1
|
Nair JJ, van Staden J. Anti-inflammatory effects of the plant family Amaryllidaceae. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117943. [PMID: 38387683 DOI: 10.1016/j.jep.2024.117943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Members of the plant family Amaryllidaceae are widely recorded in traditional systems of medicine. Their usage for inflammatory conditions is most prominent, with substantive evidence emerging from several locations around the world. AIM OF THE STUDY This survey was undertaken to identify such plant taxa, highlight the countries from which they originate and afford details of the ailments against which they are utilized. The undertaking also sought to establish the in vitro and in vivo activities of Amaryllidaceae plant extracts in inflammation-based assays. Furthermore, it set out to unravel the molecular mechanisms used to explain these effects. MATERIALS AND METHODS Over six-hundred articles were identified in searches carried out on SciFinder, Scopus, ScienceDirect, PubMed and Google Scholar. These were condensed to around 170 that formulated the basis of the text. The keyword engaged was 'Amaryllidaceae' in conjunction with 'inflammation' or 'anti-inflammatory', as well as the names of individual genera combined with the latter two. RESULTS Fifty-one species from thirty-five countries were identified for their uses against inflammation. Twenty-four of such conditions were discernible, of which their applicability in wound healing and pain management was most conspicuous. The utilization of all plant parts was apparent, preparations of which were used primarily via topical application. Extracts of seventy-three species (from twenty-three genera) were examined in nearly thirty inflammation-based assays where their activities in vitro and in vivo were shown to be significant. They were effective in vivo against pain and swelling as well as wound healing, without detriment towards test subjects. The in vitro studies were carried out mainly in mononuclear cells such as macrophages, leukocytes, lymphocytes and neutrophils against which their cytotoxic effects were seen to be minimal. The modes of operation were shown to involve modulation of both pro-inflammatory (such as NF-κB, TNF-α, IL-6, IFN-γ, COX and NO) and anti-inflammatory (such as IL-10) factors. CONCLUSIONS The Amaryllidaceae is showcased as a platform highly conducive towards studies in the inflammation arena. Potent activities in instances were observed via in vitro and in vivo models of study, bolstered by the significant amounts of information emerging from traditional forms of medicine. It is conceivable that the family may yield future anti-inflammatory chemotherapeutics, particularly those related to its alkaloid principles.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
2
|
Saedi S, Panahi R, Orak N, Jafarzadeh Shirazi MR. Comparative Meta-analysis of Adipose Tissue Transcriptomics Data in PCOS Patients and Healthy Control Women. Reprod Sci 2022; 30:1823-1833. [DOI: 10.1007/s43032-022-01145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
|
3
|
Li Q, Chen KC, Bridges PJ, Matthews JC. Pituitary and liver selenoprotein transcriptome profiles of grazing steers and their sensitivity to the form of selenium in vitamin-mineral mixes. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.911094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many supplemental Se-dependent metabolic effects are mediated through the function of selenoproteins. The full complement and relative abundance of selenoproteins expressed by highly metabolic cattle tissues have not been characterized in cattle. The complement and number of selenoprotein mRNA transcripts expressed by the pituitary and liver of healthy growing beef steers (n = 7 to 8) was characterized using NanoString methodology (Study 1). Of the 25 known bovine selenoproteins, 24 (all but SELENOH) were expressed by the pituitary and 23 (all but SELENOH and SELENOV) by the liver. Transcript abundance ranged (P ≤ 0.05) over 5 orders of magnitude in the pituitary (> 10,000 for GPX3, < 10 for DIO1 and GPX2) and liver (> 35,000 for SELENOP, < 10 for DIO2). Also unknown is the sensitivity of the selenoprotein transcriptome to the form of supplemental Se. The effect of form of supplemental Se on the relative content of selenoprotein mRNA species in the pituitary and liver of steers grazing a Se-deficient (0.07 ppm Se) tall fescue pasture and consuming 85 g/d of a basal vitamin-mineral mix that contained 35 ppm Se as either ISe (n = 6), organically-bound Se (SELPLEX; OSe, n = 7 to 8), or a 1:1 blend of ISe and OSe (MIX, n = 7 to 8) was determined by RT-PCR after sequence-validating the 25 bovine selenoprotein cDNA products (Study 2). In the pituitary, Se form affected (P < 0.05) the relative content of 9 selenoprotein mRNAs and 2 selenoprotein P receptor mRNAs in a manner consistent with a greater capacity to manage against oxidative damage, maintain cellular redox balance, and have a better control of protein-folding in the pituitaries of OSe and MIX versus ISe steers. In the liver, expression of 5 selenoprotein mRNA was affected (P ≤ 0.05) in a manner consistent with MIX steers having greater redox signaling capacity and capacity to manage oxidative damage than ISe steers. We conclude that inclusion of 3 mg Se/d as OSe or MIX versus ISe, forms of supplemental Se in vitamin-mineral mixes alters the selenoprotein transcriptome in a beneficial manner in both the pituitary and liver of growing steers consuming toxic endophyte-infected tall fescue.
