1
|
Shi V, Morgan EF. Estrogen and estrogen receptors mediate the mechanobiology of bone disease and repair. Bone 2024; 188:117220. [PMID: 39106937 PMCID: PMC11392539 DOI: 10.1016/j.bone.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
It is well understood that the balance of bone formation and resorption is dependent on both mechanical and biochemical factors. In addition to cell-secreted cytokines and growth factors, sex hormones like estrogen are critical to maintaining bone health. Although the direct osteoprotective function of estrogen and estrogen receptors (ERs) has been reported extensively, evidence that estrogen signaling also has a role in mediating the effects of mechanical loading on maintenance of bone mass and healing of bone injuries has more recently emerged. Recent studies have underscored the role of estrogen and ERs in many pathways of bone mechanosensation and mechanotransduction. Estrogen and ERs have been shown to augment integrin-based mechanotransduction as well as canonical Wnt/b-catenin, RhoA/ROCK, and YAP/TAZ pathways. Estrogen and ERs also influence the mechanosensitivity of not only osteocytes but also osteoblasts, osteoclasts, and marrow stromal cells. The current review will highlight these roles of estrogen and ERs in cellular mechanisms underlying bone mechanobiology and discuss their implications for management of osteoporosis and bone fractures. A greater understanding of the mechanisms behind interactions between estrogen and mechanical loading may be crucial to addressing the shortcomings of current hormonal and pharmaceutical therapies. A combined therapy approach including high-impact exercise therapy may mitigate adverse side effects and allow an effective long-term solution for the prevention, treatment, and management of bone fragility in at-risk populations. Furthermore, future implications to novel local delivery mechanisms of hormonal therapy for osteoporosis treatment, as well as the effects on bone health of applications of sex hormone therapy outside of bone disease, will be discussed.
Collapse
Affiliation(s)
- Vivian Shi
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA
| | - Elise F Morgan
- Boston University, Department of Biomedical Engineering, 44 Cummington St, Boston 02215, MA, USA; Center for Multiscale and Translational Mechanobiology, Boston University, 44 Cummington St, Boston 02215, MA, USA.
| |
Collapse
|
2
|
Dzubanova M, Benova A, Ferencakova M, Coupeau R, Tencerova M. Nutrition and Bone Marrow Adiposity in Relation to Bone Health. Physiol Res 2024; 73:S107-S138. [PMID: 38752771 PMCID: PMC11412336 DOI: 10.33549/physiolres.935293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Bone remodeling is energetically demanding process. Energy coming from nutrients present in the diet contributes to function of different cell type including osteoblasts, osteocytes and osteoclasts in bone marrow participating in bone homeostasis. With aging, obesity and osteoporosis the function of key building blocks, bone marrow stromal cells (BMSCs), changes towards higher accumulation of bone marrow adipose tissue (BMAT) and decreased bone mass, which is affected by diet and sex dimorphism. Men and women have unique nutritional needs based on physiological and hormonal changes across the life span. However, the exact molecular mechanisms behind these pathophysiological conditions in bone are not well-known. In this review, we focus on bone and BMAT physiology in men and women and how this approach has been taken by animal studies. Furthermore, we discuss the different diet interventions and impact on bone and BMAT in respect to sex differences. We also discuss the future perspective on precision nutrition with a consideration of sex-based differences which could bring better understanding of the diet intervention in bone health and weight management.
Collapse
Affiliation(s)
- M Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
3
|
Wright CS, Lewis KJ, Semon K, Yi X, Reyes Fernandez PC, Rust K, Prideaux M, Schneider A, Pederson M, Deosthale P, Plotkin LI, Hum JM, Sankar U, Farach-Carson MC, Robling AG, Thompson WR. Deletion of the auxiliary α2δ1 voltage sensitive calcium channel subunit in osteocytes and late-stage osteoblasts impairs femur strength and load-induced bone formation in male mice. J Bone Miner Res 2024; 39:298-314. [PMID: 38477790 DOI: 10.1093/jbmr/zjae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 03/14/2024]
Abstract
Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.
Collapse
Affiliation(s)
- Christian S Wright
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Karl J Lewis
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Katelyn Semon
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Xin Yi
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Perla C Reyes Fernandez
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Katie Rust
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
| | - Artur Schneider
- Department of Physiology, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46202, United States
| | - Molly Pederson
- School of Science, Indiana University-Purdue University, Indianapolis, IN 46202, United States
| | - Padmini Deosthale
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Lilian I Plotkin
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Julia M Hum
- Department of Physiology, College of Osteopathic Medicine, Marian University, Indianapolis, IN 46202, United States
| | - Uma Sankar
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - Mary C Farach-Carson
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas, Health Science Center, Houston, TX 78712, United States
| | - Alexander G Robling
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| | - William R Thompson
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, IN 46202, United States
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Smit A, Meijer O, Winter E. The multi-faceted nature of age-associated osteoporosis. Bone Rep 2024; 20:101750. [PMID: 38566930 PMCID: PMC10985042 DOI: 10.1016/j.bonr.2024.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Age-associated osteoporosis (AAOP) poses a significant health burden, characterized by increased fracture risk due to declining bone mass and strength. Effective prevention and early treatment strategies are crucial to mitigate the disease burden and the associated healthcare costs. Current therapeutic approaches effectively target the individual contributing factors to AAOP. Nonetheless, the management of AAOP is complicated by the multitude of variables that affect its development. Main intrinsic and extrinsic factors contributing to AAOP risk are reviewed here, including mechanical unloading, nutrient deficiency, hormonal disbalance, disrupted metabolism, cognitive decline, inflammation and circadian disruption. Furthermore, it is discussed how these can be targeted for prevention and treatment. Although valuable as individual targets for intervention, the interconnectedness of these risk factors result in a unique etiology for every patient. Acknowledgement of the multifaceted nature of AAOP will enable the development of more effective and sustainable management strategies, based on a holistic, patient-centered approach.
Collapse
Affiliation(s)
- A.E. Smit
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - O.C. Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
| | - E.M. Winter
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden, the Netherlands
- Department of Medicine, Center for Bone Quality, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
5
|
Meczekalski B, Niwczyk O, Bala G, Szeliga A. Managing Early Onset Osteoporosis: The Impact of Premature Ovarian Insufficiency on Bone Health. J Clin Med 2023; 12:4042. [PMID: 37373735 DOI: 10.3390/jcm12124042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/21/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Premature ovarian insufficiency is a reproductive endocrine disorder characterized by the cessation of ovarian function before the age of 40 years. Although the etiopathology of POI remains largely unknown, certain causative factors have been identified. Individuals affected by POI are at an increased risk of experiencing bone mineral density (BMD) loss. Hormonal replacement therapy (HRT) is recommended for patients with POI to mitigate the risk of decreased BMD, starting from the time of diagnosis until reaching the average age of natural menopause. Various studies have compared the dose-effect relationship of estradiol supplementation, as well as different HRT formulations on BMD. The impact of oral contraception on reduced BMD or the potential benefits of adding testosterone to estrogen replacement therapy are still subjects of ongoing discussion. This review provides an overview of the latest advancements in the diagnosis, evaluation, and treatment of POI as it relates to BMD loss.
