1
|
Schloss SS, Marshall ZQ, Santistevan NJ, Gjorcheska S, Stenzel A, Barske L, Nelson JC. Cadherin 16 promotes sensory gating via the endocrine corpuscles of Stannius. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614609. [PMID: 39386705 PMCID: PMC11463452 DOI: 10.1101/2024.09.23.614609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation. Using this system, we identify Cadherin 16 as a previously undescribed regulator of sensory gating. We demonstrate that Cadherin 16 regulates sensory thresholds via an endocrine organ, the corpuscle of Stannius (CS), which is essential in zebrafish for regulating Ca2+ homeostasis. We further show that Cadherin 16 regulates whole-body calcium and ultimately behavior through the hormone Stanniocalcin 1L, and the IGF-regulatory metalloprotease, Papp-aa. Finally, we demonstrate the importance of the CS through ablation experiments that reveal its role in promoting normal acoustic sensory gating. Together, our results uncover a previously undescribed brain non-autonomous pathway for the regulation of behavior and establish Ca2+ homeostasis as a critical process underlying sensory gating in vivo.
Collapse
Affiliation(s)
- Susannah S. Schloss
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Zackary Q. Marshall
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Nicholas J. Santistevan
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stefani Gjorcheska
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amanda Stenzel
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Lindsey Barske
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica C. Nelson
- Department of Cell and Developmental Biology; University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
Jin X, Fu C, Qi J, Chen C. Revolutionary multi-omics analysis revealing prognostic signature of thyroid cancer and subsequent in vitro validation of SNAI1 in mediating thyroid cancer progression through EMT. Clin Exp Med 2024; 24:127. [PMID: 38869635 PMCID: PMC11176101 DOI: 10.1007/s10238-024-01387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Thyroid carcinoma (TC), the most commonly diagnosed malignancy of the endocrine system, has witnessed a significant rise in incidence over the past few decades. The integration of scRNA-seq with other sequencing approaches offers researchers a distinct perspective to explore mechanisms underlying TC progression. Therefore, it is crucial to develop a prognostic model for TC patients by utilizing a multi-omics approach. We acquired and processed transcriptomic data from the TCGA-THCA dataset, including mRNA expression profiles, lncRNA expression profiles, miRNA expression profiles, methylation chip data, gene mutation data, and clinical data. We constructed a tumor-related risk model using machine learning methods and developed a consensus machine learning-driven signature (CMLS) for accurate and stable prediction of TC patient outcomes. 2 strains of undifferentiated TC cell lines and 1 strain of PTC cell line were utilized for in vitro validation. mRNA, protein levels of hub genes, epithelial-mesenchymal transition (EMT)-associated phenotypes were detected by a series of in vitro experiments. We identified 3 molecular subtypes of TC based on integrated multi-omics clustering algorithms, which were associated with overall survival and displayed distinct molecular features. We developed a CMLS based on 28 hub genes to predict patient outcomes, and demonstrated that CMLS outperformed other prognostic models. TC patients of relatively lower CMLS score had significantly higher levels of T cells, B cells, and macrophages, indicating an immune-activated state. Fibroblasts were predominantly enriched in the high CMLS group, along with markers associated with immune suppression and evasion. We identified several drugs that could be suitable for patients with high CMLS, including Staurosporine_1034, Rapamycin_1084, gemcitabine, and topotecan. SNAI1 was elevated in both undifferentiated TC cell lines, comparing to PTC cells. Knockdown of SNAI1 reduced the cell proliferation and EMT phenotypes of undifferentiated TC cells. Our findings highlight the importance of multi-omics analysis in understanding the molecular subtypes and immune characteristics of TC, and provide a novel prognostic model and potential therapeutic targets for this disease. Moreover, we identified SNAI1 in mediating TC progression through EMT in vitro.
Collapse
Affiliation(s)
- Xin Jin
- Department of Breast Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, 311899, Zhejiang, China
| | - Chunlan Fu
- Department of Hematology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, 311899, Zhejiang, China
| | - Jiahui Qi
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chuanzhi Chen
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
Kang HS, Grimm SA, Liao XH, Jetten AM. GLIS3 expression in the thyroid gland in relation to TSH signaling and regulation of gene expression. Cell Mol Life Sci 2024; 81:65. [PMID: 38281222 PMCID: PMC10822819 DOI: 10.1007/s00018-024-05113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time at which GLIS3 target genes, such as Slc5a5 (Nis), become expressed. This, together with observations showing that ubiquitous Glis3KO mice do not display major changes in prenatal thyroid gland morphology, indicated that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of GLIS3 in postnatal thyroid suggested a link between GLIS3 protein expression and blood TSH levels. This was supported by data showing that treatment with TSH, cAMP, or adenylyl cyclase activators or expression of constitutively active PKA enhanced GLIS3 protein stability and transcriptional activity, indicating that GLIS3 activity is regulated at least in part by TSH/TSHR-mediated activation of PKA. The TSH-dependent increase in GLIS3 transcriptional activity would be critical for the induction of GLIS3 target gene expression, including several thyroid hormone (TH) biosynthetic genes, in thyroid follicular cells of mice fed a low iodine diet (LID) when blood TSH levels are highly elevated. Like TH biosynthetic genes, the expression of cell cycle genes is suppressed in ubiquitous Glis3KO mice fed a LID; however, in thyroid-specific Glis3 knockout mice, the expression of cell cycle genes was not repressed, in contrast to TH biosynthetic genes. This indicated that the inhibition of cell cycle genes in ubiquitous Glis3KO mice is dependent on changes in gene expression in GLIS3 target tissues other than the thyroid.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
4
|
Siraj AK, Parvathareddy SK, Al-Rasheed M, Annaiyappanaidu P, Siraj N, Lennartz M, Al-Sobhi SS, Al-Dayel F, Sauter G, Al-Kuraya KS. Loss of CDH16 expression is a strong independent predictor for lymph node metastasis in Middle Eastern papillary thyroid cancer. Sci Rep 2023; 13:18559. [PMID: 37899424 PMCID: PMC10613612 DOI: 10.1038/s41598-023-45882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
Papillary Thyroid Cancer (PTC) is the most common type of thyroid cancer. The membrane-associated glycoprotein cadherin-16 (CDH16) plays a significant role in the embryonal development of thyroid follicles and cell adhesion. Previous studies have indicated a substantial downregulation of CDH16 in PTC. However, its role in Middle Eastern PTC has not been elucidated. We analyzed a tissue microarray comprising 1606 PTC and 240 normal thyroid tissues using immunohistochemistry to assess CDH16 expression and determine its clinico-pathological associations. We also conducted BRAF and TERT mutations analyses through Sanger sequencing. Disease-free survival (DFS) was assessed using Kaplan-Meier curves. CDH16 immunostaining was seen in 100% of normal thyroid tissues but only in 9.4% of PTC tissues (p < 0.0001). The loss of CDH16 expression was associated with aggressive PTC characteristics including bilaterality, multifocality, extrathyroidal extension, tall cell variant, lymph node metastasis (LNM) and distant metastasis. Additionally a correlation between loss of CDH16 expression and BRAF and TERT mutations was identified. Intriguingly, upon conducting multivariate logistic regression analysis, CDH16 was determined to be an independent predictor for LNM (Odds ratio = 2.46; 95% confidence interval = 1.60-3.79; p < 0.0001). Furthermore, CDH16 loss was associated with a shorter DFS (p = 0.0015). However, when we further subdivided CDH16 negative patients based on the co-existence of TERT and/or BRAF mutations, we found that patients with both CDH16 negative expression and TERT mutation exhibited the shortest DFS (p < 0.0001). In conclusion, our results suggest that CDH16 protein expression could serve as a valuable diagnostic tool for PTC. Furthermore, these findings demonstrate that the loss of CDH16 expression is an independent predictor of LNM and may contribute to the aggressiveness of PTC. Therefore, downregulation of CDH16 in PTC might be a potential target for designing novel therapeutic strategies to treat PTC.
