolactotroph cells. We now show that preincubation with the epidrugs zebularine and trichostatin A is obligate and permissive for RA-induced expression of the BMP-4 and the D2R genes in pituitary tumor cells. Combined epidrug challenges are associated with marginal reduction in CpG island methylation. However, significant change to histone tail modifications toward those associated with expression-competent genes is apparent, whereas RA challenge alone or in combined incubations does not have an impact on these modifications. Epidrug-mediated and RA-augmented expression of endogenous BMP-4 increased or decreased cell proliferation and colony-forming efficiency in GH3 and AtT-20 pituitary tumor cells, respectively, recapitulating recent reports of challenges of these cells with exogenous ligand. The specificity of the BMP-4-mediated effects was further supported by knock-down experiments of the BMP-4 antagonist noggin (small interfering RNA [siRNA]). Knock-down of noggin, in the absence and the presence of epidrugs, induced and augmented BMP-4 expression, respectively. In cell proliferation assays, challenge with either epidrugs or siRNA led to significant increase in cell numbers at the 72-hour time point; however, in siRNA-treated cells coincubated with epidrugs, a significant increase was apparent at the 48-hour time point. These studies show the potential of combined drug challenges as a treatment option, where epidrug renders silenced genes responsive to conventional therapeutic options.
Collapse
Affiliation(s)
- Kiren Yacqub-Usman
- Institute of Science and Technology in Medicine, Keele University School of Medicine, Stoke-on-Trent ST4 7QB, United Kingdom
| | | | | | | |
Collapse
|
19
|
Duong CV, Yacqub-Usman K, Emes RD, Clayton RN, Farrell WE. The EFEMP1 gene: a frequent target for epigenetic silencing in multiple human pituitary adenoma subtypes. Neuroendocrinology 2013; 98:200-11. [PMID: 24080855 DOI: 10.1159/000355624] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS In a genome-wide investigation we recently identified the EGF-containing fibulin-like extracellular matrix protein 1 gene, EFEMP1, as hypermethylated in growth hormone-secreting adenoma. METHODS In an independent cohort we determined expression of EFEMP1, CpG island methylation and histone tail modification status. The causal consequences of epigenetic modification were determined through epidrug-induced reversal and enforced EFEMP1 expression in GH3 cells. RESULTS The majority of adenomas, irrespective of subtype, show reduced EFEMP1 expression. However, epigenetic change, as determined by CpG island methylation, was not invariantly associated with decreased EFEMP1 expression. Conversely, chromatin immunoprecipitation assays revealed enrichment for modifications associated with either active or silenced genes in adenoma that did or did not express EFEMP1 respectively. In AtT-20 and GH3 cells a causal relationship between epigenetic silencing and expression of EFEMP1 was established where co-incubation with the epidrugs zebularine and TSA induced expression of EFEMP1 and concomitant histone tail modifications toward those associated with expressed genes. Enforced expression of EFEMP1 in GH3 cells was without effect on cell proliferation or apoptotic end-points, however inhibition of endogenous matrix metalloproteinase (MMP)-2 expression was apparent. Primary adenomas did not show this relationship, however a positive correlation was apparent with the MMP7 transcript and perhaps reflects cell or species differences. CONCLUSIONS The protein product of the EFEMP1 gene, fibulin-3, is reported to impact on multiple pathways in a cell-specific context. Subtype-independent loss of EFEMP1 expression in the majority of primary adenomas should prompt more detailed investigation in this tumour type.
