1
|
Li Y, Li C, Luo T, Yue T, Xiao W, Yang L, Zhang Z, Han F, Long P, Hu Y. Progress in the Treatment of High Altitude Cerebral Edema: Targeting REDOX Homeostasis. J Inflamm Res 2023; 16:2645-2660. [PMID: 37383357 PMCID: PMC10296571 DOI: 10.2147/jir.s415695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023] Open
Abstract
With the increasing of altitude activities from low-altitude people, the study of high altitude cerebral edema (HACE) has been revived. HACE is a severe acute mountain sickness associated with exposure to hypobaric hypoxia at high altitude, often characterized by disturbance of consciousness and ataxia. As for the pathogenesis of HACE, previous studies suggested that it might be related to the disorder of cerebral blood flow, the destruction of blood-brain barrier and the injury of brain parenchyma cells caused by inflammatory factors. In recent years, studies have confirmed that the imbalance of REDOX homeostasis is also involved in the pathogenesis of HACE, which mainly leads to abnormal activation of microglia and destruction of tight junction of vascular endothelial cells through the excessive production of mitochondrial-related reactive oxygen species. Therefore, this review summarizes the role of REDOX homeostasis and the potential of the treatment of REDOX homeostasis in HACE, which is of great significance to expand the understanding of the pathogenesis of HACE. Moreover, it will also be helpful to further study the possible therapy of HACE related to the key link of REDOX homeostasis.
Collapse
Affiliation(s)
- Yubo Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Chengming Li
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, People’s Republic of China
- Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Zaiyuan Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| | - Fei Han
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| | - Yonghe Hu
- College of Medicine, Southwest Jiaotong University, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Caroleo MC, Plastina P, Fazio A, La Torre C, Manetti F, Cione E. Olive Oil Lipophenols Induce Insulin Secretion in 832/13 β-Cell Models. Pharmaceutics 2021; 13:pharmaceutics13071085. [PMID: 34371780 PMCID: PMC8309142 DOI: 10.3390/pharmaceutics13071085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/12/2023] Open
Abstract
Glycemic control is a mainstay of type 2 diabetes mellitus (T2DM) clinical management. Despite the continuous improvement in knowledge and progress in terms of treatment, the achievement of the physiologic metabolic profile is still an ongoing challenge in diabetic patients. Pancreatic β-cell line INS-1 832/13 was used to assess the insulin secretagogue activity of hydroxytyrosyl oleate (HtyOle) and tyrosyl oleate (TyOle), two naturally occurring lipophenols deriving from the conjugation of oleic acid (OA) and hydroxytyrosol (Hty) or tyrosol (Ty), respectively. The insulin secretion was determined under a glucose-induced insulin secretion (GSIS) condition by the ELISA method. The potential involvement of G-protein-coupled receptor 40 (GPR40), also known as free fatty acid receptor 1 (FFAR1), was investigated by both molecular docking and functional pharmacological approaches. Herein, we demonstrated that HtyOle and TyOle exerted a facilitatory activity on insulin secretion under the GSIS condition. Moreover, we provided evidence that both lipophenols are natural modulators of FFAR1 receptor. From our results, the anti-diabetes properties associated with olive oil consumption can be partly explained by the HtyOle and TyOle effects.
Collapse
Affiliation(s)
- Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Pierluigi Plastina
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Alessia Fazio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Chiara La Torre
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
- Correspondence: (F.M.); (E.C.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (M.C.C.); (P.P.); (A.F.); (C.L.T.)