Collapse
|
4
|
Ouyang L, Qiu D, Fu X, Wu A, Yang P, Yang Z, Wang Q, Yan L, Xiao R. Overexpressing HPGDS in adipose-derived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice. Stem Cell Res Ther 2022; 13:395. [PMID: 35922870 PMCID: PMC9351105 DOI: 10.1186/s13287-022-03082-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/21/2022] [Indexed: 12/27/2022] Open
Abstract
Background In diabetes, delayed wound healing was considered as the result of excessive recruitment and retention of pro-inflammatory cells and factors. Hematopoietic prostaglandin D synthase (HPGDS) was identified from differently expressed genes of diabetic human foot skin. HPGDS is responsible for the production of prostaglandin D2 (PGD2), an inflammatory mediator. Therefore, we aim to explore whether HPGDS could be a therapeutic target in the diabetic wound (DW). Method In this study, we compared gene expression profilings of diabetic human foot skin and non-diabetic human foot skin from the Gene Expression Omnibus database. We detected the characteristics of immune components in diabetic mice wound and investigated the role and underlying mechanism of the differently expressed Hpgds for the diabetic wound healing. For in vivo studies, we engineered ADSC to overexpress Hpgds (ADSCHpgds) and evaluated its effects on diabetic wound healing using a full-thickness skin wound model. For in vitro studies, we evaluated the role of ADSCHpgds conditioned medium and PGD2 on Lipopolysaccharide (LPS) induced macrophage. Results Hpgds was significantly down-regulated in type 2 diabetic mice wound and its deficiency delayed normal wound healing. ADSCHpgds accelerated DW healing by reducing neutrophil and CD8T cell recruitment, promoting M2 macrophage polarization and increasing the production of growth factors. ADSCHpgds conditioned medium showed superior capability in promoting M2 macrophage transition than conditioned medium derived from ADSC alone. Conclusion Our results demonstrated that Hpgds is required for wound healing, and ADSCHpgds could accelerate DW healing by improving anti-inflammatory state and normalizing the proliferation phase of wound healing in mice. These findings provide a new insight in the therapeutic strategy of diabetic wound. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03082-w.
Collapse
Affiliation(s)
- Long Ouyang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Daojing Qiu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Aiping Wu
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, People's Republic of China
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Crites BR, Carr SN, Matthews JC, Bridges PJ. Form of dietary selenium affects mRNA encoding cholesterol biosynthesis and immune response elements in the early luteal phase bovine corpus luteum. J Anim Sci 2022; 100:6620782. [PMID: 35772747 DOI: 10.1093/jas/skac135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) progesterone (P4) above that in cows on ISe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effect of form of Se on the transcriptome of the early LP corpus luteum (CL) with the goal of elucidating form of Se-regulated processes affecting luteal steroidogenesis and function. Non-lactating, 3-yr-old Angus-cross cows underwent 45-d Se-depletion, then repletion periods, and then at least 90 d of supplementation (TRT) with 35 ppm Se/d as either ISe (n = 5) or MIX (n = 5). CL were then recovered on day 7 of the estrous cycle, total RNA isolated, and the effect of TRT on the luteal transcriptome evaluated using bovine gene 1.0 ST arrays (Affymetrix, Inc., Santa Clara, CA). The abundance of transcripts in each CL was subjected to one-way ANOVA using Partek Genomic Suite software to determine TRT effects. Microarray analysis indicated a total of 887 transcripts that were differentially expressed and functionally annotated, with 423 and 464 up- and down-regulated (P < 0.05) in MIX vs. ISe CL, respectively. Bioinformatic analysis (Ingenuity Pathway Analysis) revealed the top TRT-affected canonical pathways to include seven specific to cholesterol biosynthesis and two to inflammatory responses. Results from the microarray analysis were corroborated by targeted real-time PCR. MIX CL had increased (P < 0.05) abundance of transcripts regulating cholesterol biosynthesis including DHCR7, DHCR24, and CYP51A1 (fold changes of 1.65, 1.48, and 1.40, respectively), suggesting MIX-induced increases in P4 to be due, in part, to increased availability of substrate to luteal cells. In addition, MIX CL had increased (P < 0.05) abundance of immune-response transcripts including C1QC, FAS, ILR8B, and IL1R1 (fold changes of 2.30, 1.74, 1.66, and 1.63, respectively). SREBF1 mRNA was also increased (1.32-fold, P < 0.05) in the MIX CL, which increases cholesterol synthesis and stimulates IL1B, linking effects of form of supplemental Se (TRT) on cholesterol biosynthesis and immune function in the CL.