Collapse
Affiliation(s)
- Abdul K Siraj
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Sandeep Kumar Parvathareddy
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Maha Al-Rasheed
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Padmanaban Annaiyappanaidu
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Nabil Siraj
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Saif S Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, 11211, Riyadh, Saudi Arabia
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, Research Centre, King Faisal Specialist Hospital and Research Centre, MBC#98-16, P.O. Box 3354, 11211, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Lennartz M, Csomós H, Chirico V, Weidemann S, Gorbokon N, Menz A, Büscheck F, Hube-Magg C, Höflmayer D, Bernreuther C, Blessin NC, Lebok P, Sauter G, Steurer S, Burandt E, Dum D, Krech T, Simon R, Minner S, Jacobsen F, Clauditz TS, Luebke AM, Siraj AK, Al-Dayel F, Al-Kuraya KS, Hinsch A. Cadherin-16 (CDH16) immunohistochemistry: a useful diagnostic tool for renal cell carcinoma and papillary carcinomas of the thyroid. Sci Rep 2023; 13:12917. [PMID: 37558687 PMCID: PMC10412623 DOI: 10.1038/s41598-023-39945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023] Open
Abstract
Cadherin-16 (CDH16) plays a role in the embryonal development in kidney and thyroid. Downregulation of CDH16 RNA was found in papillary carcinomas of the thyroid. To determine the expression of CDH16 in tumors and to assess the diagnostic utility a tissue microarray containing 15,584 samples from 152 different tumor types as well as 608 samples of 76 different normal tissue types was analyzed. A membranous CDH16 immunostaining was predominantly seen in thyroid, kidney, cauda epididymis, and mesonephric remnants. In the thyroid, CDH16 staining was seen in 100% of normal samples, 86% of follicular adenomas, 60% of follicular carcinomas, but only 7% of papillary carcinomas (p < 0.0001). CDH16 positivity was frequent in nephrogenic adenomas (100%), oncocytomas (98%), chromophobe (97%), clear cell (85%), and papillary (76%) renal cell carcinomas (RCCs), various subtypes of carcinoma of the ovary (16-56%), various subtyped of carcinomas of the uterus (18-40%), as well as in various subtypes of neuroendocrine neoplasms (4-26%). Nineteen further tumor entities showed a weak to moderate CDH16 staining in up to 8% of cases. Our data suggest CDH16 as a potential diagnostic marker-as a part of a panel-for the identification of papillary carcinomas of the thyroid, nephrogenic adenomas, and the distinction of renal cell tumors from other neoplasms.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| | - Henrietta Csomós
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Viktoria Chirico
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Abdul Khalid Siraj
- Department of Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Department of Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
6
|
Kang HS, Grimm SA, Liao XH, Jetten AM. Role of GLIS3 in thyroid development and in the regulation of gene expression in thyroid specific Glis3KO mice. RESEARCH SQUARE 2023:rs.3.rs-3044388. [PMID: 37461635 PMCID: PMC10350233 DOI: 10.21203/rs.3.rs-3044388/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Loss of GLI-Similar 3 (GLIS3) function in mice and humans causes congenital hypothyroidism (CH). In this study, we demonstrate that GLIS3 protein is first detectable at E15.5 of murine thyroid development, a time when GLIS3 target genes, such as Slc5a5 (Nis), become also expressed. We further show that Glis3KO mice do not display any major changes in prenatal thyroid gland morphology indicating that CH in Glis3KO mice is due to dyshormonogenesis rather than thyroid dysgenesis. Analysis of thyroid-specific Glis3 knockout (Glis3-Pax8Cre) mice fed either a normal or low-iodine diet (ND or LID) revealed that, in contrast to ubiquitous Glis3KO mice, thyroid follicular cell proliferation and the expression of cell cycle genes were not repressed suggesting that the inhibition of thyroid follicular cell proliferation in ubiquitous Glis3KO mice is related to loss of GLIS3 function in other cell types. However, the expression of several thyroid hormone biosynthesis-, extracellular matrix (ECM)-, and inflammation-related genes was still suppressed in Glis3-Pax8Cre mice particularly under conditions of high blood levels of thyroid stimulating hormone (TSH). We further demonstrate that treatment with TSH, protein kinase A (PKA) or adenylyl cyclase activators or expression of constitutively active PKA enhances GLIS3 protein and activity, suggesting that GLIS3 transcriptional activity is regulated in part by TSH/TSHR-mediated activation of the PKA pathway. This mechanism of regulation provides an explanation for the dramatic increase in GLIS3 protein expression and the subsequent induction of GLIS3 target genes, including several thyroid hormone biosynthetic genes, in thyroid follicular cells of mice fed a LID.
Collapse
|
7
|
Zhang X, Young C, Morishita Y, Kim K, Kabil OO, Clarke OB, Di Jeso B, Arvan P. Defective Thyroglobulin: Cell Biology of Disease. Int J Mol Sci 2022; 23:13605. [PMID: 36362390 PMCID: PMC9657758 DOI: 10.3390/ijms232113605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Crystal Young
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Kookjoo Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Omer O. Kabil
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Natural Sciences, Lindenwood University, Saint Charles, MO 63301, USA
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Bruno Di Jeso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
PATZ1 Induces Apoptosis through PUMA in Glioblastoma. JOURNAL OF ONCOLOGY 2022; 2022:4953107. [PMID: 35509848 PMCID: PMC9061038 DOI: 10.1155/2022/4953107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Aim This study was aimed at investigating the mechanism of PATZ1 inducing apoptosis through PUMA in glioblastoma. Overexpressed PATZ1 was transfected to explore its role in inducing apoptosis in glioblastoma cells. Methods The expression of protein was detected by western blotting assay. qRT-PCR assay was used to detect the expression of RNA. Confocal microscopy was used to analyze the correlation between PATZ1 and PUMA. TUNEL assay was used to detect the cell apoptosis. The ability of cell proliferation was detected by MTT assay and EDU assay. The effects of PATZ1 on cell apoptosis and tumor proliferation were observed in vivo by tumor xenograft mouse model. Results The results showed that low PATZ1 expression correlates with poor prognosis in glioblastoma patients. Overexpression of PATZ1 inhibits glioma cell proliferation and induces apoptosis by activating intrinsic apoptotic pathways. PATZ1 colocalizes intracellularly with PUMA inducing apoptosis through PUMA in glioblastoma. Conclusion PATZ1 plays a biological regulatory role in inducing apoptosis in glioblastoma, and this regulatory effect is related to PUMA, and the specific mechanism remains to be further explored.
Collapse
|
9
|
Cadherin‑16 inhibits thyroid carcinoma cell proliferation and invasion. Oncol Lett 2022; 23:145. [PMID: 35350592 PMCID: PMC8941525 DOI: 10.3892/ol.2022.13265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/04/2022] [Indexed: 11/11/2022] Open
Abstract
Cadherin-16 (CDH16), a member of the cadherin family of adhesion molecules, serves an important role in the formation and maintenance of the thyroid follicular lumen. Decreased expression of CDH16 has been reported to be associated with tumor stage in papillary thyroid cancer (PTC); however, previous analyses have been limited and the biological role of CDH16 in different subtypes of TC is unknown. To investigate the role of CDH16 in the occurrence and development of TC, bioinformatic analysis of three TC subtypes (PTC, follicular cell-derived TC and anaplastic TC) was performed using an extended data set from the Gene Expression Omnibus database, with additional confirmation using data from The Cancer Genome Atlas, as well as biopsies from 35 patients with PTC and TC or follicular cell lines. According to the dataset analysis, CDH16 was downregulated in PTC and follicular cell-derived and anaplastic TC; the downregulation in PTC was independent of DNA copy number variation. Furthermore, low expression levels of CDH16 were significantly correlated with tumor size, lymph node metastasis status and disease stage in 35 patients with PTC. Gene Set Enrichment Analysis suggested that CDH16 participated in DNA replication and cell adhesion pathways. To evaluate CDH16 activity, CDH16 was overexpressed in TC-derived BCPAP cells. CDH16 overexpression inhibited cell proliferation, migration and invasion and induced apoptosis by downregulating proteins associated with DNA replication and cell adhesion. These results support the identification of CDH16 as a valuable target for TC prognosis and therapy and, to the best of our knowledge, represent the first direct demonstration of its mechanistic role in TC.