Collapse
Affiliation(s)
- Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Anna Szeliga
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
6
|
Xu X, Yang H, Bullock WA, Gallant MA, Ohlsson C, Bellido TM, Main RP. Osteocyte Estrogen Receptor β (Ot-ERβ) Regulates Bone Turnover and Skeletal Adaptive Response to Mechanical Loading Differently in Male and Female Growing and Adult Mice. J Bone Miner Res 2023; 38:186-197. [PMID: 36321245 PMCID: PMC10108310 DOI: 10.1002/jbmr.4731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Age-related bone loss is a failure of balanced bone turnover and diminished skeletal mechanoadaptation. Estrogen receptors, ERα and ERβ, play critical roles in osteoprotective regulation activated by estrogen and mechanical signals. Previous studies mainly focused on ERα and showed that osteocyte-ERα (Ot-ERα) regulated trabecular, but not cortical bone, and played a minor role in load-induced cortical adaptation. However, the role of Ot-ERβ in bone mass regulation remains unrevealed. To address this issue, we characterized bone (re)modeling and gene expression in male and female mice with Ot-ERβ deletion (ERβ-dOT) and littermate control (LC) at 10 weeks (young) or 28 weeks (adult) of age, as well as their responses to in vivo tibial compressive loading. Increased cancellous bone mass appeared in the L4 vertebral body of young male ERβ-dOT mice. At the same time, femoral cortical bone gene expression showed signs consistent with elevated osteoblast and osteoclast activities (type-I collagen, Cat K, RANKL). Upregulated androgen receptor (AR) expression was observed in young male ERβ-dOT mice relative to LC, suggesting a compensatory effect of testosterone on male bone protection. In contrast, bone mass in L4 decreased in adult male ERβ-dOT mice, attributed to potentially increased bone resorption activity (Cat K) with no change in bone formation. There was no effect of ERβ-dOT on bone mass or gene expression in female mice. Sex-dependent regulation of Ot-ERβ also appeared in load-induced cortical responsiveness. Young female ERβ-dOT mice showed an enhanced tibial cortical anabolic adaptation compared with LC. In contrast, an attenuated cortical anabolic response presented at the proximal tibia in male ERβ-dOT mice at both ages. For the first time, our findings suggest that Ot-ERβ regulates bone (re)modeling and the response to mechanical signals through different mechanisms in males and females. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Xiaoyu Xu
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and LifeBeijing University of TechnologyBeijingChina
| | | | - Maxim A. Gallant
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical NutritionInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Drug TreatmentSahlgrenska University HospitalGothenburgSweden
| | - Teresita M. Bellido
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockARUSA
| | - Russell P. Main
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteINUSA
- Musculoskeletal Biology and Mechanics Lab, Department of Basic Medical SciencesPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
7
|
Sharma A, Michels LV, Pitsillides AA, Greeves J, Plotkin LI, Cardo V, Sims NA, Clarkin CE. Sexing Bones: Improving Transparency of Sex Reporting to Address Bias Within Preclinical Studies. J Bone Miner Res 2023; 38:5-13. [PMID: 36301601 PMCID: PMC10099537 DOI: 10.1002/jbmr.4729] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 01/10/2023]
Abstract
Despite knowledge that sexually dimorphic mechanisms regulate bone homeostasis, sex often remains unreported and unconsidered in preclinical experimental design. Failure to report sex could lead to inappropriate generalizations of research findings and less effective translation into clinical practice. Preclinical sex bias (preferential selection of one sex) is present across other fields, including neuroscience and immunology, but remains uninvestigated in skeletal research. For context, we first summarized key literature describing sexually dimorphic bone phenotypes in mice. We then investigated sex reporting practices in skeletal research, specifically how customary it is for murine sex to be included in journal article titles or abstracts and then determined whether any bias in sex reporting exists. Because sex hormones are important regulators of bone health (gonadectomy procedures, ie, ovariectomy [OVX] and orchidectomy [ORX], are common yet typically not reported with sex), we incorporated reporting of OVX and ORX terms, representing female and male mice, respectively, into our investigations around sex bias. Between 1999 and 2020, inclusion of sex in titles or abstracts was low in murine skeletal studies (2.6%-4.06%). Reporting of OVX and ORX terms was low (1.44%-2.64%) and reporting of OVX and ORX with sex uncommon (0.4%-0.3%). When studies were combined to include both sexes and OVX (representing female) and ORX terms (representing male), a bias toward reporting of female mice was evident. However, when the terms OVX and ORX were removed, a bias toward the use of male mice was identified. Thus, studies focusing on sex hormones are biased toward female reporting with all other studies biased in reporting of male mice. We now call upon journal editors to introduce consistent guidance for transparent and accessible reporting of murine sex in skeletal research to better monitor preclinical sex bias, to diversify development of treatments for bone health, and to enable global skeletal health equity. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Lysanne V Michels
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Andrew A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Julie Greeves
- Army Health and Performance Research, Ministry of Defence, Andover, UK
| | - Lillian I Plotkin
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Valentina Cardo
- Winchester School of Art, University of Southampton, Winchester, UK
| | - Natalie A Sims
- Department of Medicine at St. Vincent's Hospital, St. Vincent's Institute of Medical Research and The University of Melbourne, Fitzroy, Australia
| | - Claire E Clarkin
- School of Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
8
|
Kalyanaraman H, China SP, Cabriales JA, Moininazeri J, Casteel DE, Garcia JJ, Wong VW, Chen A, Sah RL, Boss GR, Pilz RB. Protein Kinase G2 Is Essential for Skeletal Homeostasis and Adaptation to Mechanical Loading in Male but Not Female Mice. J Bone Miner Res 2023; 38:171-185. [PMID: 36371651 PMCID: PMC9825661 DOI: 10.1002/jbmr.4746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
We previously showed that the NO/cGMP/protein kinase G (PKG) signaling pathway positively regulates osteoblast proliferation, differentiation, and survival in vitro, and that cGMP-elevating agents have bone-anabolic effects in mice. Here, we generated mice with an osteoblast-specific (OB) knockout (KO) of type 2 PKG (gene name Prkg2) using a Col1a1(2.3 kb)-Cre driver. Compared to wild type (WT) littermates, 8-week-old male OB Prkg2-KO mice had fewer osteoblasts, reduced bone formation rates, and lower trabecular and cortical bone volumes. Female OB Prkg2-KO littermates showed no bone abnormalities, despite the same degree of PKG2 deficiency in bone. Expression of osteoblast differentiation- and Wnt/β-catenin-related genes was lower in primary osteoblasts and bones of male KO but not female KO mice compared to WT littermates. Osteoclast parameters were unaffected in both sexes. Since PKG2 is part of a mechano-sensitive complex in osteoblast membranes, we examined its role during mechanical loading. Cyclical compression of the tibia increased cortical thickness and induced mechanosensitive and Wnt/β-catenin-related genes to a similar extent in male and female WT mice and female OB Prkg2-KO mice, but loading had a minimal effect in male KO mice. We conclude that PKG2 drives bone acquisition and adaptation to mechanical loading via the Wnt/β-catenin pathway in male mice. The striking sexual dimorphism of OB Prkg2-KO mice suggests that current U.S. Food and Drug Administration-approved cGMP-elevating agents may represent novel effective treatment options for male osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hema Kalyanaraman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Shyamsundar Pal China
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- These two authors contributed equally to the work
| | - Justin A. Cabriales
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jafar Moininazeri
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Darren E. Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julian J. Garcia
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Van W. Wong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Albert Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert L. Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B. Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Kim NR, David K, Sommers V, Schollaert D, Deboel L, Ohlsson C, Gustafsson JÅ, Antonio L, Decallonne B, Claessens F, Vanderschueren D, Dubois V. Inactivation of AR or ERα in Extrahypothalamic Neurons Does not Affect Osteogenic Response to Loading in Male Mice. Endocrinology 2022; 163:6594680. [PMID: 35640239 DOI: 10.1210/endocr/bqac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/19/2022]
Abstract
Failure of bone mass maintenance in spite of functional loading is an important contributor to osteoporosis and related fractures. While the link between sex steroids and the osteogenic response to loading is well established, the underlying mechanisms are unknown, hampering clinical relevance. Androgens inhibit mechanoresponsiveness in male mice, but the cell type mediating this effect remains unidentified. To evaluate the role of neuronal sex steroid receptor signaling in the male bone's adaptive capacity, we subjected adult male mice with an extrahypothalamic neuron-specific knockout of the androgen receptor (N-ARKO) or the estrogen receptor alpha (N-ERαKO) to in vivo mechanical stimulation of the tibia. Loading increased cortical thickness in the control animals mainly through periosteal expansion, as total cross-sectional tissue area and cortical bone area but not medullary area were higher in the loaded than the unloaded tibia. Trabecular bone volume fraction also increased upon loading in the control group, mostly due to trabecular thickening. N-ARKO and N-ERαKO males displayed a loading response at both the cortical and trabecular bone compartments that was not different from their control littermates. In conclusion, we show that the presence of androgen receptor or estrogen receptor alpha in extrahypothalamic neurons is dispensable for the osteogenic response to mechanical loading in male mice.
Collapse
Affiliation(s)
- Na Ri Kim
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Karel David
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Vera Sommers
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dieter Schollaert
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Ludo Deboel
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204-5056, USA
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
| | - Vanessa Dubois
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium
- Basic and Translational Endocrinology, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
10
|
Abstract
Disuse osteoporosis describes a state of bone loss due to local skeletal unloading or systemic immobilization. This review will discuss advances in the field that have shed light on clinical observations, mechanistic insights and options for the treatment of disuse osteoporosis. Clinical settings of disuse osteoporosis include spinal cord injury, other neurological and neuromuscular disorders, immobilization after fractures and bed rest (real or modeled). Furthermore, spaceflight-induced bone loss represents a well-known adaptive process to microgravity. Clinical studies have outlined that immobilization leads to immediate bone loss in both the trabecular and cortical compartments accompanied by relatively increased bone resorption and decreased bone formation. The fact that the low bone formation state has been linked to high levels of the osteocyte-secreted protein sclerostin is one of the many findings that has brought matrix-embedded, mechanosensitive osteocytes into focus in the search for mechanistic principles. Previous basic research has primarily involved rodent models based on tail suspension, spaceflight and other immobilization methods, which have underlined the importance of osteocytes in the pathogenesis of disuse osteoporosis. Furthermore, molecular-based in vitro and in vivo approaches have revealed that osteocytes sense mechanical loading through mechanosensors that translate extracellular mechanical signals to intracellular biochemical signals and regulate gene expression. Osteocytic mechanosensors include the osteocyte cytoskeleton and dendritic processes within the lacuno-canalicular system (LCS), ion channels (e.g., Piezo1), extracellular matrix, primary cilia, focal adhesions (integrin-based) and hemichannels and gap junctions (connexin-based). Overall, disuse represents one of the major factors contributing to immediate bone loss and osteoporosis, and alterations in osteocytic pathways appear crucial to the bone loss associated with unloading.
Collapse
Affiliation(s)
- Tim Rolvien
- Division of Orthopaedics, Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestrasse 59, 22529, Hamburg, Germany.
| |
Collapse
|
11
|
Rooney AM, Ayobami OO, Kelly NH, Schimenti JC, Ross FP, van der Meulen MCH. Bone mass and adaptation to mechanical loading are sexually dimorphic in adult osteoblast-specific ERα knockout mice. Bone 2022; 158:116349. [PMID: 35123146 DOI: 10.1016/j.bone.2022.116349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
Estrogen receptor-alpha (ERα) regulates bone mass and is implicated in bone tissue's response to mechanical loading. The effects of ERα deletion in mice depend on sex, anatomical location, and the cellular stage at which ERα is removed. Few studies have investigated the effect of age on the role of ERα in skeletal maintenance and functional adaptation. We previously demonstrated that bone mass and adaptation to loading were altered in growing 10-week-old female and male mice lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO). Here our goal was to determine the effects of ERα and mechanical loading in skeletally-mature adult mice. We subjected 26-week-old skeletally-mature adult pOC-ERαKO and littermate control (LC) mice of both sexes to two weeks of in vivo cyclic tibial loading. ERα deletion in male mice did not alter bone mass or the response to loading. Adult female pOC-ERαKO mice had reduced cancellous and cortical bone mass and increased adaptation to high-magnitude mechanical loading compared to LC mice. Thus, ERα deletion from mature osteoblasts reduced the bone mass and increased the mechanoadaptation of adult female but not male mice. Additionally, compared to our previous work in young mice, adult female mice had greatly reduced mechanoadaptation and adult male mice retained most of their mechanoadaptation with age.