Collapse
Affiliation(s)
- Benjamin R Crites
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sarah N Carr
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
6
|
Anamthathmakula P, Winuthayanon W. Prostaglandin-Endoperoxide Synthase 2 (PTGS2) in the Oviduct: Roles in Fertilization and Early Embryo Development. Endocrinology 2021; 162:6128831. [PMID: 33539521 PMCID: PMC7901659 DOI: 10.1210/endocr/bqab025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/19/2022]
Abstract
The mammalian oviduct is a dynamic organ where important events such as final maturation of oocytes, transport of gametes, sperm capacitation, fertilization, embryo development, and transport take place. Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), is the rate-limiting enzyme in the production of prostaglandins (PGs) and plays an essential role during early pregnancy, including ovulation, fertilization, implantation, and decidualization. Even though the maternal-embryo communication originates in the oviduct, not many studies have systemically investigated PTGS2 signaling during early development. Most of the studies investigating implantation and decidualization processes in Ptgs2-/- mice employed embryo transfer into the uterus, thereby bypassing the mammalian oviduct. Consequently, an understanding of the mechanistic action as well as the regulation of PTGS2 and derived PGs in oviductal functions is far from complete. In this review, we aim to focus on the importance of PTGS2 and associated PGs signaling in the oviduct particularly in humans, farm animals, and laboratory rodents to provide a broad perspective to guide further research in this field. Specifically, we review the role of PTGS2-derived PGs in fertilization, embryo development, and transport. We focus on the actions of ovarian steroid hormones on PTGS2 regulation in the oviduct. Understanding of cellular PTGS2 function during early embryo development and transport in the oviduct will be an important step toward a better understanding of reproduction and may have potential implication in the assisted reproductive technology.
Collapse
Affiliation(s)
- Prashanth Anamthathmakula
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| | - Wipawee Winuthayanon
- School of Molecular Biosciences, Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Correspondence: Wipawee Winuthayanon, PhD, BSN,Washington State University, Pullman, WA 99164, USA. E-mail: ; and Prashanth Anamthathmakula, PhD, Washington State University, Pullman, WA 99164, USA. E-mail:
| |
Collapse
|
7
|
Cerny KL, Ribeiro RAC, Li Q, Matthews JC, Bridges PJ. Effect of lipopolysaccharide on the expression of inflammatory mRNAs and microRNAs in the mouse oviduct. Reprod Fertil Dev 2017; 30:600-608. [PMID: 28945983 DOI: 10.1071/rd17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Infection with Gram-negative bacteria is a major cause of aberrant inflammation in the oviduct; consequences can include tubal-based infertility and/or ectopic pregnancy. Understanding the inflammatory response is necessary for the development of novel treatment options that counter inflammation-induced infertility. The aim of the present study was to determine the effect of intraperitoneal (i.p.) administration of Escherichia coli-derived lipopolysaccharide (LPS) on the acute expression of inflammatory mRNAs and microRNAs (miRNAs) in the oviduct. On the day of oestrus, 6- to 8-week-old CD1 mice were injected i.p. with 0, 2 or 10µg LPS in 100μL phosphate-buffered saline. Mice were killed 24h later and the oviducts collected for gene expression analyses. The effect of treatment on the expression of mRNAs and miRNAs was evaluated by one-way analysis of variance (ANOVA), with treatment means of differentially expressed (P<0.05) transcripts separated using Scheffé's test. LPS treatment affected 49 of 179 targeted inflammatory mRNAs and 51 of 578 miRNAs (P<0.05). The identity of differentially expressed miRNAs predicted as regulators of chemokine and interleukin ligand mRNAs was then extracted using the microRNA.org database. The results of the present study indicate that systemic treatment with LPS induces a robust inflammatory response in the oviducts of mice, and identify key mRNAs and putative miRNAs modulating this effect.