Collapse
Affiliation(s)
- Cuong V Duong
- Institute of Science and Technology in Medicine, Keele University School of Medicine, Stoke-on-Trent, UK
| | | | | | | | | |
Collapse
|
20
|
Duong CV, Emes RD, Wessely F, Yacqub-Usman K, Clayton RN, Farrell WE. Quantitative, genome-wide analysis of the DNA methylome in sporadic pituitary adenomas. Endocr Relat Cancer 2012; 19:805-16. [PMID: 23045325 DOI: 10.1530/erc-12-0251] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA methylation is one of the several epigenetic modifications that together with genetic aberrations are hallmarks of tumorigenesis including those emanating from the pituitary gland. In this study, we examined DNA methylation across 27 578 CpG sites spanning more than 14 000 genes in the major pituitary adenoma subtypes. Genome-wide changes were first determined in a discovery cohort comprising non-functioning (NF), growth hormone (GH), prolactin (PRL)-secreting and corticotroph (CT) adenoma relative to post-mortem pituitaries. Using stringent cut-off criteria, we validated increased methylation by pyrosequencing in 12 of 16 (75%) genes. Overall, these criteria identified 40 genes in NF, 21 in GH, six in PRL and two in CT that were differentially methylated relative to controls. In a larger independent cohort of adenomas, for genes in which hypermethylation had been validated, different frequencies of hypermethylation were apparent, where the KIAA1822 (HHIPL1) and TFAP2E genes were hypermethylated in 12 of 13 NF adenomas whereas the COL1A2 gene showed an increase in two of 13 adenomas. For genes showing differential methylation across and between adenoma subtypes, pyrosequencing confirmed these findings. In three of 12 genes investigated, an inverse relationship between methylation and transcript expression was observed where increased methylation of EML2, RHOD and HOXB1 is associated with significantly reduced transcript expression. This study provides the first genome-wide survey of adenoma, subtype-specific epigenomic changes and will prove useful for identification of biomarkers that perhaps predict or characterise growth patterns. The functional characterisation of identified genes will also provide insight of tumour aetiology and identification of new therapeutic targets.
Collapse
Affiliation(s)
- Cuong V Duong
- Institute of Science and Technology in Medicine, Keele University School of Medicine, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | | | | | | | | | | |
Collapse
|
21
|
Yacqub-Usman K, Duong CV, Clayton RN, Farrell WE. Epigenomic silencing of the BMP-4 gene in pituitary adenomas: a potential target for epidrug-induced re-expression. Endocrinology 2012; 153:3603-12. [PMID: 22700770 DOI: 10.1210/en.2012-1231] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein (BMP)-4 is a key mediator of anterior pituitary organogenesis. However, through inappropriate expression patterns, BMP-4 is also pathogenic in a pituitary adenoma subtype-specific context. In these cases, increase or decrease in BMP-4 in lactotroph- and corticotroph-derived adenomas, respectively, is consistent with a bifunction role for this protein toward either promotion or inhibition of cell proliferation and hormone secretion. To gain insight into the aberrations responsible for differential expression, we examined BMP-4 transcript and protein expression patterns in the major adenomas subtypes. BMP-4 transcript and protein are differentially expressed and show increase in the majority of prolactinomas relative to normal pituitary, whereas the majority of other adenoma subtypes show reduced expression relative to both prolactinoma and normal pituitaries. Reduced expression of BMP-4 is not associated with change in CpG island methylation status. However, histone tail modifications are apparent, as enrichment for a modification associated with silent genes, H3K27me3, and depletion of a modification associated with active genes, H3K9Ac. In pituitary cell lines, reduced BMP-4 expression is also associated with similar histone tail modifications and contemporaneous increase in CpG island methylation. In these cells, coincubation with the demethylating agent zebularine and histone deacetylase inhibitor, trichostatin A, reversed epigenetic changes and restored expression of BMP-4. These studies show that, in contrast to prolactinomas, other adenoma subtypes show reduced expression of BMP-4 where epidrug induced reexpression, alone or in combination with conventional therapies, may offer new treatment strategies.