Collapse
|
10
|
Zhu X, Wang X, Gong Y, Deng J. E-cadherin on epithelial-mesenchymal transition in thyroid cancer. Cancer Cell Int 2021; 21:695. [PMID: 34930256 PMCID: PMC8690896 DOI: 10.1186/s12935-021-02344-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is a common malignant tumor of endocrine system and head and neck. Recurrence, metastasis and high malignant expression after routine treatment are serious clinical problems, so it is of great significance to explore its mechanism and find action targets. Epithelial-mesenchymal transition (EMT) is associated with tumor malignancy and invasion. One key change in tumour EMT is low expression of E-cadherin. Therefore, this article reviews the expression of E-cadherin in thyroid cancers (TC), discuss the potential mechanisms involved, and outline opportunities to exploit E-cadherin on regulating the occurrence of EMT as a critical factor in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Zhu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Xiaoping Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China.
| | - Yifei Gong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| | - Junlin Deng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Jing'an District, Shanghai, 200040, China
| |
Collapse
|
11
|
Conza D, Mirra P, Calì G, Insabato L, Fiory F, Beguinot F, Ulianich L. Metformin Dysregulates the Unfolded Protein Response and the WNT/β-Catenin Pathway in Endometrial Cancer Cells through an AMPK-Independent Mechanism. Cells 2021; 10:cells10051067. [PMID: 33946426 PMCID: PMC8147131 DOI: 10.3390/cells10051067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple lines of evidence suggest that metformin, an antidiabetic drug, exerts anti-tumorigenic effects in different types of cancer. Metformin has been reported to affect cancer cells' metabolism and proliferation mainly through the activation of AMP-activated protein kinase (AMPK). Here, we show that metformin inhibits, indeed, endometrial cancer cells' growth and induces apoptosis. More importantly, we report that metformin affects two important pro-survival pathways, such as the Unfolded Protein Response (UPR), following endoplasmic reticulum stress, and the WNT/β-catenin pathway. GRP78, a key protein in the pro-survival arm of the UPR, was indeed downregulated, while GADD153/CHOP, a transcription factor that mediates the pro-apoptotic response of the UPR, was upregulated at both the mRNA and protein level. Furthermore, metformin dramatically inhibited β-catenin mRNA and protein expression. This was paralleled by a reduction in β-catenin transcriptional activity, since metformin inhibited the activity of a TCF/LEF-luciferase promoter. Intriguingly, compound C, a well-known inhibitor of AMPK, was unable to prevent all these effects, suggesting that metformin might inhibit endometrial cancer cells' growth and survival through the modulation of specific branches of the UPR and the inhibition of the Wnt/β-catenin pathway in an AMPK-independent manner. Our findings may provide new insights on the mechanisms of action of metformin and refine the use of this drug in the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Domenico Conza
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Paola Mirra
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Gaetano Calì
- Institute of Endocrinology and Molecular Oncology of CNR, University “Federico II”, 80131 Naples, Italy;
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University “Federico II”, 80131 Naples, Italy;
| | - Francesca Fiory
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Francesco Beguinot
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
| | - Luca Ulianich
- Department of Medical and Translational Sciences & Institute of Endocrinology and Experimental Oncology of CNR, University “Federico II”, 80131 Naples, Italy; (D.C.); (P.M.); (F.F.); (F.B.)
- Correspondence: ; Tel.: +39-081-7463248
| |
Collapse
|
12
|
Han W, Lu D, Wang C, Cui M, Lu K. Identification of Key mRNAs, miRNAs, and mRNA-miRNA Network Involved in Papillary Thyroid Carcinoma. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200608125427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In the past decades, the incidence of thyroid cancer (TC) has been gradually increasing, owing to
the widespread use of ultrasound scanning devices. However, the key mRNAs, miRNAs, and mRNA-miRNA network in
papillary thyroid carcinoma (PTC) has not been fully understood.
Material and Methods:
In this study, multiple bioinformatics methods were employed, including differential expression
analysis, gene set enrichment analysis, and miRNA-mRNA interaction network construction.
Results:
First, we investigated the key miRNAs that regulated significantly more differentially expressed genes based on
GSEA method. Second, we searched for the key miRNAs based on the mRNA-miRNA interaction subnetwork involved
in PTC. We identified hsa-mir-1275, hsa-mir-1291, hsa-mir-206 and hsa-mir-375 as the key miRNAs involved in PTC
pathogenesis.
Conclusion:
The integrated analysis of the gene and miRNA expression data not only identified key mRNAs, miRNAs,
and mRNA-miRNA network involved in papillary thyroid carcinoma, but also improved our understanding of the
pathogenesis of PTC.
Collapse
Affiliation(s)
- Wei Han
- Department of Thyroid and Breast Surgery, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Dongchen Lu
- Department of Thyroid and Breast Surgery, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Chonggao Wang
- Department of Thyroid and Breast Surgery, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Mengdi Cui
- Department of Thyroid and Breast Surgery, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| | - Kai Lu
- Department of Thyroid and Breast Surgery, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210000, China
| |
Collapse
|
13
|
Dai J, Yu X, Han Y, Chai L, Liao Y, Zhong P, Xie R, Sun X, Huang Q, Wang J, Yin Z, Zhang Y, Lv Z, Jia C. TMT-labeling Proteomics of Papillary Thyroid Carcinoma Reveal Invasive Biomarkers. J Cancer 2020; 11:6122-6132. [PMID: 32922552 PMCID: PMC7477402 DOI: 10.7150/jca.47290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/16/2020] [Indexed: 01/23/2023] Open
Abstract
Background and Aim: Invasion and metastasis are critical events in papillary thyroid carcinoma (PTC) progression. Protein markers specific to this process may avoid over-treatment and urgently needed. Methods: TMT-labeled mass spectrometry-based proteomics were carried out on PTC and invasive phenotype (iPTC) (3 pairs per group) and cross validate differentially expressed proteins (DEPs) (FC>1.5 and <0.67 and p<0.05) with GEO and TCGA datasets and the correlation genes of DEPs were also analyzed. Results: We identified and quantified 4607 proteins identical to PTC and iPTC groups. Among which 12 DEPs in PTC and 179 DEPs in iPTCs were found. Cross-validation with GSE60542 and TCGA database revealed 10 DEPs that all significant correlated with metastasis and staging. Upregulated SLC27A6 showed negative correlation with 6 out of 9 downregulated DEPs including HGD, CA4, COL23A1, SLC26A7, FHL1 and TPO. Conclusion: The panel of 7 genes (SLC27A6 and 6 downregulated DEPs) could have ideal prediction value to improve our understanding of invasiveness of PTC.