- Correspondence: (F.M.); (E.C.)
| |
Collapse
|
3
|
Nunes Marsiglio-Librais G, Aparecida Vilas-Boas E, Carlein C, Hoffmann MDA, Roma LP, Carpinelli AR. Evidence for NADPH oxidase activation by GPR40 in pancreatic β-cells. Redox Rep 2021; 25:41-50. [PMID: 32354273 PMCID: PMC7241480 DOI: 10.1080/13510002.2020.1757877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: Investigate the involvement of the fatty acids receptor GPR40 in the assembly and activation of NADPH oxidase and the implications on pancreatic β-cell function. Methods: BRIN-BD11 β-cells were exposed to GPR40 agonist (GW9508) or linoleic acid in different glucose concentrations. Superoxide and H2O2 were analyzed, respectively, by DHE fluorescence and by fluorescence of the H2O2 sensor, roGFP2-Orp1. Protein contents of p47phox in plasma membrane and cytosol were analyzed by western blot. NADPH oxidase role was evaluated by p22phox siRNA or by pharmacological inhibition with VAS2870. NOX2 KO islets were used to measure total cytosolic calcium and insulin secretion. Results: GW9508 and linoleic acid increased superoxide and H2O2 contents at 5.6 and 8.3 mM of glucose. In addition, in 5.6 mM, but not at 16.7 mM of glucose, activation of GPR40 led to the translocation of p47phox to the plasma membrane. Knockdown of p22phox abolished the increase in superoxide after GW9508 and linoleic acid. No differences in insulin secretion were found between wild type and NOX2 KO islets treated with GW9508 or linoleic acid. Discussion: We report for the first time that acute activation of GPR40 leads to NADPH oxidase activation in pancreatic β-cells, without impact on insulin secretion.
Collapse
Affiliation(s)
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Christopher Carlein
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | | | - Leticia Prates Roma
- Department of Biophysics, Center for Human and Molecular Biology, CIPMM, Saarland University, Homburg/Saar, Germany
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
4
|
Šrámek J, Němcová-Fürstová V, Kovář J. Molecular Mechanisms of Apoptosis Induction and Its Regulation by Fatty Acids in Pancreatic β-Cells. Int J Mol Sci 2021; 22:4285. [PMID: 33924206 PMCID: PMC8074590 DOI: 10.3390/ijms22084285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell failure and death contribute significantly to the pathogenesis of type 2 diabetes. One of the main factors responsible for β-cell dysfunction and subsequent cell death is chronic exposure to increased concentrations of FAs (fatty acids). The effect of FAs seems to depend particularly on the degree of their saturation. Saturated FAs induce apoptosis in pancreatic β-cells, whereas unsaturated FAs are well tolerated and are even capable of inhibiting the pro-apoptotic effect of saturated FAs. Molecular mechanisms of apoptosis induction by saturated FAs in β-cells are not completely elucidated. Saturated FAs induce ER stress, which in turn leads to activation of all ER stress pathways. When ER stress is severe or prolonged, apoptosis is induced. The main mediator seems to be the CHOP transcription factor. Via regulation of expression/activity of pro- and anti-apoptotic Bcl-2 family members, and potentially also through the increase in ROS production, CHOP switches on the mitochondrial pathway of apoptosis induction. ER stress signalling also possibly leads to autophagy signalling, which may activate caspase-8. Saturated FAs activate or inhibit various signalling pathways, i.e., p38 MAPK signalling, ERK signalling, ceramide signalling, Akt signalling and PKCδ signalling. This may lead to the activation of the mitochondrial pathway of apoptosis, as well. Particularly, the inhibition of the pro-survival Akt signalling seems to play an important role. This inhibition may be mediated by multiple pathways (e.g., ER stress signalling, PKCδ and ceramide) and could also consequence in autophagy signalling. Experimental evidence indicates the involvement of certain miRNAs in mechanisms of FA-induced β-cell apoptosis, as well. In the rather rare situations when unsaturated FAs are also shown to be pro-apoptotic, the mechanisms mediating this effect in β-cells seem to be the same as for saturated FAs. To conclude, FA-induced apoptosis rather appears to be preceded by complex cross talks of multiple signalling pathways. Some of these pathways may be regulated by decreased membrane fluidity due to saturated FA incorporation. Few data are available concerning molecular mechanisms mediating the protective effect of unsaturated FAs on the effect of saturated FAs. It seems that the main possible mechanism represents a rather inhibitory intervention into saturated FA-induced pro-apoptotic signalling than activation of some pro-survival signalling pathway(s) or metabolic interference in β-cells. This inhibitory intervention may be due to an increase of membrane fluidity.