Collapse
Affiliation(s)
- Katheryn L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Rosanne A C Ribeiro
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qing Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Li Q, Hegge R, Bridges PJ, Matthews JC. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages. PLoS One 2017; 12:e0184612. [PMID: 28902910 PMCID: PMC5597216 DOI: 10.1371/journal.pone.0184612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022] Open
Abstract
Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; n = 9; BW = 266 ± 10.9 kg). As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate ≤ 4.8%), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters.
Collapse
Affiliation(s)
- Qing Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Raquel Hegge
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - James C. Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
9
|
Piergiorge RM, de Miranda AB, Guimarães AC, Catanho M. Functional Analogy in Human Metabolism: Enzymes with Different Biological Roles or Functional Redundancy? Genome Biol Evol 2017; 9:1624-1636. [PMID: 28854631 PMCID: PMC5737724 DOI: 10.1093/gbe/evx119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
Since enzymes catalyze almost all chemical reactions that occur in living organisms, it is crucial that genes encoding such activities are correctly identified and functionally characterized. Several studies suggest that the fraction of enzymatic activities in which multiple events of independent origin have taken place during evolution is substantial. However, this topic is still poorly explored, and a comprehensive investigation of the occurrence, distribution, and implications of these events has not been done so far. Fundamental questions, such as how analogous enzymes originate, why so many events of independent origin have apparently occurred during evolution, and what are the reasons for the coexistence in the same organism of distinct enzymatic forms catalyzing the same reaction, remain unanswered. Also, several isofunctional enzymes are still not recognized as nonhomologous, even with substantial evidence indicating different evolutionary histories. In this work, we begin to investigate the biological significance of the cooccurrence of nonhomologous isofunctional enzymes in human metabolism, characterizing functional analogous enzymes identified in metabolic pathways annotated in the human genome. Our hypothesis is that the coexistence of multiple enzymatic forms might not be interpreted as functional redundancy. Instead, these enzymatic forms may be implicated in distinct (and probably relevant) biological roles.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Laboratório de Genômica Funcional e Bioinformática, Fiocruz, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Antonio Basílio de Miranda
- Laboratório de Biologia Computacional e Sistemas, Fiocruz, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Ana Carolina Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Fiocruz, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| | - Marcos Catanho
- Laboratório de Genômica Funcional e Bioinformática, Fiocruz, Instituto Oswaldo Cruz, Manguinhos, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Cerny KL, Ribeiro RAC, Jeoung M, Ko C, Bridges PJ. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome. PLoS One 2016; 11:e0147685. [PMID: 26808832 PMCID: PMC4725743 DOI: 10.1371/journal.pone.0147685] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430–2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG’s, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG’s in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1-regulated gene expression and related bioinformatic analysis is presented to increase our understanding of how estradiol/ESR1 affects function of the oviduct, and to identify genes that may be proven as important regulators of fertility in the future.
Collapse
Affiliation(s)
- Katheryn L. Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
| | - Rosanne A. C. Ribeiro
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
| | - Myoungkun Jeoung
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, United States of America
| | - CheMyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States of America
| | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of America
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, United States of America
- * E-mail:
| |
Collapse
|
11
|
Cerny KL, Garbacik S, Skees C, Burris WR, Matthews JC, Bridges PJ. Gestational form of Selenium in Free-Choice Mineral Mixes Affects Transcriptome Profiles of the Neonatal Calf Testis, Including those of Steroidogenic and Spermatogenic Pathways. Biol Trace Elem Res 2016; 169:56-68. [PMID: 26043916 DOI: 10.1007/s12011-015-0386-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
Abstract