Collapse
Affiliation(s)
- Jiaqi Dai
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Xiaqing Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yali Han
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Li Chai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Yina Liao
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Peng Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Xuechen Sun
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Qingqing Huang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jian Wang
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P. R. China
| | - Zhiqiang Yin
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Yun Zhang
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Zhongwei Lv
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Chengyou Jia
- Shanghai Research Center for Thyroid Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
14
|
Ulianich L, Mirra P, Garbi C, Calì G, Conza D, Treglia AS, Miraglia A, Punzi D, Miele C, Raciti GA, Beguinot F, Consiglio E, Di Jeso B. The Pervasive Effects of ER Stress on a Typical Endocrine Cell: Dedifferentiation, Mesenchymal Shift and Antioxidant Response in the Thyrocyte. Front Endocrinol (Lausanne) 2020; 11:588685. [PMID: 33240221 PMCID: PMC7680880 DOI: 10.3389/fendo.2020.588685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023] Open
Abstract
The endoplasmic reticulum stress and the unfolded protein response are triggered following an imbalance between protein load and protein folding. Until recently, two possible outcomes of the unfolded protein response have been considered: life or death. We sought to substantiate a third alternative, dedifferentiation, mesenchymal shift, and activation of the antioxidant response by using typical endocrine cells, i.e. thyroid cells. The thyroid is a unique system both of endoplasmic reticulum stress (a single protein, thyroglobulin represents the majority of proteins synthesized in the endoplasmic reticulum by the thyrocyte) and of polarized epithelium (the single layer of thyrocytes delimiting the follicle). Following endoplasmic reticulum stress, in thyroid cells the folding of thyroglobulin was disrupted. The mRNAs of unfolded protein response were induced or spliced (X-box binding protein-1). Differentiation was inhibited: mRNA levels of thyroid specific genes, and of thyroid transcription factors were dramatically downregulated, at least in part, transcriptionally. The dedifferentiating response was accompanied by an upregulation of mRNAs of antioxidant genes. Moreover, cadherin-1, and the thyroid (and kidney)-specific cadherin-16 mRNAs were downregulated, vimentin, and SNAI1 mRNAs were upregulated. In addition, loss of cortical actin and stress fibers formation were observed. Together, these data indicate that ER stress in thyroid cells induces dedifferentiation, loss of epithelial organization, shift towards a mesenchymal phenotype, and activation of the antioxidant response, highlighting, at the same time, a new and wide strategy to achieve survival following ER stress, and, as a sort of the other side of the coin, a possible new molecular mechanism of decline/loss of function leading to a deficit of thyroid hormones formation.
Collapse
Affiliation(s)
- Luca Ulianich
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Paola Mirra
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Corrado Garbi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Napoli, Italy
| | - Gaetano Calì
- Istituto di Endocrinologia ed Oncologia Sperimentale “G. Salvatore,” CNR, Napoli, Italy
| | - Domenico Conza
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Antonella Sonia Treglia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Alessandro Miraglia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
| | - Dario Punzi
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Claudia Miele
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Gregory Alexander Raciti
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Francesco Beguinot
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Eduardo Consiglio
- Dipartimento di Scienze Mediche e Traslazionali Universita’ “Federico II” & URT dell’Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore,” Consiglio Nazionale delle Ricerche (CNR), Napoli, Italy
| | - Bruno Di Jeso
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce, Italy
- *Correspondence: Bruno Di Jeso, , orcid.org/0000-0001-8713-5984
| |
Collapse
|
15
|
Li P, Wu Q, Sun Y, Pan X, Han Y, Ye B, Zhang Y, Dong J, Zheng Z. Downregulation of CDH16 in Papillary Thyroid Cancer and Its Potential Molecular Mechanism Analysed by qRT-PCR, TCGA and in silico Analysis. Cancer Manag Res 2019; 11:10719-10729. [PMID: 31920382 PMCID: PMC6934283 DOI: 10.2147/cmar.s229631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Objective Thyroid cancer has the highest prevalence among the cancer types that affect the endocrine system; however, its molecular mechanisms are not yet determined. Cadherin-16 (CDH16) plays an important role in the tumorigenesis of human cancers, but its influence on papillary thyroid cancer (PTC) is poorly investigated. This study aimed to explore the role of CDH16 in PTC. Methods We performed quantitative real-time polymerase chain reaction to investigate CDH16 expression in PTC. The clinical significance of CDH16 expression in PTC was then evaluated using The Cancer Genome Atlas (TCGA) database. Bioinformatics analysis was also conducted to determine the potential molecular mechanisms of CDH16. Results CDH16 was remarkably downregulated in PTC tumors compared with that in corresponding normal thyroid tissues in the local and TCGA cohorts. This downregulation was associated with unfavorable clinicopathological features, including histological type, high tumor stage, aggressive lymph node metastasis (LNM), and advanced clinical stage. In addition, logistic analyses revealed that the reduced expression of CDH16 can aggravate the risk of LNM in PTC. Bioinformatics analysis indicated that the co-expressed CDH16 genes mainly participated in signaling the cancer-related pathways. Conclusion CDH16 is involved in PTC progression and acts as an LNM-related gene in PTC.
Collapse
Affiliation(s)
- Pihong Li
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Qiaolin Wu
- Departments of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yihan Sun
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Pan
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yifan Han
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bing Ye
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinlong Zhang
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jianda Dong
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Zhouci Zheng
- Departments of Neck Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
16
|
Cimmino G, Cirillo P, Conte S, Pellegrino G, Barra G, Maresca L, Morello A, Calì G, Loffredo F, De Palma R, Arena G, Sawamura T, Ambrosio G, Golino P. Oxidized low-density lipoproteins induce tissue factor expression in T-lymphocytes via activation of lectin-like oxidized low-density lipoprotein receptor-1. Cardiovasc Res 2019; 116:1125-1135. [DOI: 10.1093/cvr/cvz230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/17/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract
Aims
T-lymphocytes plays an important role in the pathophysiology of acute coronary syndromes. T-cell activation in vitro by pro-inflammatory cytokines may lead to functional tissue factor (TF) expression, indicating a possible contribution of immunity to thrombosis. Oxidized low-density lipoproteins (oxLDLs) are found abundantly in atherosclerotic plaques. We aimed at evaluating the effects of oxLDLs on TF expression in T cells and the role of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1).
Methods and results
CD3+ cells were isolated from healthy volunteers. Gene, protein, and surface expression of TF, as well as of LOX-1, were assessed at different time-points after oxLDL stimulation. To determine whether oxLDL-induced TF was LOX-1 dependent, T cells were pre-incubated with an LOX-1 inhibiting peptide (L-RBP) or with an anti-LOX-1 blocking antibody. To exclude that TF expression was mediated by reactive oxygen species (ROS) generation, oxLDL-stimulated T cells were pre-incubated with superoxide dismutase + catalase or with 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), an intracellular free radical scavenger. Finally, to determine if the observed findings in vitro may have a biological relevance, the presence of CD3+/TF+/LOX-1+ cells was evaluated by immunofluorescence in human carotid atherosclerotic lesions. oxLDLs induced functionally active TF expression in T cells in a dose- and time-dependent manner, independently on ROS generation. No effect was observed in native LDL-treated T cells. LOX-1 expression was also induced by oxLDLs in a time- and dose-dependent manner. Pre-incubation with L-RBP or anti-LOX-1 antibody almost completely inhibited oxLDL-mediated TF expression. Interestingly, human carotid plaques showed significant infiltration of CD3+ cells (mainly CD8+ cells), some of which were positive for both TF and LOX-1.