Collapse
Affiliation(s)
- Jan Šrámek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | - Vlasta Němcová-Fürstová
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University, Ruská 87, 100 00 Prague, Czech Republic;
| | | |
Collapse
|
5
|
Dos Santos LRB, Fleming I. Role of cytochrome P450-derived, polyunsaturated fatty acid mediators in diabetes and the metabolic syndrome. Prostaglandins Other Lipid Mediat 2019; 148:106407. [PMID: 31899373 DOI: 10.1016/j.prostaglandins.2019.106407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022]
Abstract
Over the last decade, cases of metabolic syndrome and type II diabetes have increased exponentially. Exercise and ω-3 polyunsaturated fatty acid (PUFA)-enriched diets are usually prescribed but no therapy is effectively able to restore the impaired glucose metabolism, hypertension, and atherogenic dyslipidemia encountered by diabetic patients. PUFAs are metabolized by different enzymes into bioactive metabolites with anti- or pro-inflammatory activity. One important class of PUFA metabolizing enzymes are the cytochrome P450 (CYP) enzymes that can generate a series of bioactive products, many of which have been attributed protective/anti-inflammatory and insulin-sensitizing effects in animal models. PUFA epoxides are, however, further metabolized by the soluble epoxide hydrolase (sEH) to fatty acid diols. The biological actions of the latter are less well understood but while low concentrations may be biologically important, higher concentrations of diols derived from linoleic acid and docosahexaenoic acid have been linked with inflammation. One potential application for sEH inhibitors is in the treatment of diabetic retinopathy where sEH expression and activity is elevated as are levels of a diol of docosahexaenoic acid that can induce the destabilization of the retina vasculature.
Collapse
Affiliation(s)
- Laila R B Dos Santos
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK) Partner Site Rhein-Main, Germany.
| |
Collapse
|
6
|
Association of serum total fatty acids with type 2 diabetes. Clin Chim Acta 2019; 500:59-68. [PMID: 31655056 DOI: 10.1016/j.cca.2019.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type 2 diabetes (T2D), a typical metabolic disease, is closely associated with serum free fatty acids. But the association between serum total fatty acids (TFAs, free fatty acids plus esterified fatty acids) and T2D has not been reported. METHODS Serum esterified fatty acids were hydrolyzed under alkaline conditions, and serum TFAs were extracted after acidizing. Fourteen of serum TFAs in 1,828 serum samples, including 543 controls, 655 prediabetes, and 630 T2D patients, were simultaneously quantified based on the calibration curves of 8 fatty acids using matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS). RESULTS Correlation analysis revealed strong correlations among serum TFAs and ratios of the TFAs in T2D patients compared with controls or prediabetes both in males and females. Receiver operating characteristic analysis indicated that a panel including fasting plasma glucose, glycosylated hemoglobin type A1c, gamma-glutamyltransferase, triglyceride, C18:1, and C20:3, has a good capability to distinguish prediabetes from T2D, with the sensitivity of 87.0%, the specificity of 91.0%, and the area under curve (AUC) of 0.96. CONCLUSIONS In this study, rapid, absolute, and simultaneous quantification of serum TFAs was performed using MALDI-FTICR MS. C18:1 and C20:3 were significantly correlated with prediabetes and T2D.