Collapse
Affiliation(s)
- Kiren Yacqub-Usman
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke on Trent, Staffordshire ST4 7QB, United Kingdom
| | | | | | | |
Collapse
|
22
|
Emes RD, Farrell WE. Make way for the 'next generation': application and prospects for genome-wide, epigenome-specific technologies in endocrine research. J Mol Endocrinol 2012; 49:R19-27. [PMID: 22525352 DOI: 10.1530/jme-12-0045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epigenetic changes, which target DNA and associated histones, can be described as a pivotal mechanism of interaction between genes and the environment. The field of epigenomics aims to detect and interpret epigenetic modifications at the whole genome level. These approaches have the potential to increase resolution of epigenetic changes to the single base level in multiple disease states or across a population of individuals. Identification and comparison of the epigenomic landscape has challenged our understanding of the regulation of phenotype. Additionally, inclusion of these marks as biomarkers in the early detection or progression monitoring of disease is providing novel avenues for future biomedical research. Cells of the endocrine organs, which include pituitary, thyroid, thymus, pancreas ovary and testes, have been shown to be susceptible to epigenetic alteration, leading to both local and systemic changes often resulting in life-threatening metabolic disease. As with other cell types and populations, endocrine cells are susceptible to tumour development, which in turn may have resulted from aberration of epigenetic control. Techniques including high-throughput sequencing and array-based analysis to investigate these changes have rapidly emerged and are continually evolving. Here, we present a review of these methods and their promise to influence our studies on the epigenome for endocrine research and perhaps to uncover novel therapeutic options in disease states.
Collapse
Affiliation(s)
- Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Leicestershire LE12 5RD, UK
| | | |
Collapse
|
23
|
Yacqub-Usman K, Richardson A, Duong CV, Clayton RN, Farrell WE. The pituitary tumour epigenome: aberrations and prospects for targeted therapy. Nat Rev Endocrinol 2012; 8:486-94. [PMID: 22525730 DOI: 10.1038/nrendo.2012.54] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global and gene-specific changes in the epigenome are hallmarks of most tumour types, including those of pituitary origin. In contrast to genetic mutations, epigenetic changes (aberrant DNA methylation and histone modifications) are potentially reversible. Drugs that specifically target or inhibit DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be used to restore the expression of epigenetically silenced genes. These drugs can potentially increase the sensitivity of tumour cells to conventional treatment modalities, such as chemotherapy and radiotherapy. Drug-induced reversal of transcriptional silencing can also be used to restore dopamine-D(2)-receptor-negative, hormone-refractory tumours to their previous receptor-positive, hormone-responsive status. Synergy between HDAC and DNMT inhibitors makes these pharmacological agents more therapeutically effective when administered in combination than when used alone. Studies in pituitary tumour cell lines show that drug-induced re-expression of the epigenetically silenced dopamine D(2) receptor leads to an increase in apoptosis mediated by a receptor agonist. Collectively, the use of drugs to directly or indirectly reverse gene-specific epigenetic changes, in combination with conventional therapeutic interventions, has potential for the clinical management of multiple tumour types-including those of pituitary origin. Furthermore, these drugs can be used to identify epigenetically regulated genes that could be novel, tumour-specific therapeutic targets.
Collapse
Affiliation(s)
- Kiren Yacqub-Usman
- Human Disease and Genomics Group, Institute of Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, Staffordshire ST4 7QB, UK
| | | | | | | | | |
Collapse
|
24
|
|
25
|
Perez-Castro C, Renner U, Haedo MR, Stalla GK, Arzt E. Cellular and molecular specificity of pituitary gland physiology. Physiol Rev 2012; 92:1-38. [PMID: 22298650 DOI: 10.1152/physrev.00003.2011] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The anterior pituitary gland has the ability to respond to complex signals derived from central and peripheral systems. Perception of these signals and their integration are mediated by cell interactions and cross-talk of multiple signaling transduction pathways and transcriptional regulatory networks that cooperate for hormone secretion, cell plasticity, and ultimately specific pituitary responses that are essential for an appropriate physiological response. We discuss the physiopathological and molecular mechanisms related to this integrative regulatory system of the anterior pituitary gland and how it contributes to modulate the gland functions and impacts on body homeostasis.