Conclusion
oxLDLs induce functional TF expression in T-lymphocytes in vitro via interaction of oxLDLs with LOX-1. Human carotid atherosclerotic plaques contain CD3+/CD8+cells that express both TF and LOX-1, indicating that also in patients these mechanisms may play an important role.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, c/o Monaldi Hospital, Via L. Bianchi, 1, 80131 Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, Naples, Italy
| | - Stefano Conte
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, c/o Monaldi Hospital, Via L. Bianchi, 1, 80131 Naples, Italy
| | - Grazia Pellegrino
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, Naples, Italy
| | - Giusi Barra
- Department of Clinical and Experimental Medicine, Section of Clinical Immunology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucio Maresca
- Vascular Surgery Unit, Monaldi Hospital, Naples, Italy
| | - Andrea Morello
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, Naples, Italy
| | - Gaetano Calì
- Endocrinology and Experimental Oncology Institute, CNR, Naples, Italy
| | - Francesco Loffredo
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, c/o Monaldi Hospital, Via L. Bianchi, 1, 80131 Naples, Italy
- Molecular Cardiology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Section of Clinical Immunology, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Giulia Arena
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, c/o Monaldi Hospital, Via L. Bianchi, 1, 80131 Naples, Italy
| | - Tatsuya Sawamura
- Department of Physiology, Shinshu University School of Medicine, Asahi, Japan
| | | | - Paolo Golino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania “Luigi Vanvitelli”, c/o Monaldi Hospital, Via L. Bianchi, 1, 80131 Naples, Italy
| |
Collapse
|
17
|
Ye J, He J, Li N. Molecular identification and characterization of pig's Cdh16 gene. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2018.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Casal JI, Bartolomé RA. RGD cadherins and α2β1 integrin in cancer metastasis: A dangerous liaison. Biochim Biophys Acta Rev Cancer 2018; 1869:321-332. [PMID: 29673969 DOI: 10.1016/j.bbcan.2018.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 12/24/2022]
Abstract
We propose a new cadherin family classification comprising epithelial cadherins (cadherin 17 [CDH17], cadherin 16, VE-cadherin, cadherin 6 and cadherin 20) containing RGD motifs within their sequences. Expression of some RGD cadherins is associated with aggressive forms of cancer during the late stages of metastasis, and CDH17 and VE-cadherin have emerged as critical actors in cancer metastasis. After binding to α2β1 integrin, these cadherins promote integrin β1 activation, and thereby cell adhesion, invasion and proliferation, in liver and lung metastasis. Activation of α2β1 integrin provokes an affinity increase for type IV collagen, a major component of the basement membrane and a critical partner for cell anchoring in liver and other metastatic organs. Activation of α2β1 integrin by RGD motifs breaks an old paradigm of integrin classification and supports an important role of this integrin in cancer metastasis. Recently, synthetic peptides containing the RGD motif of CDH17 elicited highly specific and selective antibodies that block the ability of CDH17 RGD to activate α2β1 integrin. These monoclonal antibodies inhibit metastatic colonization in orthotopic mouse models of liver and lung metastasis for colorectal cancer and melanoma, respectively. Hopefully, blocking the cadherin RGD ligand capacity will give us control over the integrin activity in solid tumors metastasis, paving the way for development of new agents of cancer treatment.
Collapse
Affiliation(s)
- J Ignacio Casal
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain.
| | - Rubén A Bartolomé
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28039 Madrid, Spain
| |
Collapse
|
19
|
Wnt Signaling in Thyroid Homeostasis and Carcinogenesis. Genes (Basel) 2018; 9:genes9040204. [PMID: 29642644 PMCID: PMC5924546 DOI: 10.3390/genes9040204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/09/2018] [Indexed: 12/29/2022] Open
Abstract
The Wnt pathway is essential for stem cell maintenance, but little is known about its role in thyroid hormone signaling and thyroid stem cell survival and maintenance. In addition, the role of Wnt signaling in thyroid cancer progenitor cells is also unclear. Here, we present emerging evidence for the role of Wnt signaling in somatic thyroid stem cell and thyroid cancer stem cell function. An improved understanding of the role of Wnt signaling in thyroid physiology and carcinogenesis is essential for improving both thyroid disease diagnostics and therapeutics.
Collapse
|
20
|
Spinelli CC, Carrizzo A, Ferrario A, Villa F, Damato A, Ambrosio M, Madonna M, Frati G, Fucile S, Sciaccaluga M, Capunzo M, Calì G, Milanesi L, Maciag A, Puca AA, Vecchione C. LAV-BPIFB4 isoform modulates eNOS signalling through Ca2+/PKC-alpha-dependent mechanism. Cardiovasc Res 2018; 113:795-804. [PMID: 28419216 PMCID: PMC5437365 DOI: 10.1093/cvr/cvx072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/12/2017] [Indexed: 12/15/2022] Open
Abstract
Aims Ageing is associated with impairment of endothelial nitric oxide synthase (eNOS) and progressive reduction in endothelial function. A genetic study on long-living individuals—who are characterized by delays in ageing and in the onset of cardiovascular disease—previously revealed I229V (rs2070325) in bactericidal/permeability-increasing fold-containing-family-B-member-4 (BPIFB4) as a longevity-associated variant (LAV); the LAV protein enhanced endothelial NO production and vasorelaxation through a protein kinase R–like endoplasmic reticulum kinase/14-3-3/heat shock protein 90 signal. Here, we further characterize the molecular mechanisms underlying LAV-BPIFB4-dependent enhancement of vascular function. Methods and results LAV-BPIFB4 upregulated eNOS function via mobilization of Ca2+ and activation of protein kinase C alpha (PKCα). Indeed, the overexpression of LAV-BPIFB4 in human endothelial cells enhanced ATP-induced Ca2+ mobilization and the translocation of PKCα to the plasma membrane. Coherently, pharmacological inhibition of PKCα blunted the positive effect of LAV-BPIFB4 on eNOS and endothelial function. In addition, although LAV-BPIFB4 lost the ability to activate PKCα and eNOS in ex vivo vessels studied in an external Ca2+-free medium and in vessels from eNOS−/− mice, it still potentiated endothelial activity, recruiting an alternative mechanism dependent upon endothelium-derived hyperpolarizing factor (EDHF). Conclusions We have identified novel molecular determinants of the beneficial effects of LAV-BPIFB4 on endothelial function, showing the roles of Ca2+ mobilization and PKCα in eNOS activation and of EDHF when eNOS is inhibited. These results highlight the role LAV-BPIFB4 can have in restoring signals that are lost during ageing.
Collapse
Affiliation(s)
| | | | - Anna Ferrario
- Institute for Biomedical Technologies-National Research Council, 20090 Segrate (MI), Italy
| | | | | | | | | | - Giacomo Frati
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, C.so della Repubblica 79, 04100 Latina, Italy
| | - Sergio Fucile
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Mario Capunzo
- Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80100 Naples, Italy
| | - Luciano Milanesi
- Institute for Biomedical Technologies-National Research Council, 20090 Segrate (MI), Italy
| | - Anna Maciag
- Ageing Unit, IRCCS MultiMedica, 20138 Milan, Italy
| | - Annibale Alessandro Puca
- Ageing Unit, IRCCS MultiMedica, 20138 Milan, Italy.,Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| | - Carmine Vecchione
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy.,Department of Medicine and Surgery, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy
| |
Collapse
|
21
|
PATZ1 is a new prognostic marker of glioblastoma associated with the stem-like phenotype and enriched in the proneural subtype. Oncotarget 2017; 8:59282-59300. [PMID: 28938636 PMCID: PMC5601732 DOI: 10.18632/oncotarget.19546] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/19/2017] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma (GBM), the most malignant of the brain tumors, has been classified on the basis of molecular signature into four subtypes: classical, mesenchymal, proneural and neural, among which the mesenchymal and proneural subtypes have the shortest and longest survival, respectively. Here we show that the transcription factor PATZ1 gene is upregulated in gliomas compared to normal brain and, among GBMs, is particularly enriched in the proneural subtype and co-localize with stemness markers. Accordingly, in GBM-derived glioma-initiating stem cells (GSCs) PATZ1 is overexpressed compared to differentiated tumor cells and its expression significantly correlates with the characteristic stem cell capacity to grow as neurospheres in vitro. Interestingly, survival analysis demonstrated that PATZ1 lower levels informed poor prognosis in GBM and, specifically, in the proneural subgroup, suggesting it may serve a role as diagnostic and prognostic biomarker for intra-subtype heterogeneity of proneural GBM. We also show that PATZ1 suppresses the expression of the mesenchyme-inducer CXCR4, and that PATZ1 and CXCR4 are inversely correlated in GSC and proneural GBM. Overall these findings support a central role of PATZ1 in regulating malignancy of GBM.