Collapse
|
7
|
Roma LP, Jonas JC. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells. J Mol Biol 2019; 432:1461-1493. [PMID: 31634466 DOI: 10.1016/j.jmb.2019.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Insulin-secreting pancreatic β-cells play a critical role in blood glucose homeostasis and the development of type 2 diabetes (T2D) in the context of insulin resistance. Based on data obtained at the whole cell level using poorly specific chemical probes, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide have been proposed to contribute to the stimulation of insulin secretion by nutrients (positive role) and to the alterations of cell survival and secretory function in T2D (negative role). This raised the controversial hypothesis that any attempt to decrease β-cell oxidative stress and apoptosis in T2D would further impair insulin secretion. Over the last decade, the development of genetically-encoded redox probes that can be targeted to cellular compartments of interest and are specific of redox couples allowed the evaluation of short- and long-term effects of nutrients on β-cell redox changes at the subcellular level. The data indicated that the nutrient regulation of β-cell redox signaling and ROS toxicity is far more complex than previously thought and that the subcellular compartmentation of these processes cannot be neglected when evaluating the mechanisms of ROS production or the efficacy of antioxidant enzymes and antioxidant drugs under glucolipotoxic conditions and in T2D. In this review, we present what is currently known about the compartmentation of redox homeostatic systems and tools to investigate it. We then review data about the effects of nutrients on β-cell subcellular redox state under normal conditions and in the context of T2D and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Leticia P Roma
- Universität des Saarlandes, Biophysics Department, Center for Human and Molecular Biology, Kirbergerstrasse Building 48, 66421, Homburg/Saar, Germany
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), B-1200 Brussels, Belgium.
| |
Collapse
|
8
|
Carullo G, Perri M, Manetti F, Aiello F, Caroleo MC, Cione E. Quercetin-3-oleoyl derivatives as new GPR40 agonists: Molecular docking studies and functional evaluation. Bioorg Med Chem Lett 2019; 29:1761-1764. [DOI: 10.1016/j.bmcl.2019.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 11/26/2022]
|
9
|
Quercetin/oleic acid-based G-protein-coupled receptor 40 ligands as new insulin secretion modulators. Future Med Chem 2017; 9:1873-1885. [DOI: 10.4155/fmc-2017-0113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: Management of Type 2 diabetes mellitus by diet is achievable at the early stage of the disease; patients usually underestimate this approach and an appropriate drug therapy is required. Results: Starting from quercetin and oleic acid, that have effect on insulin secretion, a small set of hybrid molecules was synthesized. Insulin secretion was evaluated in both in vitro and ex vivo models. AV1 was able to enhance insulin secretion dose dependently, behaving as a conceivable agonist of G-protein-coupled receptor 40. Conclusion: AV1 represents an interesting tool that interacts with G-protein-coupled receptor 40. Further studies will be carried out to evaluate the exact binding mode, and also to enlarge the library of these antidiabetic agents. [Formula: see text]
Collapse
|
10
|
Zhao H, Matsuzaka T, Nakano Y, Motomura K, Tang N, Yokoo T, Okajima Y, Han SI, Takeuchi Y, Aita Y, Iwasaki H, Yatoh S, Suzuki H, Sekiya M, Yahagi N, Nakagawa Y, Sone H, Yamada N, Shimano H. Elovl6 Deficiency Improves Glycemic Control in Diabetic db/ db Mice by Expanding β-Cell Mass and Increasing Insulin Secretory Capacity. Diabetes 2017; 66:1833-1846. [PMID: 28461456 DOI: 10.2337/db16-1277] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/18/2017] [Indexed: 11/13/2022]
Abstract
Dysfunctional fatty acid (FA) metabolism plays an important role in the pathogenesis of β-cell dysfunction and loss of β-cell mass in type 2 diabetes (T2D). Elovl6 is a microsomal enzyme that is responsible for converting C16 saturated and monounsaturated FAs into C18 species. We previously showed that Elovl6 played a critical role in the development of obesity-induced insulin resistance by modifying FA composition. To further define its role in T2D development, we assessed the effects of Elovl6 deletion in leptin receptor-deficient C57BL/KsJ db/db mice, a model of T2D. The db/db;Elovl6-/- mice had a markedly increased β-cell mass with increased proliferation and decreased apoptosis, an adaptive increase in insulin, and improved glycemic control. db/db islets were characterized by a prominent elevation of oleate (C18:1n-9), cell stress, and inflammation, which was completely suppressed by Elovl6 deletion. As a mechanistic ex vivo experiment, isolated islets from Elovl6-/- mice exhibited reduced susceptibility to palmitate-induced inflammation, endoplasmic reticulum stress, and β-cell apoptosis. In contrast, oleate-treated islets resulted in impaired glucose-stimulated insulin secretion with suppressed related genes irrespective of the Elovl6 gene. Taken together, Elovl6 is a fundamental factor linking dysregulated lipid metabolism to β-cell dysfunction, islet inflammation, and β-cell apoptosis in T2D, highlighting oleate as the potential culprit of β-cell lipotoxicity.