In areas where soils are deficient in Selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Because Se status affects testosterone synthesis and frequency of sperm abnormalities, and the form of Se supplemented to cows affects tissue-specific gene expression, the objective of this study was to determine whether the form of Se consumed by cows during gestation would affect the expression of mRNAs that regulate steroidogenesis and/or spermatogenesis in the neonatal calf testis. Twenty-four predominantly Angus cows were assigned randomly to have individual, ad libitum, access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX), starting 4 months prior to breeding and continuing throughout gestation. Thirteen male calves were born over a 3-month period (ISe, n = 5; OSe, n = 4; MIX, n = 4), castrated within 2 days of birth, and extracted testis RNA subjected to transcriptomal analysis by microarray (Affymetrix Bovine 1.0 ST arrays) and targeted gene expression analysis by real-time reverse-transcription PCR (RT-PCR) of mRNAs encoding proteins known to affect steroidogenesis and/or spermatogenesis. The form of dam Se affected (P < 0.05) the expression of 853 annotated genes, including 17 mRNAs putatively regulating steroidogenesis and/or spermatogenesis. Targeted RT-PCR analysis indicated that the expression of mRNA encoding proteins CYP2S1 (cytochrome P450, family 2, subfamily S, polypeptide 1), HSD17B7 (hydroxysteroid (17β) dehydrogenase 7), SULT1E1 (sulfotransferase family 1E, estrogen preferring, member 1), LDHA (lactate dehydrogenase A), CDK5R1 (cyclin-dependent kinase 5, regulatory subunit 1), and LEP (leptin) was affected (P < 0.05) by form of Se consumed by dams of developing bull calves, while AKR1C4 (aldo-keto reductase family 1, member C4) and CCND2 (cyclin D2) tended (P < 0.09) to be affected. Our results indicate that form of Se fed to dams during gestation affected the transcriptome of the neonatal calf testis. If these profiles are maintained throughout maturation, then the form of Se fed to dams may impact bull fertility and the development of Se form-dependent mineral mixes that target gestational development of the testis are warranted.
Collapse
Affiliation(s)
- K L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - S Garbacik
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - C Skees
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - W R Burris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - J C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - P J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
12
|
Cerny KL, Van Fleet M, Slepenkin A, Peterson EM, Bridges PJ. Differential Expression of mRNA Encoding Cytokines and Chemokines in the Reproductive Tract after Infection of Mice with Chlamydia trachomatis. ACTA ACUST UNITED AC 2015; 4. [PMID: 26779389 PMCID: PMC4712740 DOI: 10.4172/2161-038x.1000152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection with Chlamydia trachomatis targets epithelial cells within the genital tract which respond by secreting chemokines and cytokines. Persistent inflammation can lead to fibrosis, tubal infertility and/or ectopic pregnancy; many infections are asymptomatic. Most studies have investigated the inflammatory response in the initial stages of infection, less is known about the later stages of infection, especially with a low, potentially asymptomatic, bacterial load. Our objective was to determine the inflammatory mediators involved in clearance of low-grade infection and the potential involvement in chronic inflammation. Six to eight week old C3H/HeJ mice were pretreated with 2.5 mg medroxyprogesterone acetate on day -10 and -3 before infection. Mice (n=3 for 28 d, n=3 for 35 d) were infected with 5 × 102 inclusion-forming units of C. trachomatis, serovar D; vaginal cultures were obtained weekly to monitor infection. Control mice (n=3 for 28 d, n=3 for 35 d) were sham infected. Mice were killed on day 28 (experiment 1) and day 35 (experiment 2) post-infection and vaginal tissue, uterine horns and oviducts collected for analysis of mRNAs encoding inflammatory cytokines and chemokines. Total RNA was isolated and a superarray analysis performed using mouse Cytokines and Chemokines PCR arrays (Qiagen, Valencia, CA). Statistical differences in gene expression were determined using a paired Students t-test. At 28 days after infection, the expression of mRNA encoding 6, 35 and 3 inflammatory genes differed from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). At 35 days after infection, the expression of mRNA encoding 16, 38 and 14 inflammatory genes differed from controls in vaginal, uterine and oviductal tissues, respectively (P<0.05). Understanding the mechanisms involved in the inflammatory response at later stages of infection should aid in the development of treatment options that minimize the development of asymptomatic, chronic inflammation-induced infertility.