Collapse
|
22
|
Conza D, Mirra P, Calì G, Tortora T, Insabato L, Fiory F, Schenone S, Amato R, Beguinot F, Perrotti N, Ulianich L. The SGK1 inhibitor SI113 induces autophagy, apoptosis, and endoplasmic reticulum stress in endometrial cancer cells. J Cell Physiol 2017; 232:3735-3743. [PMID: 28177128 DOI: 10.1002/jcp.25850] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022]
Abstract
Endometrial cancer is often characterized by PI3K/AKT pathway deregulation. Recently it has been suggested that SGK1, a serine/threonine protein kinase that shares structural and functional similarities with the AKT family, might play a role in cancer, since its expression and/or activity has been found to be deregulated in different human tumors. However, the role of SGK1 in endometrial cancer has been poorly investigated. Here, we show that SGK1 expression is increased in tissue specimens from neoplastic endometrium. The SGK1 inhibitor SI113 induced a significant reduction of endometrial cancer cells viability, measured by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. This effect was associated to the increase of autophagy, as revealed by the increase of the markers LC3B-II and beclin I, detected by both immunofluorescence and western blot analysis. SI113 treatment caused also apoptosis of endometrial cancer cells, evidenced by the cleavage of the apoptotic markers PARP and Caspase-9. Intriguingly, these effects were associated to the induction of endoplasmic reticulum stress markers GRP78 and CHOP evaluated by both Real-Time RT-PCR and Western Blot analysis. Increased expression of SGK1 in endometrial cancer tissues suggest a role for SGK1 in this type of cancer, as reported for other malignancies. Moreover, the efficacy of SI113 in affecting endometrial cancer cells viability, possibly via endoplasmic reticulum stress activation, identifies SGK1 as an attractive molecular target for new tailored therapeutic intervention for the treatment of endometrial cancer.
Collapse
Affiliation(s)
- Domenico Conza
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Paola Mirra
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Gaetano Calì
- Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Teresa Tortora
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Francesca Fiory
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Rosario Amato
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Beguinot
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Nicola Perrotti
- Department of "Scienze della Salute", University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Luca Ulianich
- Department of Medical and Translational Sciences of the University of Naples "Federico II" & URT dell'Istituto di Endocrinologia e Oncologia Sperimentale 'Gaetano Salvatore', Consiglio Nazionale delle Ricerche, Naples, Italy
| |
Collapse
|
23
|
Koumarianou P, Goméz-López G, Santisteban P. Pax8 controls thyroid follicular polarity through cadherin-16. J Cell Sci 2016; 130:219-231. [PMID: 27780871 PMCID: PMC5394772 DOI: 10.1242/jcs.184291] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Organization of epithelial cells during follicular lumen formation is crucial for thyroid morphogenesis and function of the thyroid gland; however, the molecular mechanisms underlying this are poorly understood. To investigate this process, we established three-dimensional (3D) epithelial culture model systems using Fischer rat thyroid (FRT) cells or murine primary thyrocytes that developed polarized spherical structures with a central lumen, mimicking thyroid follicles. Using microarray-based differential expression analysis of FRT cells grown under 2D or 3D conditions, followed by RNA-mediated interference (RNAi) and morphogenetic analysis, we identified a key role for the thyroid transcription factor Pax8 and its target cadherin-16 (Cdh16) in the generation of polarized follicle-like structures. Silencing Pax8 expression inhibited the acquisition of apical–basal membrane polarity and impaired lumen formation. Both laminin and β1-integrin (Itgb1) expression was reduced, and cell cytoskeleton polarized distribution was altered. Silencing Cdh16 expression also led to the formation of defective structures characterized by very low laminin expression at the follicle–matrix interface, downregulation of Itgb1, and unpolarized distribution of cell cytoskeleton. Our results demonstrate that Pax8 controls apical–basal follicular polarization and follicle formation through Cdh16. Summary: Using a 3D culture model of thyroid morphogenesis, it is revealed that thyroid follicular cell polarity depends on the Pax8 transcription factor and is linked to the β1-integrin–laminin pathway through Cdh16.
Collapse
Affiliation(s)
- Petrina Koumarianou
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| | - Gonzalo Goméz-López
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Pilar Santisteban
- Department of Endocrine and Nervous System Physiopathology, Instituto de Investigaciones Biomédicas 'Alberto Sols', Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid 28029, Spain
| |
Collapse
|
24
|
Brennan K, Holsinger C, Dosiou C, Sunwoo JB, Akatsu H, Haile R, Gevaert O. Development of prognostic signatures for intermediate-risk papillary thyroid cancer. BMC Cancer 2016; 16:736. [PMID: 27633254 PMCID: PMC5025616 DOI: 10.1186/s12885-016-2771-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 09/06/2016] [Indexed: 11/23/2022] Open
Abstract
Background The incidence of Papillary thyroid carcinoma (PTC), the most common type of thyroid malignancy, has risen rapidly worldwide. PTC usually has an excellent prognosis. However, the rising incidence of PTC, due at least partially to widespread use of neck imaging studies with increased detection of small cancers, has created a clinical issue of overdiagnosis, and consequential overtreatment. We investigated how molecular data can be used to develop a prognostics signature for PTC. Methods The Cancer Genome Atlas (TCGA) recently reported on the genomic landscape of a large cohort of PTC cases. In order to decrease unnecessary morbidity associated with over diagnosing PTC patient with good prognosis, we used TCGA data to develop a gene expression signature to distinguish between patients with good and poor prognosis. We selected a set of clinical phenotypes to define an ‘extreme poor’ prognosis group and an ‘extreme good’ prognosis group and developed a gene signature that characterized these. Results We discovered a gene expression signature that distinguished the extreme good from extreme poor prognosis patients. Next, we applied this signature to the remaining intermediate risk patients, and show that they can be classified in clinically meaningful risk groups, characterized by established prognostic disease phenotypes. Analysis of the genes in the signature shows many known and novel genes involved in PTC prognosis. Conclusions This work demonstrates that using a selection of clinical phenotypes and treatment variables, it is possible to develop a statistically useful and biologically meaningful gene signature of PTC prognosis, which may be developed as a biomarker to help prevent overdiagnosis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2771-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin Brennan
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University, 1265 Welch Road, Stanford, CA, 94305-5479, USA
| | - Christopher Holsinger
- Division of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94304-1611, USA
| | - Chrysoula Dosiou
- Division of Endocrinology, Department of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305-5103, USA
| | - John B Sunwoo
- Division of Head and Neck Surgery, Department of Otolaryngology-Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94304-1611, USA
| | - Haruko Akatsu
- Division of Endocrinology, Department of Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA, 94305-5103, USA
| | - Robert Haile
- Division of Oncology, Department of Medicine, Stanford University, 265 Campus Drive, Stanford, CA, 94305-5458, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine & Department of Biomedical Data Science, Stanford University, Stanford, USA.
| |
Collapse
|
25
|
Gugnoni M, Sancisi V, Gandolfi G, Manzotti G, Ragazzi M, Giordano D, Tamagnini I, Tigano M, Frasoldati A, Piana S, Ciarrocchi A. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene 2016; 36:667-677. [PMID: 27375021 DOI: 10.1038/onc.2016.237] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/25/2016] [Accepted: 06/03/2016] [Indexed: 02/07/2023]
Abstract
The transdifferentiation of epithelial cells toward a mesenchymal condition (EMT) is a complex process that allows tumor cells to migrate to ectopic sites. Cadherins are not just structural proteins, but they act as sensors of the surrounding microenvironment and as signaling centers for cellular pathways. However, the molecular mechanisms underlying these signaling functions remain poorly characterized. Cadherin-6 (CDH6) is a type 2 cadherin, which drives EMT during embryonic development and it is aberrantly re-activated in cancer. We recently showed that CDH6 is a TGFβ target and an EMT marker in thyroid cancer, suggesting a role for this protein in the progression of this type of tumor. Papillary thyroid carcinomas (PTCs) are usually indolent lesions. However, metastatic spreading occurs in about 5% of the cases. The identification of molecular markers that could early predict the metastatic potential of these lesions would be strategic to design more tailored approaches and reduce patients overtreatment. In this work, we assessed the role of CDH6 in the metastatic progression of thyroid cancer. We showed that loss of CDH6 expression profoundly changes cellular architecture, alters the inter-cellular interaction modalities and attenuates EMT features in thyroid cancer cells. Using a yeast two-hybrid screening approach, based on a thyroid cancer patients library, we showed that CDH6 directly interacts with GABARAP, BNIP3 and BNIP3L, and that through these interactions CDH6 restrains autophagy and promotes re-organization of mitochondrial network through a DRP1-mediated mechanism. Analysis of the LIR domains suggests that the interaction with the autophagic machinery may be a common feature of many cadherin family members. Finally, the analysis of CDH6 expression in a unique cohort of human PTCs showed that CDH6 expression marks specifically EMT cells. and it is strongly associated with metastatic behavior and worse outcome of PTCs.