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuta Nakano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Motomura
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nie Tang
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomotaka Yokoo
- Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Saitama, Japan
| | - Yuka Okajima
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
11
|
Abstract
OBJECTIVES The aim of the study was to evaluate the potential changes induced by fish oil (FO) supplementation on the redox status of pancreatic islets from healthy rats. To test whether these effects were due to eicosapentaenoic acid and docosahexaenoic acid (ω-3), in vitro experiments were performed. METHODS Rats were supplemented with FO, and pancreatic islets were obtained. Islets were also treated in vitro with palmitate (P) or eicosapentaenoic acid + docosahexaenoic acid (ω-3). Insulin secretion (GSIS), glucose oxidation, protein expression, and superoxide content were analyzed. RESULTS The FO group showed a reduction in superoxide content. Moreover, FO reduced the expression of NAD(P)H oxidase subunits and increased superoxide dismutase, without altering β-cell function. Palmitate increased β-cell reactive oxygen species (ROS) production, apoptosis, and impaired GSIS. Under these conditions, ω-3 triggered a parallel reduction in ROS production and β-cell apoptosis induced by P and protected against the impairment in GSIS. There was no difference in mitochondrial ROS production. CONCLUSIONS Our results show that ω-3 protect pancreatic islets from alterations induced by P. In vivo FO supplementation modulates the redox state of pancreatic β-cell. Considering that in vitro effects do not involve mitochondrial superoxide production, we can speculate that this protection might involve NAD(P)H oxidase activity.
Collapse
|
12
|
Reyes-Quiroz ME, Alba G, Saenz J, Santa-María C, Geniz I, Jiménez J, Ramírez R, Martín-Nieto J, Pintado E, Sobrino F. Oleic acid modulates mRNA expression of liver X receptor (LXR) and its target genes ABCA1 and SREBP1c in human neutrophils. Eur J Nutr 2014; 53:1707-17. [PMID: 24722912 DOI: 10.1007/s00394-014-0677-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023]
Abstract
PURPOSE Regulation of liver X receptors (LXRs) is essential for cholesterol homeostasis and inflammation. The present study was conducted to determine whether oleic acid (OA) could regulate mRNA expression of LXRα and LXRα-regulated genes and to assess the potential promotion of oxidative stress by OA in neutrophils. METHODS Human neutrophils were treated with OA at different doses and LXR target gene expression, oxidative stress production, lipid efflux and inflammation state were analyzed. RESULTS We describe that mRNA synthesis of both LXRα and ABCA1 (a reverse cholesterol transporter) was induced by OA in human neutrophils. This fatty acid enhanced the effects of LXR ligands on ABCA1 and LXR expression, but it decreased the mRNA levels of sterol regulatory element-binding protein 1c (a transcription factor that regulates the synthesis of triglycerides). Although OA elicited a slight oxidative stress in the short term (15-30 min) in neutrophils, it is unlikely that this is relevant for the modulation of transcription in our experimental conditions, which involve longer incubation time (i.e., 6 h). Of physiological importance is our finding that OA depresses intracellular lipid levels and that markers of inflammation, such as ERK1/2 and p38 mitogen-activated protein kinase phosphorylation, were decreased by OA treatment. In addition, 200 μM OA reduced the migration of human neutrophils, another marker of the inflammatory state. However, OA did not affect lipid peroxidation induced by pro-oxidant agents. CONCLUSIONS This work presents for the first time evidence that human neutrophils are highly sensitive to OA and provides novel data in support of a protective role of this monounsaturated acid against the activation of neutrophils during inflammation.