Collapse
Affiliation(s)
- Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Olufunmilayo O Ayobami
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Natalie H Kelly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - John C Schimenti
- College of Veterinary Medicine, Cornell University, Ithaca 14853, NY, USA.
| | - F Patrick Ross
- Research Division, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Marjolein C H van der Meulen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Research Division, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
12
|
Lewis KJ, Cabahug-Zuckerman P, Boorman-Padgett JF, Basta-Pljakic J, Louie J, Stephen S, Spray DC, Thi MM, Seref-Ferlengez Z, Majeska RJ, Weinbaum S, Schaffler MB. Estrogen depletion on In vivo osteocyte calcium signaling responses to mechanical loading. Bone 2021; 152:116072. [PMID: 34171514 PMCID: PMC8316427 DOI: 10.1016/j.bone.2021.116072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 11/27/2022]
Abstract
Microstructural adaptation of bone in response to mechanical stimuli is diminished with estrogen deprivation. Here we tested in vivo whether ovariectomy (OVX) alters the acute response of osteocytes, the principal mechanosensory cells of bone, to mechanical loading in mice. We also used super resolution microscopy (Structured Illumination microscopy or SIM) in conjunction with immunohistochemistry to assess changes in the number and organization of "osteocyte mechanosomes" - complexes of Panx1 channels, P2X7 receptors and CaV3 voltage-gated Ca2+ channels clustered around αvβ3 integrin foci on osteocyte processes. Third metatarsals bones of mice expressing an osteocyte-targeted genetically encoded Ca2+ indicator (DMP1-GCaMP3) were cyclically loaded in vivo to strains from 250 to 3000 με and osteocyte intracellular Ca2+ signaling responses were assessed in mid-diaphyses using multiphoton microscopy. The number of Ca2+ signaling osteocytes in control mice increase monotonically with applied strain magnitude for the physiological range of strains. The relationship between the number of Ca2+ signaling osteocytes and loading was unchanged at 2 days post-OVX. However, it was altered markedly at 28 days post-OVX. At loads up to 1000 με, there was a dramatic reduction in number of responding (i.e. Ca2+ signaling) osteocytes; however, at higher strains the numbers of Ca2+ signaling osteocytes were similar to control mice. OVX significantly altered the abundance, make-up and organization of osteocyte mechanosome complexes on dendritic processes. Numbers of αvβ3 foci also staining with either Panx 1, P2X7R or CaV3 declined by nearly half after OVX, pointing to a loss of osteocyte mechanosomes on the dendritic processes with estrogen depletion. At the same time, the areas of the remaining foci that stained for αvβ3 and channel proteins increased significantly, a redistribution of mechanosome components suggesting a potential compensatory response. These results demonstrate that the deleterious effects of estrogen depletion on skeletal mechanical adaptation appear at the level of mechanosensation; osteocytes lose the ability to sense small (physiological) mechanical stimuli. This decline may result at least partly from changes in the structure and organization of osteocyte mechanosomes, which contribute to the distinctive sensitivity of osteocytes (particularly their dendritic processes) to mechanical stimulation.
Collapse
Affiliation(s)
- Karl J Lewis
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Pamela Cabahug-Zuckerman
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - James F Boorman-Padgett
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Jelena Basta-Pljakic
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Joyce Louie
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Samuel Stephen
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - David C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Mia M Thi
- Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, United States of America; Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Zeynep Seref-Ferlengez
- Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Robert J Majeska
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America
| | - Mitchell B Schaffler
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States of America.
| |
Collapse
|
13
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
14
|
Voluntary Wheel Running Partially Compensates for the Effects of Global Estrogen Receptor-α Knockout on Cortical Bone in Young Male Mice. Int J Mol Sci 2021; 22:ijms22041734. [PMID: 33572215 PMCID: PMC7915374 DOI: 10.3390/ijms22041734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 01/09/2023] Open
Abstract
Estrogen receptor-α knockout (ERKO) in female, but not male, mice results in an impaired osteogenic response to exercise, but the mechanisms behind this ability in males are unknown. We explored the main and interactive effects of ERKO and exercise on cortical geometry, trabecular microarchitecture, biomechanical strength, and sclerostin expression in male mice. At 12 weeks of age, male C57BL/6J ERKO and WT animals were randomized into two groups: exercise treatment (EX) and sedentary (SED) controls, until 22 weeks of age. Cortical geometry and trabecular microarchitecture were measured via μCT; biomechanical strength was assessed via three-point bending; sclerostin expression was measured via immunohistochemistry. Two-way ANOVA was used to assess sclerostin expression and trabecular microarchitecture; two-way ANCOVA with body weight was used to assess cortical geometry and biomechanical strength. ERKO positively impacted trabecular microarchitecture, and exercise had little effect on these outcomes. ERKO significantly impaired cortical geometry, but exercise was able to partially reverse these negative alterations. EX increased cortical thickness regardless of genotype. There were no effects of genotype or exercise on sclerostin expression. In conclusion, male ERKO mice retain the ability to build bone in response to exercise, but altering sclerostin expression is not one of the mechanisms involved.
Collapse
|
15
|
Noirrit-Esclassan E, Valera MC, Tremollieres F, Arnal JF, Lenfant F, Fontaine C, Vinel A. Critical Role of Estrogens on Bone Homeostasis in Both Male and Female: From Physiology to Medical Implications. Int J Mol Sci 2021; 22:ijms22041568. [PMID: 33557249 PMCID: PMC7913980 DOI: 10.3390/ijms22041568] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a multi-skilled tissue, protecting major organs, regulating calcium phosphate balance and producing hormones. Its development during childhood determines height and stature as well as resistance against fracture in advanced age. Estrogens are key regulators of bone turnover in both females and males. These hormones play a major role in longitudinal and width growth throughout puberty as well as in the regulation of bone turnover. In women, estrogen deficiency is one of the major causes of postmenopausal osteoporosis. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens not only in females but also in males, during different life stages. Effects of estrogens on bone involve either Estrogen Receptor (ER)α or ERβ depending on the type of bone (femur, vertebrae, tibia, mandible), the compartment (trabecular or cortical), cell types involved (osteoclasts, osteoblasts and osteocytes) and sex. Finally, we will discuss new ongoing strategies to increase the benefit/risk ratio of the hormonal treatment of menopause.
Collapse
Affiliation(s)
- Emmanuelle Noirrit-Esclassan
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Pediatric Dentistry, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
| | - Marie-Cécile Valera
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Pediatric Dentistry, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
| | - Florence Tremollieres
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Menopause and Metabolic Bone Disease Center, Hôpital Paule de Viguier, University Hospital of Toulouse, F-31000 Toulouse, France
| | - Jean-Francois Arnal
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Françoise Lenfant
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Coralie Fontaine
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
| | - Alexia Vinel
- I2MC, INSERM UMR 1297, University of Toulouse III, F-31000 Toulouse, France; (E.N.-E.); (M.-C.V.); (F.T.); (J.-F.A.); (F.L.); (C.F.)
- Department of Periodontology, Faculty of Dental Surgery, University of Toulouse III, F-31000 Toulouse, France
- Correspondence: ; Tel.: +33-5-61-77-36-10
| |
Collapse
|
16
|
Cortical bone adaptation to a moderate level of mechanical loading in male Sost deficient mice. Sci Rep 2020; 10:22299. [PMID: 33339872 PMCID: PMC7749116 DOI: 10.1038/s41598-020-79098-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022] Open
Abstract
Loss-of-function mutations in the Sost gene lead to high bone mass phenotypes. Pharmacological inhibition of Sost/sclerostin provides a new drug strategy for treating osteoporosis. Questions remain as to how physical activity may affect bone mass under sclerostin inhibition and if that effect differs between males and females. We previously observed in female Sost knockout (KO) mice an enhanced cortical bone formation response to a moderate level of applied loading (900 με at the tibial midshaft). The purpose of the present study was to examine cortical bone adaptation to the same strain level applied to male Sost KO mice. Strain-matched in vivo compressive loading was applied to the tibiae of 10-, 26- and 52-week-old male Sost KO and littermate control (LC) mice. The effect of tibial loading on bone (re)modeling was measured by microCT, 3D time-lapse in vivo morphometry, 2D histomorphometry and gene expression analyses. As expected, Sost deficiency led to high cortical bone mass in 10- and 26-week-old male mice as a result of increased bone formation. However, the enhanced bone formation associated with Sost deficiency did not appear to diminish with skeletal maturation. An increase in bone resorption was observed with skeletal maturation in male LC and Sost KO mice. Two weeks of in vivo loading (900 με at the tibial midshaft) induced only a mild anabolic response in 10- and 26-week-old male mice, independent of Sost deficiency. A decrease in the Wnt inhibitor Dkk1 expression was observed 3 h after loading in 52-week-old Sost KO and LC mice, and an increase in Lef1 expression was observed 8 h after loading in 10-week-old Sost KO mice. The current results suggest that long-term inhibition of sclerostin in male mice does not influence the adaptive response of cortical bone to moderate levels of loading. In contrast with our previous strain-matched study in females showing enhanced bone responses with Sost ablation, these results in males indicate that the influence of Sost deficiency on the cortical bone formation response to a moderate level of loading differs between males and females. Clinical studies examining antibodies to inhibit sclerostin may need to consider that the efficacy of additional physical activity regimens may be sex dependent.
Collapse
|
17
|
Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss. Int J Mol Sci 2020; 21:ijms21218301. [PMID: 33167497 PMCID: PMC7663944 DOI: 10.3390/ijms21218301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022] Open
Abstract
In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/β-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/β-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss. We demonstrated that both pathways interact in the regulation of bone mass adaption in response to mechanical loading and that the activation of Wnt/β-catenin signaling considerably increased mechanically induced bone formation, whereas the effects of estrogen treatment strictly depended on the estrogen status in the mice.