Collapse
Affiliation(s)
- M Gugnoni
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - V Sancisi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - G Gandolfi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - G Manzotti
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - M Ragazzi
- Pathology Unit, Deptartment of Oncology and Advanced Technologies, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - D Giordano
- Otolaryngology Unit, Department of General Surgery and Specialistic Unit, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - I Tamagnini
- Pathology Unit, Deptartment of Oncology and Advanced Technologies, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - M Tigano
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - A Frasoldati
- Endocrinology Unit, Department of General Surgery and Specialistic Unit, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - S Piana
- Pathology Unit, Deptartment of Oncology and Advanced Technologies, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - A Ciarrocchi
- Laboratory of Translational Research, Department of Scientific Direction, Arcispedale S Maria Nuova-IRCCS, Reggio Emilia, Italy
| |
Collapse
|
26
|
Mascia A, Gentile F, Izzo A, Mollo N, De Luca M, Bucci C, Nitsch L, Calì G. Rab7 Regulates CDH1 Endocytosis, Circular Dorsal Ruffles Genesis, and Thyroglobulin Internalization in a Thyroid Cell Line. J Cell Physiol 2015; 231:1695-708. [PMID: 26599499 DOI: 10.1002/jcp.25267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 01/02/2023]
Abstract
Rab7 regulates the biogenesis of late endosomes, lysosomes, and autophagosomes. It has been proposed that a functional and physical interaction exists between Rab7 and Rac1 GTPases in CDH1 endocytosis and ruffled border formation. In FRT cells over-expressing Rab7, increased expression and activity of Rac1 was observed, whereas a reduction of Rab7 expression by RNAi resulted in reduced Rac1 activity, as measured by PAK1 phosphorylation. We found that CDH1 endocytosis was extremely reduced only in Rab7 over-expressing cells but was unchanged in Rab7 silenced cells. In Rab7 under or over-expressing cells, Rab7 and LC3B-II co-localized and co-localization in large circular structures occurred only in Rab7 over-expressing cells. These large circular structures occurred in about 10% of the cell population; some of them (61%) showed co-localization of Rab7 with cortactin and f-actin and were identified as circular dorsal ruffles (CDRs), the others as mature autophagosomes. We propose that the over-expression of Rab7 is sufficient to induce CDRs. Furthermore, in FRT cells, we found that the expression of the insoluble/active form of Rab7, rather than Rab5, or Rab8, was inducible by cAMP and that cAMP-stimulated FRT cells showed increased PAK1 phosphorylation and were no longer able to endocytose CDH1. Finally, we demonstrated that Rab7 over-expressing cells are able to endocytose exogenous thyroglobulin via pinocytosis/CDRs more efficiently than control cells. We propose that the major thyroglobulin endocytosis described in thyroid autonomous adenomas due to Rab7 increased expression, occurs via CDRs. J. Cell. Physiol. 231: 1695-1708, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Mascia
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale "G. Salvatore", National Council of Research, Napoli, Italy
| | - Flaviana Gentile
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale "G. Salvatore", National Council of Research, Napoli, Italy
| | - Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II", Napoli, Italy
| | - Nunzia Mollo
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II", Napoli, Italy
| | - Maria De Luca
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), Lecce, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II", Napoli, Italy
| | - Gaetano Calì
- IEOS Istituto di Endocrinologia e Oncologia Sperimentale "G. Salvatore", National Council of Research, Napoli, Italy
| |
Collapse
|
27
|
Galgani M, Insabato L, Calì G, Della Gatta AN, Mirra P, Papaccio F, Santopaolo M, Alviggi C, Mollo A, Strina I, Matarese G, Beguinot F, De Placido G, Ulianich L. Regulatory T cells, inflammation, and endoplasmic reticulum stress in women with defective endometrial receptivity. Fertil Steril 2015; 103:1579-86.e1. [PMID: 25935494 DOI: 10.1016/j.fertnstert.2015.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/23/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate immunologic parameters and endoplasmic reticulum (ER) stress associated with unexplained infertility. DESIGN Case-control study. SETTING Academic center. PATIENT(S) Women with no fertility problems (FS) (n = 13), women with recurrent miscarriage (RM) (n = 15) and women with repeated in vitro fertilization failure (RIF) (n = 15). INTERVENTION(S) Endometrial biopsy and collection of peripheral blood during the midsecretory phase of menstrual cycle. MAIN OUTCOME MEASURE(S) Leptin, resistin, soluble tumor necrosis factor receptor (sTNF-R), myeloperoxidase (MPO), soluble intercellular adhesion molecule 1 (sICAM-1), and interleukin 22 (IL-22) concentration in peripheral blood, endometrial CD3(+), CD4(+), CD5(+), CD8(+), and FoxP3(+) T lymphocytes, and endometrial expression of HSPA5, a specific marker of ER stress. RESULT(S) We found an increase of proinflammatory molecules such as resistin, leptin, and IL-22 in both RM and RIF patients; sTNF-R and MPO only in RIF patients when compared with the FS women. We also found in endometria of infertile women a statistically significant increase of CD3(+), CD4(+), CD8(+) in both RM and RIF patients and CD5(+) in RM patients when compared with FS women. This was paralleled by a statistically significant reduction of infiltrating FoxP3(+) regulatory T cells. Finally, endometrial HSPA5 expression levels were statistically significantly up-regulated in both RM and RIF patients. CONCLUSION(S) Women with RM and RIF showed an increase of circulating proinflammatory cytokines, altered endometrial T lymphocytes subsets, and signs of endometrial ER stress.
Collapse
Affiliation(s)
- Mario Galgani
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Naples, Italy
| | - Luigi Insabato
- Dipartimento di Scienze Biomediche Avanzate, Università "Federico II," Naples, Italy
| | - Gaetano Calì
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Naples, Italy
| | - Anna Nunzia Della Gatta
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Paola Mirra
- Dipartimento di Scienze Mediche Traslazionali and Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Università "Federico II," Naples, Italy
| | - Federica Papaccio
- Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Naples, Italy
| | - Marianna Santopaolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università "Federico II," Naples, Italy
| | - Carlo Alviggi
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Antonio Mollo
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Ida Strina
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università di Salerno, Baronissi Campus, Salerno, Italy; IRCCS Multimedica, Milan, Italy
| | - Francesco Beguinot
- Dipartimento di Scienze Mediche Traslazionali and Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Università "Federico II," Naples, Italy
| | - Giuseppe De Placido
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università "Federico II," Naples, Italy
| | - Luca Ulianich
- Dipartimento di Scienze Mediche Traslazionali and Istituto di Endocrinologia ed Oncologia Sperimentale "G. Salvatore" CNR, Università "Federico II," Naples, Italy.