Collapse
Affiliation(s)
- María Edith Reyes-Quiroz
- Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Universidad de Sevilla, Avda. Sánchez Pizjuán 4, 41009, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ghalami J, Zardooz H, Rostamkhani F, Farrokhi B, Hedayati M. Glucose-stimulated insulin secretion: Effects of high-fat diet and acute stress. J Endocrinol Invest 2013; 36:835-42. [PMID: 23656740 DOI: 10.3275/8959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND One of the major topics in modern societies is the study of relationships between diet, stress and incidence of metabolic disorders. AIM This study aimed to investigate possible impairment in glucose-stimulated insulin secretion induced by a high-fat (cow intra-abdominal fat) diet in response to acute stress. MATERIALS AND METHODS Male Wistar rats were divided into high-fat and normal diet groups and each group was further divided into stress and control subgroups. Stress was induced by a communication box. Plasma levels of glucose, insulin and corticosterone were measured in both diet groups. Glucose tolerance, homeostasis model assessment of insulin resistance (HOMA-IR) index, glucose-stimulated insulin secretion from isolated islets, food and energy intake as well as body weight were also evaluated. RESULTS In the normal diet group, physical stress increased plasma glucose concentrations. In both diet groups, plasma corticosterone levels increased after stress. HOMA-IR index decreased in high-fat fed rats. Food intake decreased while energy intake increased in the high-fat diet rats. Body weight in both diet groups increased in a similar manner. The high-fat diet did not affect insulin secretion; however, stress decreased insulin secretion from isolated islets of both diet groups. Only in the high fat diet group did physical stress increase insulin secretion at 16.7 mM glucose. CONCLUSIONS The cow intra-abdominal fat, did not affect either plasma glucose and insulin concentrations or glucose-induced insulin secretion. Interestingly, it seems that the high-fat diet enabled the islets of the physically stressed rats to secrete more insulin in response to high glucose concentrations.
Collapse
Affiliation(s)
- J Ghalami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, 19615-1178 Tehran, Iran
| | | | | | | | | |
Collapse
|
14
|
Graciano MF, Valle MM, Curi R, Carpinelli AR. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion. Islets 2013; 5:139-48. [PMID: 23817296 DOI: 10.4161/isl.25459] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.