Collapse
|
18
|
Naqvi SM, Panadero Pérez JA, Kumar V, Verbruggen ASK, McNamara LM. A Novel 3D Osteoblast and Osteocyte Model Revealing Changes in Mineralization and Pro-osteoclastogenic Paracrine Signaling During Estrogen Deficiency. Front Bioeng Biotechnol 2020; 8:601. [PMID: 32656194 PMCID: PMC7326002 DOI: 10.3389/fbioe.2020.00601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro studies have revealed that the mechanobiological responses of osteoblasts and osteocytes are fundamentally impaired during estrogen deficiency. However, these two-dimensional (2D) cell culture studies do not account for in vivo biophysical cues. Thus, the objectives of this study are to (1) develop a three-dimensional (3D) osteoblast and osteocyte model integrated into a bioreactor and (2) apply this model to investigate whether estrogen deficiency leads to changes in osteoblast to osteocyte transition, mechanosensation, mineralization, and paracrine signaling associated with bone resorption by osteoclasts. MC3T3-E1s were expanded in media supplemented with estrogen (17β-estradiol). These cells were encapsulated in gelatin-mtgase before culture in (1) continued estrogen (E) or (2) no further estrogen supplementation. Constructs were placed in gas permeable and water impermeable cell culture bags and maintained at 5% CO2 and 37°C. These bags were either mechanically stimulated in a custom hydrostatic pressure (HP) bioreactor or maintained under static conditions (control). We report that osteocyte differentiation, characterized by the presence of dendrites and staining for osteocyte marker dentin matrix acidic phosphoprotein 1 (DMP1), was significantly greater under estrogen withdrawal (EW) compared to under continuous estrogen treatment (day 21). Mineralization [bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP), calcium] and gene expression associated with paracrine signaling for osteoclastogenesis [receptor activator of nuclear factor kappa-β ligand (RANKL)/osteoprotegerin OPG ratio] were significantly increased in estrogen deficient and mechanically stimulated cells. Interestingly, BSP and DMP-1 were also increased at day 1 and day 21, respectively, which play a role in regulation of biomineralization. Furthermore, the increase in pro-osteoclastogenic signaling may be explained by altered mechanoresponsiveness of osteoblasts or osteocytes during EW. These findings highlight the impact of estrogen deficiency on bone cell function and provide a novel in vitro model to investigate the mechanisms underpinning changes in bone cells after estrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Laoise M. McNamara
- Mechanobiology and Medical Device Research Group, Department of Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
19
|
Galea GL, Delisser PJ, Meakin L, Price JS, Windahl SH. Bone gain following loading is site-specifically enhanced by prior and concurrent disuse in aged male mice. Bone 2020; 133:115255. [PMID: 31991251 PMCID: PMC7057260 DOI: 10.1016/j.bone.2020.115255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
The primary aim of osteoanabolic therapies is to strategically increase bone mass in skeletal regions likely to experience high strains. In the young healthy skeleton, this is primarily achieved by bone's adaptation to loading. This adaptation appears to fail with age, resulting in osteoporosis and fractures. We previously demonstrated that prior and concurrent disuse enhances bone gain following loading in old female mice. Here, we applied site specificity micro-computed tomography analysis to map regional differences in bone anabolic responses to axial loading of the tibia between young (19-week-old) and aged (19-month-old), male and female mice. Loading increased bone mass specifically in the proximal tibia in both sexes and ages. Young female mice gained more cortical bone than young males in specific regions of the tibia. However, these site-specific sex differences were lost with age such that bone gain following loading was not significantly different between old males and females. To test whether disuse enhances functional adaption in old male mice as it does in females, old males were subjected to sciatic neurectomy or sham surgery, and loading was initiated four days after surgery. Disuse augmented tibial cortical bone gain in response to loading in old males, but only in regions which were load-responsive in the young. Prior and concurrent disuse also increased loading-induced trabecular thickening in the proximal tibia of old males. Understanding how diminished background loading rejuvenates the osteogenic loading response in the old may improve osteogenic exercise regimes and lead to novel osteoanabolic therapies.
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK; Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Peter J Delisser
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Veterinary Specialist Services, Brisbane, Australia.
| | - Lee Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom.
| | - Joanna S Price
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Royal Agricultural University Cirencester, Cirencester, United Kingdom.
| | - Sara H Windahl
- School of Veterinary Sciences, University of Bristol, Bristol, United Kingdom; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
20
|
Main RP, Shefelbine SJ, Meakin LB, Silva MJ, van der Meulen MC, Willie BM. Murine Axial Compression Tibial Loading Model to Study Bone Mechanobiology: Implementing the Model and Reporting Results. J Orthop Res 2020; 38:233-252. [PMID: 31508836 PMCID: PMC9344861 DOI: 10.1002/jor.24466] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/23/2019] [Indexed: 02/04/2023]
Abstract
In vivo, tibial loading in mice is increasingly used to study bone adaptation and mechanotransduction. To achieve standardized and defined experimental conditions, loading parameters and animal-related factors must be considered when performing in vivo loading studies. In this review, we discuss these loading and animal-related experimental conditions, present methods to assess bone adaptation, and suggest reporting guidelines. This review originated from presentations by each of the authors at the workshop "Developing Best Practices for Mouse Models of In Vivo Loading" during the Preclinical Models Section at the Orthopaedic Research Society Annual Meeting, San Diego, CA, March 2017. Following the meeting, the authors engaged in detailed discussions with consideration of relevant literature. The guidelines and recommendations in this review are provided to help researchers perform in vivo loading experiments in mice, and thus further our knowledge of bone adaptation and the mechanisms involved in mechanotransduction. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:233-252, 2020.
Collapse
Affiliation(s)
- Russell P. Main
- Department of Basic Medical Sciences and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA,Corresponding author: Russell Main ()
| | - Sandra J. Shefelbine
- Department of Bioengineering, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Lee B. Meakin
- Bristol Veterinary School, University of Bristol, Langford, Bristol BS40 5DU, UK
| | - Matthew J. Silva
- Departments of Orthopaedic Surgery and Biomedical Engineering, Musculoskeletal Research Center, Washington University, Saint Louis, MO, USA
| | - Marjolein C.H van der Meulen
- Meinig School of Biomedical Engineering and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Department of Pediatric Surgery, McGill University, Montreal, Canada
| |
Collapse
|
21
|
6'-Methoxy Raloxifene-analog enhances mouse bone properties with reduced estrogen receptor binding. Bone Rep 2020; 12:100246. [PMID: 32016137 PMCID: PMC6992940 DOI: 10.1016/j.bonr.2020.100246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
Raloxifene (RAL) is an FDA-approved drug used to treat osteoporosis in postmenopausal women. RAL suppresses bone loss primarily through its role as a selective estrogen receptor modulator (SERM). This hormonal estrogen therapy promotes unintended side effects, such as hot flashes and increased thrombosis risk, and prevents the drug from being used in some patient populations at-risk for fracture, including children with bone disorders. It has recently been demonstrated that RAL can have significant positive effects on overall bone mechanical properties by binding to collagen and increasing bone tissue hydration in a cell-independent manner. A Raloxifene-Analog (RAL-A) was synthesized by replacing the 6-hydroxyl substituent with 6-methoxy in effort to reduce the compound's binding affinity for estrogen receptors (ER) while maintaining its collagen-binding ability. It was hypothesized that RAL-A would improve the mechanical integrity of bone in a manner similar to RAL, but with reduced estrogen receptor binding. Molecular assessment showed that while RAL-A did reduce ER binding, downstream ER signaling was not completely abolished. In-vitro, RAL-A performed similarly to RAL and had an identical concentration threshold on osteocyte cell proliferation, differentiation, and function. To assess treatment effect in-vivo, wildtype (WT) and heterozygous (OIM+/−) female mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL or RAL-A from 8 weeks to 16 weeks of age. There was an untreated control group for each genotype as well. Bone microarchitecture was assessed using microCT, and mechanical behavior was assessed using 3-point bending. Results indicate that both compounds produced analogous gains in tibial trabecular and cortical microarchitecture. While WT mechanical properties were not drastically altered with either treatment, OIM+/− mechanical properties were significantly enhanced, most notably, in post-yield properties including bone toughness. This proof-of-concept study shows promising results and warrants the exploration of additional analog iterations to further reduce ER binding and improve fracture resistance.
Collapse
|
22
|
Krupski W, Tatara MR, Charuta A, Brodzki A, Szpetnar M, Jóźwik A, Strzałkowska N, Poławska E, Łuszczewska-Sierakowska I. Sex-related differences of bone properties of pelvic limb and bone metabolism indices in 14-month-old ostriches (Struthio camelus). Br Poult Sci 2018; 59:301-307. [DOI: 10.1080/00071668.2018.1454587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- W. Krupski
- II Department of Radiology, Medical University in Lublin, Lublin, Poland
| | - M. R. Tatara
- II Department of Radiology, Medical University in Lublin, Lublin, Poland
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - A. Charuta
- Institute of Health, Faculty of Natural Science, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| | - A. Brodzki
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - M. Szpetnar
- Department of Medical Chemistry, Medical University in Lublin, Lublin, Poland
| | - A. Jóźwik
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Magdalenka, Poland
| | - N. Strzałkowska
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Magdalenka, Poland
| | - E. Poławska
- Department of Animal Improvement, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Magdalenka, Poland
| | | |
Collapse
|
23
|
Rooney AM, van der Meulen MCH. Mouse models to evaluate the role of estrogen receptor α in skeletal maintenance and adaptation. Ann N Y Acad Sci 2017; 1410:85-92. [PMID: 29148577 DOI: 10.1111/nyas.13523] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
Estrogen signaling and mechanical loading have individual and combined effects on skeletal maintenance and adaptation. Previous work investigating estrogen signaling both in vitro and in vivo using global estrogen receptor α (ERα) gene knockout mouse models has provided information regarding the role of ERα in regulating bone mass and adaptation to mechanical stimulation. However, these models have inherent limitations that confound interpretation of the data. Therefore, recent studies have focused on mice with targeted deletion of ERα from specific bone cells and their precursors. Cell stage, tissue type, and mouse sex all influence the effects of ERα gene deletion. Lack of ERα in osteoblast progenitor and precursor cells generally affects the periosteum of female and male mice. The absence of ERα in differentiated osteoblasts, osteocytes, and osteoclasts in mice generally resulted in reduced cancellous bone mass, with differing reports of the effect by animal sex and greater deficiencies in bone mass typically occurring in cancellous bone in female mice. Limited data exist for the role of bone cell-specific ERα in skeletal adaptation in vivo. Cell-specific ERα gene knockout mice provide an excellent platform for investigating the function of ERα in regulating skeletal phenotype and response to mechanical loading by sex and age.