| |
Collapse
|
28
|
GRP78 Mediates Cell Growth and Invasiveness in Endometrial Cancer. J Cell Physiol 2014; 229:1417-26. [DOI: 10.1002/jcp.24578] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/07/2014] [Indexed: 12/16/2022]
|
29
|
Izzo A, Manco R, Bonfiglio F, Calì G, De Cristofaro T, Patergnani S, Cicatiello R, Scrima R, Zannini M, Pinton P, Conti A, Nitsch L. NRIP1/RIP140 siRNA-mediated attenuation counteracts mitochondrial dysfunction in Down syndrome. Hum Mol Genet 2014; 23:4406-19. [PMID: 24698981 DOI: 10.1093/hmg/ddu157] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction, which is consistently observed in Down syndrome (DS) cells and tissues, might contribute to the severity of the DS phenotype. Our recent studies on DS fetal hearts and fibroblasts have suggested that one of the possible causes of mitochondrial dysfunction is the downregulation of peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC-1α or PPARGC1A)--a key modulator of mitochondrial function--and of several nuclear-encoded mitochondrial genes (NEMGs). Re-analysis of publicly available expression data related to manipulation of chromosome 21 (Hsa21) genes suggested the nuclear receptor interacting protein 1 (NRIP1 or RIP140) as a good candidate Hsa21 gene for NEMG downregulation. Indeed, NRIP1 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PGC-1α. To establish whether NRIP1 overexpression in DS downregulates both PGC-1α and NEMGs, thereby causing mitochondrial dysfunction, we used siRNAs to decrease NRIP1 expression in trisomic human fetal fibroblasts. Levels of PGC-1α and NEMGs were increased and mitochondrial function was restored, as shown by reactive oxygen species decrease, adenosine 5'-triphosphate (ATP) production and mitochondrial activity increase. These findings indicate that the Hsa21 gene NRIP1 contributes to the mitochondrial dysfunction observed in DS. Furthermore, they suggest that the NRIP1-PGC-1α axe might represent a potential therapeutic target for restoring altered mitochondrial function in DS.
Collapse
Affiliation(s)
- Antonella Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosanna Manco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Gaetano Calì
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Tiziana De Cristofaro
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Simone Patergnani
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Rita Cicatiello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71100, Italy
| | - Mariastella Zannini
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples 80131, Italy
| | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara 44100, Italy
| | - Anna Conti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| | - Lucio Nitsch
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, Naples 80131, Italy
| |
Collapse
|
30
|
Abstract
Loss of cadherin 1 (CDH1; also known as epithelial cadherin (E-cadherin)) is used for the diagnosis and prognosis of epithelial cancers. However, it should not be ignored that the superfamily of transmembrane cadherin proteins encompasses more than 100 members in humans, including other classical cadherins, numerous protocadherins and cadherin-related proteins. Elucidation of their roles in suppression versus initiation or progression of various tumour types is a young but fascinating field of molecular cancer research. These cadherins are very diverse in both structure and function, and their mutual interactions seem to influence biological responses in complex and versatile ways.
Collapse
Affiliation(s)
- Frans van Roy
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.The Inflammation Research Center, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
31
|
Sancisi V, Gandolfi G, Ragazzi M, Nicoli D, Tamagnini I, Piana S, Ciarrocchi A. Cadherin 6 is a new RUNX2 target in TGF-β signalling pathway. PLoS One 2013; 8:e75489. [PMID: 24069422 PMCID: PMC3772092 DOI: 10.1371/journal.pone.0075489] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/15/2013] [Indexed: 01/07/2023] Open
Abstract
Modifications in adhesion molecules profile may change the way tumor cells interact with the surrounding microenvironment. The Cadherin family is a large group of transmembrane proteins that dictate the specificity of the cellular interactions. The Cadherin switch that takes place during epithelial-mesenchymal transition (EMT) contributes to loosening the rigid organization of epithelial tissues and to enhancing motility and invasiveness of tumor cells. Recently, we found Cadherin-6 (CDH6, also known as K-CAD) highly expressed in thyroid tumor cells that display mesenchymal features and aggressive phenotype, following the overexpression of the transcriptional regulator Id1. In this work, we explored the possibility that CDH6 is part of the EMT program in thyroid tumors. We demonstrate that CDH6 is a new transforming growth factor-β (TGF-β) target and that its expression is modulated similarly to other EMT mesenchymal markers, both in vitro and in thyroid tumor patients. We show for the first time that CDH6 is expressed in human thyroid carcinomas and that its expression is enhanced at the invasive front of the tumor. Finally, we show that CDH6 is under the control of the transcription factor RUNX2, which we previously described as a crucial mediator of the Id1 pro-invasive function in thyroid tumor cells. Overall, these observations provide novel information on the mechanism of the EMT program in tumor progression and indicate CDH6 as a potential regulator of invasiveness in thyroid tumors.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Greta Gandolfi
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Davide Nicoli
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Ione Tamagnini
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Molecular Biology, Department of Oncology and Advanced Technologies, Azienda Ospedaliera Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
- * E-mail:
| |
Collapse
|
32
|
Current World Literature. Curr Opin Oncol 2013; 25:325-30. [DOI: 10.1097/cco.0b013e328360f591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Nilsson M, Fagman H. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr Top Dev Biol 2013; 106:123-70. [PMID: 24290349 DOI: 10.1016/b978-0-12-416021-7.00004-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid dysgenesis is the most common cause of congenital hypothyroidism that affects 1 in 3000 newborns. Although a number of pathogenetic mutations in thyroid developmental genes have been identified, the molecular mechanism of disease is unknown in most cases. This chapter summarizes the current knowledge of normal thyroid development and puts the different developmental stages in perspective, from the time of foregut endoderm patterning to the final shaping of pharyngeal anatomy, for understanding how specific malformations may arise. At the cellular level, we will also discuss fate determination of follicular and C-cell progenitors and their subsequent embryonic growth, migration, and differentiation as the different thyroid primordia evolve and merge to establish the final size and shape of the gland.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
34
|
Ruiz-Llorente S, Carrillo Santa de Pau E, Sastre-Perona A, Montero-Conde C, Gómez-López G, Fagin JA, Valencia A, Pisano DG, Santisteban P. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions. BMC Genomics 2012; 13:147. [PMID: 22531031 PMCID: PMC3403905 DOI: 10.1186/1471-2164-13-147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 04/24/2012] [Indexed: 11/25/2022] Open
Abstract
Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF) and chromatin remodeling (Sp1), and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis) gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism that represents a novel role of Pax8 in the transcriptional output of the thyrocyte.
Collapse
Affiliation(s)
- Sergio Ruiz-Llorente
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-CSIC y Universidad Autónoma de Madrid-UAM, C/Arturo Duperier 4, Madrid 28029, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sastre-Perona A, Santisteban P. Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne) 2012; 3:31. [PMID: 22645520 PMCID: PMC3355838 DOI: 10.3389/fendo.2012.00031] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Aberrant activation of Wnt signaling is involved in the development of several epithelial tumors. Wnt signaling includes two major types of pathways: (i) the canonical or Wnt/β-catenin pathway; and (ii) the non-canonical pathways, which do not involve β-catenin stabilization. Among these pathways, the Wnt/β-catenin pathway has received most attention during the past years for its critical role in cancer. A number of publications emphasize the role of the Wnt/β-catenin pathway in thyroid cancer. This pathway plays a crucial role in development and epithelial renewal, and components such as β-catenin and Axin are often mutated in thyroid cancer. Although it is accepted that altered Wnt signaling is a late event in thyroid cell transformation that affects anaplastic thyroid tumors, recent data suggest that it is also altered in papillary thyroid carcinoma (PTC) with RET/PTC mutations. Therefore, the purpose of this review is to summarize the main relevant data of Wnt signaling in thyroid cancer, with special emphasis on the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
- *Correspondence: Pilar Santisteban, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain. e-mail:
| |
Collapse
|