Collapse
Affiliation(s)
- Carolina Perez-Castro
- Laboratorio de Regulación de la Expresión Génica en el Crecimiento, Supervivencia y Diferenciación Celular,Departamento de Química Biológica, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
26
|
Peverelli E, Mantovani G, Vitali E, Elli FM, Olgiati L, Ferrero S, Laws ER, Della Mina P, Villa A, Beck-Peccoz P, Spada A, Lania AG. Filamin-A is essential for dopamine d2 receptor expression and signaling in tumorous lactotrophs. J Clin Endocrinol Metab 2012; 97:967-77. [PMID: 22259062 DOI: 10.1210/jc.2011-2902] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONTEXT Dopamine agonists (DA) are the first choice treatment of prolactinomas. However, a subset of patients is resistant to DA, due to undefined dopamine D2 receptor (D2R) alterations. Recently, D2R was found to associate with filamin-A (FLNA), a widely expressed cytoskeleton protein with scaffolding properties, in melanoma and neuronal cells. OBJECTIVE The aim of the study was to investigate the role of FLNA in D2R expression and signaling in human tumorous lactotrophs and rat MMQ and GH3 cells. DESIGN We analyzed FLNA expression in a series of prolactinomas by immunohistochemistry and Western blotting. We performed FLNA silencing or transfection experiments in cultured cells from DA-sensitive or -resistant prolactinomas and in MMQ and GH3 cells, followed by analysis of D2R expression and signaling. RESULTS We demonstrated reduced FLNA and D2R expression in DA-resistant tumors. The crucial role of FLNA on D2R was demonstrated by experiments showing that: 1) FLNA silencing in DA-sensitive prolactinomas resulted in 60% reduction of D2R expression and abrogation of DA-induced inhibition of prolactin release and antiproliferative signals, these results being replicated in MMQ cells that endogenously express FLNA and D2R; and 2) FLNA overexpression in DA-resistant prolactinomas restored D2R expression and prolactin responsiveness to DA, whereas this manipulation was ineffective in GH3 cells that express FLNA but not D2R. No alteration in FLNA promoter methylation was detected, ruling out the occurrence of epigenetic FLNA silencing in DA-resistant prolactinomas. CONCLUSIONS These data indicate that FLNA is crucial for D2R expression and signaling in lactotrophs, suggesting that the impaired response to DA may be related to the reduction of FLNA expression in DA-resistant prolactinomas.
Collapse
Affiliation(s)
- Erika Peverelli
- Endocrinology Unit, Department of Medical Sciences, Fondazione Instituto di Ricovero e Cura a Carattere Scientifico Ca' Granda-Padiglione Granelli, University of Milan, Via Francesco Sforza, 35, 20122 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shimazu S, Shimatsu A, Yamada S, Inoshita N, Nagamura Y, Usui T, Tsukada T. Resistance to dopamine agonists in prolactinoma is correlated with reduction of dopamine D2 receptor long isoform mRNA levels. Eur J Endocrinol 2012; 166:383-90. [PMID: 22127489 DOI: 10.1530/eje-11-0656] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Dopamine agonists normalize prolactin (PRL) levels and reduce tumour size in responsive prolactinoma. However, several cases have shown resistance to dopamine agonists upon initial treatment. Infrequently, prolactinoma initially responds, but then becomes refractory to prolonged treatment (secondary resistance). We investigated the possible mechanisms of resistance to dopamine agonists. SUBJECTS AND METHODS Twelve cases of prolactinoma were surgically resected and classified according to the responsiveness of PRL levels and tumour size to dopamine agonists: good responders (n = 5), poor responders (n = 5), or secondary resistance (n = 2). We examined the expression of dopamine D(2) receptor (D(2)R) isoform (short: D(2)S and long: D(2)L) mRNA and protein. We investigated DNA methylation patterns in the promoter region of the DRD2 gene. RESULTS The predominant D(2)R isoform expressed in prolactinoma was D(2)L. Levels of D(2)L mRNA were significantly lower in secondary resistance and poor responders than in good responders. Expression of D(2)R protein was variable among cases. Almost no CpG sites of the DRD2 gene promoter region were methylated. CONCLUSION Resistance of prolactinoma to dopamine agonists is correlated with a reduction in D(2)L isoform mRNA levels. Silencing of the DRD2 gene by methylation in the promoter region is unlikely to play a role in dopamine agonist resistance in prolactinoma.
Collapse
Affiliation(s)
- Satoko Shimazu
- Division of Familial Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | |
Collapse
|