Collapse
Affiliation(s)
- Amanda M Rooney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Marjolein C H van der Meulen
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York.,Research Division, Hospital for Special Surgery, New York, New York
| |
Collapse
|
24
|
Stringhetta-Garcia CT, Morais SRL, Fernandes F, Perez-Ueno MJ, Almeida RDP, Louzada MJQ, Chaves-Neto AH, Ervolino E, Dornelles RCM. Effects of strength training and raloxifene on femoral neck metabolism and microarchitecture of aging female Wistar rats. Sci Rep 2017; 7:14410. [PMID: 29089563 PMCID: PMC5663961 DOI: 10.1038/s41598-017-13098-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 09/19/2017] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to prevent female osteoporosis using strength training (ST), raloxifene (Ral) or a combination of ST plus Ral during the natural female aging process, specifically in the periestropause period. For a total of 120 days, aging female Wistar rats at 18-21 months of age performed ST on a ladder three times per week, and Ral was administered daily by gavage (1 mg/kg/day). Bone microarchitecture, areal bone mineral density, bone strength of the femoral neck, immunohistochemistry, osteoclast and osteoblast surface were assessed. We found that the treatments modulate the bone remodeling cycle in different ways. Both ST and Ral treatment resulted in improved bone microarchitecture in the femoral neck of rats in late periestropause. However, only ST improved cortical microarchitecture and bone strength in the femoral neck. Thus, we suggest that performing ST during the late period of periestropause is a valid intervention to prevent age-associated osteoporosis in females.
Collapse
Affiliation(s)
- Camila Tami Stringhetta-Garcia
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil.
| | - Samuel Rodrigues Lourenço Morais
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| | - Fernanda Fernandes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| | - Melise Jacon Perez-Ueno
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| | - Ricardo de Paula Almeida
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| | - Mário Jefferson Quirino Louzada
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| | - Antonio Hernandes Chaves-Neto
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil.,Univ Estadual Paulista (Unesp), Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| | - Edilson Ervolino
- Univ Estadual Paulista (Unesp), Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| | - Rita Cássia Menegati Dornelles
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil.,Univ Estadual Paulista (Unesp), Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, 16018-805, Brazil
| |
Collapse
|
25
|
Bado I, Gugala Z, Fuqua SAW, Zhang XHF. Estrogen receptors in breast and bone: from virtue of remodeling to vileness of metastasis. Oncogene 2017; 36:4527-4537. [PMID: 28368409 PMCID: PMC5552443 DOI: 10.1038/onc.2017.94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022]
Abstract
Bone metastasis is a prominent cause of morbidity and mortality in cancer. High rates of bone colonization in breast cancer, especially in the subtype expressing estrogen receptors (ERs), suggest tissue-specific proclivities for metastatic tumor formation. The mechanisms behind this subtype-specific organ-tropism remains largely elusive. Interestingly, as the major driver of ER+ breast cancer, ERs also have important roles in bone development and homeostasis. Thus, any agents targeting ER will also inevitably affect the microenvironment, which involves the osteoblasts and osteoclasts. Yet, how such microenvironmental effects are integrated with direct therapeutic responses of cancer cells remain poorly understood. Recent findings on ER mutations, especially their enrichment in bone metastasis, raised even more provocative questions on the role of ER in cancer-bone interaction. In this review, we evaluate the importance of ERs in bone metastasis and discuss new avenues of investigation for bone metastasis treatment based on current knowledge.
Collapse
Affiliation(s)
- Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555
| | - Suzanne A. W. Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| | - Xiang H.-F. Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
- McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030
| |
Collapse
|
26
|
Deepak V, Kayastha P, McNamara LM. Estrogen deficiency attenuates fluid flow‐induced [Ca
2+
]
i
oscillations and mechanoresponsiveness of MLO‐Y4 osteocytes. FASEB J 2017; 31:3027-3039. [DOI: 10.1096/fj.201601280r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/13/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Vishwa Deepak
- Mechanobiology and Medical Device Research GroupBiomechanics Research CentreBiomedical EngineeringCollege of Engineering and InformaticsNational University of Ireland GalwayGalway Ireland
| | - Pushpalata Kayastha
- Mechanobiology and Medical Device Research GroupBiomechanics Research CentreBiomedical EngineeringCollege of Engineering and InformaticsNational University of Ireland GalwayGalway Ireland
| | - Laoise M. McNamara
- Mechanobiology and Medical Device Research GroupBiomechanics Research CentreBiomedical EngineeringCollege of Engineering and InformaticsNational University of Ireland GalwayGalway Ireland
| |
Collapse
|
27
|
Abstract
Nuclear receptors are a family of transcription factors that can be activated by lipophilic ligands. They are fundamental regulators of development, reproduction, and energy metabolism. In bone, nuclear receptors enable bone cells, including osteoblasts, osteoclasts, and osteocytes, to sense their dynamic microenvironment and maintain normal bone development and remodeling. Our views of the molecular mechanisms in this process have advanced greatly in the past decade. Drugs targeting nuclear receptors are widely used in the clinic for treating patients with bone disorders such as osteoporosis by modulating bone formation and resorption rates. Deficiency in the natural ligands of certain nuclear receptors can cause bone loss; for example, estrogen loss in postmenopausal women leads to osteoporosis and increases bone fracture risk. In contrast, excessive ligands of other nuclear receptors, such as glucocorticoids, can also be detrimental to bone health. Nonetheless, the ligand-induced osteoprotective effects of many other nuclear receptors, e.g., vitamin D receptor, are still in debate and require further characterizations. This review summarizes previous studies on the roles of nuclear receptors in bone homeostasis and incorporates the most recent findings. The advancement of our understanding in this field will help researchers improve the applications of agonists, antagonists, and selective modulators of nuclear receptors for therapeutic purposes; in particular, determining optimal pharmacological drug doses, preventing side effects, and designing new drugs that are more potent and specific.
Collapse
|
28
|
Almeida M, Laurent MR, Dubois V, Claessens F, O'Brien CA, Bouillon R, Vanderschueren D, Manolagas SC. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 2017; 97:135-187. [PMID: 27807202 PMCID: PMC5539371 DOI: 10.1152/physrev.00033.2015] [Citation(s) in RCA: 484] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens and androgens influence the growth and maintenance of the mammalian skeleton and are responsible for its sexual dimorphism. Estrogen deficiency at menopause or loss of both estrogens and androgens in elderly men contribute to the development of osteoporosis, one of the most common and impactful metabolic diseases of old age. In the last 20 years, basic and clinical research advances, genetic insights from humans and rodents, and newer imaging technologies have changed considerably the landscape of our understanding of bone biology as well as the relationship between sex steroids and the physiology and pathophysiology of bone metabolism. Together with the appreciation of the side effects of estrogen-related therapies on breast cancer and cardiovascular diseases, these advances have also drastically altered the treatment of osteoporosis. In this article, we provide a comprehensive review of the molecular and cellular mechanisms of action of estrogens and androgens on bone, their influences on skeletal homeostasis during growth and adulthood, the pathogenetic mechanisms of the adverse effects of their deficiency on the female and male skeleton, as well as the role of natural and synthetic estrogenic or androgenic compounds in the pharmacotherapy of osteoporosis. We highlight latest advances on the crosstalk between hormonal and mechanical signals, the relevance of the antioxidant properties of estrogens and androgens, the difference of their cellular targets in different bone envelopes, the role of estrogen deficiency in male osteoporosis, and the contribution of estrogen or androgen deficiency to the monomorphic effects of aging on skeletal involution.
Collapse
Affiliation(s)
- Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Michaël R Laurent
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Vanessa Dubois
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Frank Claessens
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Charles A O'Brien
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Roger Bouillon
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Dirk Vanderschueren
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas; Departments of Cellular and Molecular Medicine and Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Leuven, Belgium; and Institut National de la Santé et de la Recherche Médicale UMR1011, University of Lille and Institut Pasteur de Lille, Lille, France
| |
Collapse
|
29
|
Laurent MR, Jardí F, Dubois V, Schollaert D, Khalil R, Gielen E, Carmeliet G, Claessens F, Vanderschueren D. Androgens have antiresorptive effects on trabecular disuse osteopenia independent from muscle atrophy. Bone 2016; 93:33-42. [PMID: 27622887 DOI: 10.1016/j.bone.2016.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Aging hypogonadal men are at increased risk of osteoporosis and sarcopenia. Testosterone is a potentially appealing strategy to prevent simultaneous bone and muscle loss. The androgen receptor (AR) mediates antiresorptive effects on trabecular bone via osteoblast-lineage cells, as well as muscle-anabolic actions. Sex steroids also modify the skeletal response to mechanical loading. However, it is unclear whether the effects of androgens on bone remain effective independent of mechanical stimulation or rather require indirect androgen effects via muscle. This study aims to characterize the effects and underlying mechanisms of androgens on disuse osteosarcopenia. Adult male mice received a unilateral botulinum toxin (BTx) injection, and underwent sham surgery or orchidectomy (ORX) without or with testosterone (ORX+T) or dihydrotestosterone (ORX+DHT) replacement. Compared to the contralateral internal control hindlimb, acute trabecular number and bone volume loss was increased by ORX and partially prevented DHT. T was more efficient and increased BV/TV in both hindlimbs over sham values, although it did not reduce the detrimental effect of BTx. Both androgens and BTx regulated trabecular osteoclast surface as well as tartrate-resistant acid phosphatase expression. Androgens also prevented BTx-induced body weight loss but did not significantly influence paralysis or muscle atrophy. BTx and ORX both reduced cortical thickness via endosteal expansion, which was prevented by T but not DHT. In long-term follow-up, the residual trabecular bone volume deficit in sham-BTx hindlimbs was prevented by DHT but T restored it more efficiently to pre-treatment levels. Conditional AR deletion in late osteoblasts and osteocytes or in the satellite cell lineage increased age-related trabecular bone loss in both hindlimbs without influencing the effect of BTx on trabecular osteopenia. We conclude that androgens have antiresorptive effects on trabecular disuse osteopenia which do not require AR actions on bone via muscle or via osteocytes.