Collapse
Affiliation(s)
- Katheryn L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - Maranda Van Fleet
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - Anatoly Slepenkin
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Ellena M Peterson
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
13
|
Cerny KL, Garrett E, Walton AJ, Anderson LH, Bridges PJ. A transcriptomal analysis of bovine oviductal epithelial cells collected during the follicular phase versus the luteal phase of the estrous cycle. Reprod Biol Endocrinol 2015; 13:84. [PMID: 26242217 PMCID: PMC4524109 DOI: 10.1186/s12958-015-0077-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Reproductive success depends on a functional oviduct for gamete storage, maturation, fertilization, and early embryonic development. The ovarian-derived steroids estrogen and progesterone are key regulators of oviductal function. The objective of this study was to investigate luteal and follicular phase-specific oviductal epithelial cell function by using microarray-based transcriptional profiling, to increase our understanding of mRNAs regulating epithelial cell processes, and to identify novel genes and biochemical pathways that may be found to affect fertility in the future. METHODS Six normally cycling Angus heifers were assigned to either luteal phase (LP, n = 3) or follicular phase (FP, n = 3) treatment groups. Heifers in the LP group were killed between day 11 and 12 after estrus. Heifers in the FP group were treated with 25 mg PGF2α (Lutalyse, Pfizer, NY) at 8 pm on day 6 after estrus and killed 36 h later. Transcriptional profiling by microarray and confirmation of selected mRNAs by real-time RT-PCR analyses was performed using total RNA from epithelial cells isolated from sections of the ampulla and isthmus collected from LP and FP treatment groups. Differentially expressed genes were subjected to gene ontology classification and bioinformatic pathway analyses. RESULTS Statistical one-way ANOVA using Benjamini-hochberg multiple testing correction for false discovery rate (FDR) and pairwise comparison of epithelial cells in the ampulla of FP versus LP groups revealed 972 and 597 transcripts up- and down-regulated, respectively (P < 0.05). Within epithelial cells of the isthmus in FP versus LP groups, 946 and 817 transcripts were up- and down-regulated, respectively (P < 0.05). Up-regulated genes from both ampulla and isthmus were found to be largely involved in cholesterol biosynthesis and cell cycle pathways, while down-regulated genes were found in numerous inflammatory response pathways. CONCLUSIONS Microarray-based transcriptional profiling revealed phase of the cycle-dependent changes in the expression of mRNA within the epithelium of the oviducts' ampulla and isthmus.
Collapse
Affiliation(s)
- K L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - E Garrett
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - A J Walton
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - L H Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| | - P J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, 40546, KY, USA.
| |
Collapse
|
14
|
Chimponda T, Mukanganyama S. Evaluation of Selected Zimbabwean Plant Extracts as Inhibitors of Hematopoietic Prostaglandin D2Synthase. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/10496475.2014.954073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Shao R, Feng Y, Zou S, Weijdegård B, Wu G, Brännström M, Billig H. The role of estrogen in the pathophysiology of tubal ectopic pregnancy. Am J Transl Res 2012; 4:269-278. [PMID: 22937205 PMCID: PMC3426394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
17β-estradiol, acting through estrogen receptors α and β, plays a fundamental role in the regulation of Fallopian tube cell homeostasis and in the modulation of normal tubal physiological processes. Fluctuations in E2 levels also play crucial roles in the initiation or progression of numerous human diseases. Fallopian tube malfunction often results in tubal ectopic pregnancy, which is one cause of maternal morbidity and mortality in women. Several factors have been proposed to be associated with increased risk of tubal ectopic pregnancy, but whether these factors are the cause of, or are merely symptoms of, such pregnancies remains unresolved due to the lack of knowledge in regards to the mechanisms by which embryos inadvertently implant in the Fallopian tube. This review summarizes recent findings, including data from our own laboratory, on E2 metabolism and estrogen receptor (ER) subtype expression within the Fallopian tube in humans and rodents. This review also outlines several important, unresolved questions in the field that, once addressed, could offer important clues into how E2/ER signaling contributes to the pathology of tubal function. A better understanding of the specific functions of estrogen receptor subtypes in vivo, as well as of the mechanism and consequences of receptor subtype interactions is critical to understanding their respective roles in Fallopian tube physiology and in the pathophysiology and etiology of tubal ectopic pregnancy.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
- Department of Obstetrics and Gynecology, The Sahlgrenska Academy, University of GothenburgGothenburg 41345, Sweden
| | - Yi Feng
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College and Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institute of Brain Science, Fudan UniversityShanghai 200032, China
| | - Shien Zou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan UniversityShanghai 200011, China
| | - Birgitta Weijdegård
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
| | - Gencheng Wu
- Department of Integrative Medicine and Neurobiology, State Key Lab of Medical Neurobiology, Shanghai Medical College and Institute of Acupuncture Research (WHO Collaborating Center for Traditional Medicine), Institute of Brain Science, Fudan UniversityShanghai 200032, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, The Sahlgrenska Academy, University of GothenburgGothenburg 41345, Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of GothenburgGothenburg 40530, Sweden
| |
Collapse
|