Collapse
Affiliation(s)
- Maria Fernanda Graciano
- Department of Physiology and Biophysics; Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo, SP Brazil
| | | | | | | |
Collapse
|
15
|
Koulajian K, Desai T, Liu GC, Ivovic A, Patterson JN, Tang C, El-Benna J, Joseph JW, Scholey JW, Giacca A. NADPH oxidase inhibition prevents beta cell dysfunction induced by prolonged elevation of oleate in rodents. Diabetologia 2013; 56:1078-87. [PMID: 23429921 PMCID: PMC3622749 DOI: 10.1007/s00125-013-2858-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/21/2013] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS The activation of NADPH oxidase has been implicated in NEFA-induced beta cell dysfunction. However, the causal role of this activation in vivo remains unclear. Here, using rodents, we investigated whether pharmacological or genetic inhibition of NADPH oxidase could prevent NEFA-induced beta cell dysfunction in vivo. METHODS Normal rats were infused for 48 h with saline or oleate with or without the NADPH oxidase inhibitor apocynin. In addition, NADPH oxidase subunit p47(phox)-null mice and wild-type littermate controls were infused with saline or oleate for 48 h. This was followed by measurement of NADPH oxidase activity, reactive oxygen species (ROS) and superoxide imaging and assessment of beta cell function in isolated islets and hyperglycaemic clamps. RESULTS Oleate infusion in rats increased NADPH oxidase activity, consistent with increased total but not mitochondrial superoxide in islets and impaired beta cell function in isolated islets and during hyperglycaemic clamps. Co-infusion of apocynin with oleate normalised NADPH oxidase activity and total superoxide levels and prevented beta cell dysfunction. Similarly, 48 h NEFA elevation in wild-type mice increased total but not mitochondrial superoxide and impaired beta cell function in isolated islets. p47(phox)-null mice were protected against these effects when subjected to 48 h oleate infusion. Finally, oleate increased the levels of total ROS, in both models, whereas inhibition of NADPH oxidase prevented this increase, suggesting that NADPH oxidase is the main source of ROS in this model. CONCLUSIONS/INTERPRETATION These data show that NADPH-oxidase-derived cytosolic superoxide is increased in islets upon oleate infusion in vivo; and whole-body NADPH-oxidase inhibition decreases superoxide in concert with restoration of islet function.
Collapse
Affiliation(s)
- K. Koulajian
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - T. Desai
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - G. C. Liu
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
| | - A. Ivovic
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - J. N. Patterson
- School of Pharmacy, University of Waterloo, Waterloo, ON Canada
| | - C. Tang
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
| | - J. El-Benna
- Inserm, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris, France
- Université Paris 7 site Bichat, UMRS 773, Paris, France
| | - J. W. Joseph
- School of Pharmacy, University of Waterloo, Waterloo, ON Canada
| | - J. W. Scholey
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
- Division of Nephrology, University of Toronto, Toronto, ON Canada
| | - A. Giacca
- Department of Physiology, University of Toronto, Medical Sciences Building, Room 3336-1 King’s College Circle, Toronto, ON Canada M5S 1A8
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| |
Collapse
|
16
|
Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:759-68. [DOI: 10.1016/j.bbalip.2013.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/13/2012] [Accepted: 01/09/2013] [Indexed: 11/18/2022]
|
17
|
Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line. Toxicol Appl Pharmacol 2012; 264:274-83. [DOI: 10.1016/j.taap.2012.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/07/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022]
|
18
|
Newsholme P, Rebelato E, Abdulkader F, Krause M, Carpinelli A, Curi R. Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids. J Endocrinol 2012; 214:11-20. [PMID: 22547566 DOI: 10.1530/joe-12-0072] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that the regulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels is essential for maintaining normal β-cell glucose responsiveness. While long-term exposure to high glucose induces oxidative stress in β cells, conflicting results have been published regarding the impact of ROS on acute glucose exposure and their role in glucose stimulated insulin secretion (GSIS). Although β cells are considered to be particularly vulnerable to oxidative damage, as they express relatively low levels of some peroxide-metabolizing enzymes such as catalase and glutathione (GSH) peroxidase, other less known GSH-based antioxidant systems are expressed in β cells at higher levels. Herein, we discuss the key mechanisms of ROS/RNS production and their physiological function in pancreatic β cells. We also hypothesize that specific interactions between RNS and ROS may be the cause of the vulnerability of pancreatic β cells to oxidative damage. In addition, using a hypothetical metabolic model based on the data available in the literature, we emphasize the importance of amino acid availability for GSH synthesis and for the maintenance of β-cell function and viability during periods of metabolic disturbance before the clinical onset of diabetes.
Collapse
Affiliation(s)
- P Newsholme
- School of Biomedical Sciences, Curtin University, PO Box U1987, Perth, Western Australia 6845, Australia.
| | | | | | | | | | | |
Collapse
|