Collapse
MESH Headings
- Acute Disease
- Androgens/pharmacology
- Androgens/therapeutic use
- Animals
- Body Weight
- Bone Diseases, Metabolic/complications
- Bone Diseases, Metabolic/drug therapy
- Bone Diseases, Metabolic/pathology
- Bone Diseases, Metabolic/physiopathology
- Bone Remodeling/drug effects
- Bone Resorption/complications
- Bone Resorption/drug therapy
- Bone Resorption/pathology
- Bone Resorption/physiopathology
- Calcification, Physiologic
- Cancellous Bone/diagnostic imaging
- Cancellous Bone/drug effects
- Cancellous Bone/pathology
- Cancellous Bone/physiopathology
- Cortical Bone/diagnostic imaging
- Cortical Bone/drug effects
- Cortical Bone/pathology
- Cortical Bone/physiopathology
- Extracellular Matrix Proteins/metabolism
- Female
- Gene Deletion
- Integrases/metabolism
- Male
- Mice, Inbred C57BL
- Muscular Atrophy/complications
- Muscular Atrophy/drug therapy
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Muscular Disorders, Atrophic/complications
- Muscular Disorders, Atrophic/drug therapy
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/physiopathology
- MyoD Protein/metabolism
- Organ Size
- Receptors, Androgen/metabolism
- X-Ray Microtomography
Collapse
Affiliation(s)
- Michaël R Laurent
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium; Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49, PO box 7003, 3000 Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Dieter Schollaert
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Rougin Khalil
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Herestraat 49, PO box 7003, 3000 Leuven, Belgium; Center for Metabolic Bone Diseases, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 901, 3000 Leuven, Belgium.
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, PO box 902, 3000 Leuven, Belgium.
| |
Collapse
|
30
|
Abstract
Estrogens are important for bone metabolism via a variety of mechanisms in osteoblasts, osteocytes, osteoclasts, immune cells and other cells to maintain bone mineral density. Estrogens bind to estrogen receptor alpha (ERα) and ERβ, and the roles of each of these receptors are beginning to be elucidated through whole body and tissue-specific knockouts of the receptors. In vitro and in vivo experiments have shown that ERα and ERβ antagonize each other in bone and in other tissues. This review will highlight the role of these receptors in bone, with particular emphasis on their antagonism.
Collapse
Affiliation(s)
- Aysha B Khalid
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Susan A Krum
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
31
|
Stringhetta-Garcia CT, Singulani MP, Santos LF, Louzada MJQ, Nakamune ACS, Chaves-Neto AH, Rossi AC, Ervolino E, Dornelles RCM. The effects of strength training and raloxifene on bone health in aging ovariectomized rats. Bone 2016; 85:45-54. [PMID: 26812611 DOI: 10.1016/j.bone.2015.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/09/2015] [Accepted: 11/28/2015] [Indexed: 11/23/2022]
Abstract
The aim of this study was to investigate the effects of strength training (ST) and raloxifene (Ral), alone or in combination, on the prevention of bone loss in an aging estrogen-deficient rat model. Aging Wistar female rats were ovariectomized at 14months and allocated to four groups: (1) non-trained and treated with vehicle, NT-Veh; (2) strength training and treated with vehicle, ST-Veh; (3) non-trained and treated with raloxifene, NT-Ral; and (4) strength training and treated with raloxifene, ST-Ral. ST was performed on a ladder three times per week and Ral was administered daily by gavage (1mg/kg/day), both for 120days. Areal bone mineral density (aBMD), strength, microarchitecture, and biomarkers (osteocalcin, OCN; osteoprotegerin, OPG; and tartrate-resistant acid phosphatase, TRAP) were assessed. Immunohistochemistry was performed for runt-related transcription factor 2 (RUNX2), osterix (OSX), OCN, OPG, TRAP, and receptor activator of nuclear factor kappa-B ligand (RANKL). The rats that performed ST (ST-Veh) or were treated with Ral (NT-Ral) showed significant improvements in aBMD (p=0.001 and 0.004), bone strength (p=0.001), and bone microarchitecture, such as BV/TV (%) (p=0.001), BS/TV (mm(2)/mm(3)) (p=0.023 and 0.002), Conn.Dn (1/mm(3)) (p=0.001), Tb.N (1/mm) (p=0.012 and 0.011), Tb.Th (1/mm) (p=0.001), SMI (p=0.001 and 0.002), Tb.Sp (p=0.001), and DA (p=0.002 and 0.007); there was also a significant decrease in plasma levels of OCN (p=0.001 and 0.002) and OPG (p=0.003 and 0.014), compared with animals in the NT-Veh group. Ral, with or without ST, promoted an increased immunolabeling pattern for RUNX2 (p=0.0105 and p=0.0006) and OSX (p=0.0105), but a reduced immunolabeling pattern for TRAP (p=0.0056) and RANKL (p=0.033 and 0.004). ST increased the immunolabeling pattern for RUNX2 (p=0.0105), and association with Ral resulted in an increased immunolabeling pattern for OPG (p=0.0034) and OCN (p=0.0024). In summary, ST and Ral administration in aged, estrogen-deficient Wistar female rats is associated with a decrease in bone turnover marker plasma levels, increased activity of cells that promote osteoblastogenesis, and decreased activity of cells that promote osteoclastogenesis; these are correlated with higher aBMD, bone strength, and bone microarchitecture at the femoral neck. The results indicate that strength training and Ral are potential tools to reduce the risk of fractures at clinically relevant sites.
Collapse
Affiliation(s)
| | | | | | - Mário Jefferson Quirino Louzada
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas; Faculdade de Medicina Veterinária de Araçatuba, UNESP - Univ Estadual Paulista, Campus de Araçatuba, Departamento de Apoio, Produção e Saúde Animal
| | - Ana Cláudia Stevanato Nakamune
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas; Faculdade de Odontologia de Araçatuba, UNESP - Univ Estadual Paulista, Campus de Araçatuba, Departamento de Ciências Básicas
| | - Antonio Hernandes Chaves-Neto
- Faculdade de Odontologia de Araçatuba, UNESP - Univ Estadual Paulista, Campus de Araçatuba, Departamento de Ciências Básicas
| | - Ana Cláudia Rossi
- Faculdade de Odontologia de Piracicaba, UNICAMP - Univ de Campinas, Campus de Piracicaba, Departamento de Morfologia
| | - Edilson Ervolino
- Faculdade de Odontologia de Araçatuba, UNESP - Univ Estadual Paulista, Campus de Araçatuba, Departamento de Ciências Básicas
| | - Rita Cássia Menegati Dornelles
- Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas; Faculdade de Odontologia de Araçatuba, UNESP - Univ Estadual Paulista, Campus de Araçatuba, Departamento de Ciências Básicas
| |
Collapse
|
32
|
Macari S, Ajay Sharma L, Wyatt A, Knowles P, Szawka R, Garlet G, Grattan D, Dias G, Silva T. Osteoprotective Effects of Estrogen in the Maxillary Bone Depend on ERα. J Dent Res 2016; 95:689-96. [DOI: 10.1177/0022034516633154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen deficiency results in disruption of maxillary alveolar bone microarchitecture. Most of the actions of estrogen in long bones occur via estrogen receptor α (ERα). However, the function of ERα in the maxillary bone has not been defined. We aimed to investigate the role and underlying mechanisms of ERα in the physiological and mechanically induced alveolar bone remodeling in female and male mice. Wild-type (WT) and ERα−/− (ERKOα) mice were subjected to mechanically stimulated bone remodeling by inducing orthodontic tooth movement (OTM). The maxillary bone was analyzed using histomorphometric analysis, micro–computed tomography, quantitative polymerase chain reaction, and energy-dispersive spectroscopy. Bone marrow cells (BMCs) from WT and ERKOα mice were tested for their capacity to differentiate into osteoblasts and osteoclasts. Both male and female ERKOα mice exhibited marked reduction of alveolar bone mass and increased OTM. This response was associated with an increased number of osteoclasts and reduced number of apoptotic cells and osteoblasts in the periodontium and alveolar bone. Consistently, ERKOα mice exhibited lower levels of calcium in bone and increased expression of IL-33 (interleukin-33), TNF-α (tumor necrosis factor α), and IL-1β (interleukin-1β) and decreased expression of dentin matrix acidic phosphoprotein and alkaline phosphatase in periodontal tissues. Moreover, the differentiation of osteoclasts and osteoblasts in vitro was significantly higher in BMCs obtained from ERKOα. ERα is required to maintain the microarchitecture of maxillary alveolar bone. This process is linked to bone cell differentiation and apoptosis, as well as local production of inflammatory molecules such as IL-33, TNF-α, and IL-1β.
Collapse
Affiliation(s)
- S. Macari
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - L. Ajay Sharma
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - A. Wyatt
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - P. Knowles
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - R.E. Szawka
- Department of Physiology and Biophysics, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - G.P. Garlet
- Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University, Bauru, SP, Brazil
| | - D.R. Grattan
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - G.J. Dias
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - T.A. Silva
- Department of Oral Pathology and Surgery, Faculty of Dentistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Sankaran JS, Li B, Donahue LR, Judex S. Modulation of unloading-induced bone loss in mice with altered ERK signaling. Mamm Genome 2015; 27:47-61. [PMID: 26546009 DOI: 10.1007/s00335-015-9611-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022]
Abstract
Genetic variations mediate skeletal responsiveness to mechanical unloading, with individual space travelers exhibiting large variations in the extent of bone loss. We previously identified genomic regions harboring several hundred genes that can modulate the magnitude of skeletal adaptation to mechanical unloading. Here, bioinformatic filters aided in shortlisting 30 genes with bone-related and mechanoregulatory roles. The genes CD44, FGF2, NOD2, and Fas, all associated with ERK signaling, were then functionally tested in hindlimb-unloaded (HLU) knockout (KO) mice. Compared to their respective normally ambulating wildtype (WT) controls, all KO strains, except Fas mice, had lower trabecular bone volume, bone volume fraction, and/or trabecular number. For cortical bone and compared to ambulatory WT mice, CD44(-/-) had impaired properties while FGF2(-/-) showed enhanced indices. NOD2(-/-) and Fas(-/-) did not have a cortical phenotype. In all KO and WT groups, HLU resulted in impaired trabecular and cortical indices, primarily due to trabecular tissue loss and mitigation of cortical bone growth. The difference in trabecular separation between HLU and ambulatory controls was significantly greater in CD44(-/-) and NOD2(-/-) mice than in WT mice. In cortical bone, differences in cortical thickness, total pore volume, and cortical porosity between HLU and controls were aggravated in CD44(-/-) mice. In contrast, deletion of NOD2 and Fas genes mitigated the differences in Po.V between HLU and control mice. Together, we narrowed a previous list of QTL-derived candidate genes from over 300 to 30, and showed that CD44, NOD2, and Fas have distinct functions in regulating changes in trabecular and cortical bone indices during unloading.
Collapse
Affiliation(s)
- Jeyantt S Sankaran
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5281, USA
| | - Bing Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5281, USA.,Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
| | | | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-5281, USA.
| |
Collapse
|
34
|
Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone. PLoS One 2015; 10:e0140260. [PMID: 26451596 PMCID: PMC4599960 DOI: 10.1371/journal.pone.0140260] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/28/2015] [Indexed: 11/19/2022] Open
Abstract
Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα) depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse) mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an obligatory contributor to regulation of bone mass per se, it potentially plays a role in influencing pathways associated with regulation of bone mass during ageing and estrogen withdrawal.
Collapse
|
35
|
Melville KM, Kelly NH, Surita G, Buchalter DB, Schimenti JC, Main RP, Ross FP, van der Meulen MCH. Effects of Deletion of ERα in Osteoblast-Lineage Cells on Bone Mass and Adaptation to Mechanical Loading Differ in Female and Male Mice. J Bone Miner Res 2015; 30:1468-80. [PMID: 25707500 PMCID: PMC4506717 DOI: 10.1002/jbmr.2488] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/30/2022]
Abstract
Estrogen receptor alpha (ERα) has been implicated in bone's response to mechanical loading in both males and females. ERα in osteoblast lineage cells is important for determining bone mass, but results depend on animal sex and the cellular stage at which ERα is deleted. We demonstrated previously that when ERα is deleted from mature osteoblasts and osteocytes in mixed-background female mice, bone mass and strength are decreased. However, few studies exist examining the skeletal response to loading in bone cell-specific ERαKO mice. Therefore, we crossed ERα floxed (ERα(fl/fl)) and osteocalcin-Cre (OC-Cre) mice to generate animals lacking ERα in mature osteoblasts and osteocytes (pOC-ERαKO) and littermate controls (LC). At 10 weeks of age, the left tibia was loaded in vivo for 2 weeks. We analyzed bone mass through micro-CT, bone formation rate by dynamic histomorphometry, bone strength from mechanical testing, and osteoblast and osteoclast activity by serum chemistry and immunohistochemistry. ERα in mature osteoblasts differentially regulated bone mass in males and females. Compared with LC, female pOC-ERαKO mice had decreased cortical and cancellous bone mass, whereas male pOC-ERαKO mice had equal or greater bone mass than LC. Bone mass results correlated with decreased compressive strength in pOC-ERαKO female L(5) vertebrae and with increased maximum moment in pOC-ERαKO male femora. Female pOC-ERαKO mice responded more to mechanical loading, whereas the response of pOC-ERαKO male animals was similar to their littermate controls.
Collapse
Affiliation(s)
- Katherine M. Melville
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Natalie H. Kelly
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Gina Surita
- Department of Biological Sciences, Cornell University, Ithaca, NY
| | | | | | - Russell P. Main
- College of Veterinary Medicine, Purdue University, West Lafayette, IN
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - F. Patrick Ross
- Research Division, Hospital for Special Surgery, New York, NY
| | - Marjolein C. H. van der Meulen
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Department of Biomedical Engineering, Cornell University, Ithaca, NY
- Research Division, Hospital for Special Surgery, New York, NY
| |
Collapse
|
36
|
Galea GL, Hannuna S, Meakin LB, Delisser PJ, Lanyon LE, Price JS. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging and the Responses to Ovariectomy and Altered Loading. Front Endocrinol (Lausanne) 2015; 6:52. [PMID: 25954246 PMCID: PMC4407614 DOI: 10.3389/fendo.2015.00052] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/03/2015] [Indexed: 11/13/2022] Open
Abstract
Investigations into the effect of (re)modeling stimuli on cortical bone in rodents normally rely on analysis of changes in bone mass and architecture at a narrow cross-sectional site. However, it is well established that the effects of axial loading produce site-specific changes throughout bones' structure. Non-mechanical influences (e.g., hormones) can be additional to or oppose locally controlled adaptive responses and may have more generalized effects. Tools currently available to study site-specific cortical bone adaptation are limited. Here, we applied novel site specificity software to measure bone mass and architecture at each 1% site along the length of the mouse tibia from standard micro-computed tomography (μCT) images. Resulting measures are directly comparable to those obtained through μCT analysis (R (2) > 0.96). Site Specificity analysis was used to compare a number of parameters in tibiae from young adult (19-week-old) versus aged (19-month-old) mice; ovariectomized and entire mice; limbs subjected to short periods of axial loading or disuse induced by sciatic neurectomy. Age was associated with uniformly reduced cortical thickness and site-specific decreases in cortical area most apparent in the proximal tibia. Mechanical loading site-specifically increased cortical area and thickness in the proximal tibia. Disuse uniformly decreased cortical thickness and decreased cortical area in the proximal tibia. Ovariectomy uniformly reduced cortical area without altering cortical thickness. Differences in polar moment of inertia between experimental groups were only observed in the proximal tibia. Aging and ovariectomy also altered eccentricity in the distal tibia. In summary, site specificity analysis provides a valuable tool for measuring changes in cortical bone mass and architecture along the entire length of a bone. Changes in the (re)modeling response determined at a single site may not reflect the response at different locations within the same bone.
Collapse
Affiliation(s)
- Gabriel L. Galea
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Gabriel L. Galea, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - Sion Hannuna
- Faculty of Engineering, University of Bristol, Bristol, UK
| | - Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | | | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
37
|
Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Börjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 2014; 35:906-60. [PMID: 25202834 PMCID: PMC4234776 DOI: 10.1210/er.2014-1024] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sex steroids are chief regulators of gender differences in the skeleton, and male gender is one of the strongest protective factors against osteoporotic fractures. This advantage in bone strength relies mainly on greater cortical bone expansion during pubertal peak bone mass acquisition and superior skeletal maintenance during aging. During both these phases, estrogens acting via estrogen receptor-α in osteoblast lineage cells are crucial for male cortical and trabecular bone, as evident from conditional genetic mouse models, epidemiological studies, rare genetic conditions, genome-wide meta-analyses, and recent interventional trials. Genetic mouse models have also demonstrated a direct role for androgens independent of aromatization on trabecular bone via the androgen receptor in osteoblasts and osteocytes, although the target cell for their key effects on periosteal bone formation remains elusive. Low serum estradiol predicts incident fractures, but the highest risk occurs in men with additionally low T and high SHBG. Still, the possible clinical utility of serum sex steroids for fracture prediction is unknown. It is likely that sex steroid actions on male bone metabolism rely also on extraskeletal mechanisms and cross talk with other signaling pathways. We propose that estrogens influence fracture risk in aging men via direct effects on bone, whereas androgens exert an additional antifracture effect mainly via extraskeletal parameters such as muscle mass and propensity to fall. Given the demographic trends of increased longevity and consequent rise of osteoporosis, an increased understanding of how sex steroids influence male bone health remains a high research priority.
Collapse
Affiliation(s)
- Dirk Vanderschueren
- Clinical and Experimental Endocrinology (D.V.) and Gerontology and Geriatrics (M.R.L., E.G.), Department of Clinical and Experimental Medicine; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine (M.R.L., F.C.); and Centre for Metabolic Bone Diseases (D.V., M.R.L., E.G.), KU Leuven, B-3000 Leuven, Belgium; and Center for Bone and Arthritis Research (M.K.L., L.V., A.E.B., C.O.), Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Galea GL, Meakin LB, Williams CM, Hulin-Curtis SL, Lanyon LE, Poole AW, Price JS. Protein kinase Cα (PKCα) regulates bone architecture and osteoblast activity. J Biol Chem 2014; 289:25509-22. [PMID: 25070889 PMCID: PMC4162157 DOI: 10.1074/jbc.m114.580365] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bones' strength is achieved and maintained through adaptation to load bearing. The role of the protein kinase PKCα in this process has not been previously reported. However, we observed a phenotype in the long bones of Prkca−/− female but not male mice, in which bone tissue progressively invades the medullary cavity in the mid-diaphysis. This bone deposition progresses with age and is prevented by disuse but unaffected by ovariectomy. Castration of male Prkca−/− but not WT mice results in the formation of small amounts of intramedullary bone. Osteoblast differentiation markers and Wnt target gene expression were up-regulated in osteoblast-like cells derived from cortical bone of female Prkca−/− mice compared with WT. Additionally, although osteoblastic cells derived from WT proliferate following exposure to estradiol or mechanical strain, those from Prkca−/− mice do not. Female Prkca−/− mice develop splenomegaly and reduced marrow GBA1 expression reminiscent of Gaucher disease, in which PKC involvement has been suggested previously. From these data, we infer that in female mice, PKCα normally serves to prevent endosteal bone formation stimulated by load bearing. This phenotype appears to be suppressed by testicular hormones in male Prkca−/− mice. Within osteoblastic cells, PKCα enhances proliferation and suppresses differentiation, and this regulation involves the Wnt pathway. These findings implicate PKCα as a target gene for therapeutic approaches in low bone mass conditions.
Collapse
Affiliation(s)
- Gabriel L Galea
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Lee B Meakin
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Christopher M Williams
- the School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Sarah L Hulin-Curtis
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Lance E Lanyon
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| | - Alastair W Poole
- the School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Joanna S Price
- From the School of Veterinary Sciences, University of Bristol, Bristol BS2 8EJ, United Kingdom and
| |
Collapse
|
39
|
In vivo evidence of IGF-I-estrogen crosstalk in mediating the cortical bone response to mechanical strain. Bone Res 2014; 2:14007. [PMID: 26273520 PMCID: PMC4472140 DOI: 10.1038/boneres.2014.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/04/2014] [Accepted: 01/11/2014] [Indexed: 12/04/2022] Open
Abstract
Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P=0.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%–6% in both control pOVX (P<0.05) and H IGF-I KO pOVX (P=0.05) mice. Two weeks of mechanical loading caused a 7%–8% and an 11%–13% (P<0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P=0.13) and Ct.Th (6%, P<0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P<0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%–17%) and thickness (17%–23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading.
Collapse
|
40
|
Castillo AB, Triplett JW, Pavalko FM, Turner CH. Estrogen receptor-β regulates mechanical signaling in primary osteoblasts. Am J Physiol Endocrinol Metab 2014; 306:E937-44. [PMID: 24619882 PMCID: PMC3989741 DOI: 10.1152/ajpendo.00458.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanical loading is an important regulator in skeletal growth, maintenance, and aging. Estrogen receptors have a regulatory role in mechanically induced bone adaptation. Estrogen receptor-α (ERα) is known to enhance load-induced bone formation, whereas ERβ negatively regulates this process. We hypothesized that ERβ regulates mechanical signaling in osteoblasts. We tested this hypothesis by subjecting primary calvarial cells isolated from wild-type and ERβ-knockout mice (BERKO) to oscillatory fluid flow in the absence or presence of estradiol (E2). We found that the known responses to fluid shear stress, i.e., phosphorylation of the mitogen-activated protein kinase ERK and upregulation of COX-2 expression, were inhibited in BERKO cells in the absence of E2. Flow-induced increase in prostaglandin E2 (PGE2) release was not altered in BERKO cells in the absence of E2, but was increased when E2 was present. Additionally, immunofluorescence analysis and estrogen response element luciferase assays revealed increased ERα expression and flow- and ligand-induced nuclear translocation as well as transcriptional activity in BERKO cells in both the presence and absence of E2. Taken together, these data suggest that ERβ plays both ligand-dependent and ligand-independent roles in mechanical signaling in osteoblasts. Furthermore, our data suggest that one mechanism by which ERβ regulates mechanotransduction in osteoblasts may result from its inhibitory effect on ERα expression and function. Targeting estrogen receptors (e.g., inhibiting ERβ) may represent an effective approach for prevention and treatment of age-related bone loss.
Collapse
Affiliation(s)
- Alesha B Castillo
- Rehabilitation Research and Development, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | | | | | | |
Collapse
|
41
|
Meakin LB, Price JS, Lanyon LE. The Contribution of Experimental in vivo Models to Understanding the Mechanisms of Adaptation to Mechanical Loading in Bone. Front Endocrinol (Lausanne) 2014; 5:154. [PMID: 25324829 PMCID: PMC4181237 DOI: 10.3389/fendo.2014.00154] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 12/12/2022] Open
Abstract
Changing loading regimens by natural means such as exercise, with or without interference such as osteotomy, has provided useful information on the structure:function relationship in bone tissue. However, the greatest precision in defining those aspects of the overall strain environment that influence modeling and remodeling behavior has been achieved by relating quantified changes in bone architecture to quantified changes in bones' strain environment produced by direct, controlled artificial bone loading. Jiri Hert introduced the technique of artificial loading of bones in vivo with external devices in the 1960s using an electromechanical device to load rabbit tibiae through transfixing stainless steel pins. Quantifying natural bone strains during locomotion by attaching electrical resistance strain gages to bone surfaces was introduced by Lanyon, also in the 1960s. These studies in a variety of bones in a number of species demonstrated remarkable uniformity in the peak strains and maximum strain rates experienced. Experiments combining strain gage instrumentation with artificial loading in sheep, pigs, roosters, turkeys, rats, and mice has yielded significant insight into the control of strain-related adaptive (re)modeling. This diversity of approach has been largely superseded by non-invasive transcutaneous loading in rats and mice, which is now the model of choice for many studies. Together such studies have demonstrated that over the physiological strain range, bone's mechanically adaptive processes are responsive to dynamic but not static strains; the size and nature of the adaptive response controlling bone mass is linearly related to the peak loads encountered; the strain-related response is preferentially sensitive to high strain rates and unresponsive to static ones; is most responsive to unusual strain distributions; is maximized by remarkably few strain cycles, and that these are most effective when interrupted by short periods of rest between them.
Collapse
Affiliation(s)
- Lee B. Meakin
- School of Veterinary Sciences, University of Bristol, Bristol, UK
- *Correspondence: Lee B. Meakin, School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol BS40 5DU, UK e-mail:
| | - Joanna S. Price
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Lance E. Lanyon
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
42
|
Estrogen receptors' roles in the control of mechanically adaptive bone (re)modeling. BONEKEY REPORTS 2013; 2:413. [PMID: 24422120 DOI: 10.1038/bonekey.2013.147] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/17/2023]
Abstract
The discovery that estrogen receptors (ERs) are involved in bone cells' responses to mechanical strain offered the prospect of establishing the link between declining levels of circulating estrogen and the progressive failure of the mechanically adaptive mechanisms that should maintain structurally appropriate levels of bone mass in age-related and post-menopausal osteoporosis. Such clarification remains elusive but studies have confirmed ligand-independent involvement of ERs as facilitators in a number of the pathways by which mechanical strain stimulates osteoblast proliferation and bone formation. The presence of α and β forms of ER that oppose, supplement or replace one another has complicated interpretation of studies to identify their individual roles when both are present in normal amounts. However, it appears that, in mice at least, ERα promotes cortical bone mass in both males and females through its effects in early members of the osteoblast lineage, but enhances loading-related cortical bone gain only in females. In addition to its role as a potential replacement for ERα, and modifier of ERα activity, the less well-studied ERβ appears to facilitate rapid early effects of strain including activation of extracellular signal-regulated kinase and downregulation of Sost in well-differentiated cells of the osteoblast lineage including osteocytes. If these different roles are substantiated by further studies, it would appear that under normal circumstances ERα contributes primarily to the size and extent of bones' osteogenic response to load bearing through facilitating anabolic influences in osteoblasts and osteoblast progenitors, whereas ERβ is more involved in the strain-related responses generated within resident cells including osteocytes.
Collapse
|
43
|
Emerging role of estrogen receptor-α in bone formation and bone sparing. BONEKEY REPORTS 2013; 2:342. [PMID: 24422080 PMCID: PMC3722769 DOI: 10.1038/bonekey.2013.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
44
|
Yao X, Carleton SM, Kettle AD, Melander J, Phillips CL, Wang Y. Gender-dependence of bone structure and properties in adult osteogenesis imperfecta murine model. Ann Biomed Eng 2013; 41:1139-49. [PMID: 23536112 DOI: 10.1007/s10439-013-0793-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
Abstract
Osteogenesis imperfecta (OI) is a dominant skeletal disorder characterized by bone fragility and deformities. Though the oim mouse model has been the most widely studied of the OI models, it has only recently been suggested to exhibit gender-dependent differences in bone mineralization. To characterize the impact of gender on the morphometry/ultra-structure, mechanical properties, and biochemical composition of oim bone on the congenic C57BL/J6 background, 4-month-old oim/oim, +/oim, and wild-type (wt) female and male tibiae were evaluated using micro-computed tomography, three-point bending, and Raman spectroscopy. Dramatic gender differences were evident in both cortical and trabecular bone morphological and geometric parameters. Male mice had inherently more bone and increased moment of inertia than genotype-matched female counterparts with corresponding increases in bone biomechanical strength. The primary influence of gender was structure/geometry in bone growth and mechanical properties, whereas the mineral/matrix composition and hydroxyproline content of bone were influenced primarily by the oim collagen mutation. This study provides evidence of the importance of gender in the evaluation and interpretation of potential therapeutic strategies when using mouse models of OI.
Collapse
Affiliation(s)
- Xiaomei Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, 650 E. 25th St., Kansas City, MO 64108, USA
| | | | | | | | | | | |
Collapse
|
45
|
Windahl SH, Saxon L, Börjesson AE, Lagerquist MK, Frenkel B, Henning P, Lerner UH, Galea GL, Meakin LB, Engdahl C, Sjögren K, Antal MC, Krust A, Chambon P, Lanyon LE, Price JS, Ohlsson C. Estrogen receptor-α is required for the osteogenic response to mechanical loading in a ligand-independent manner involving its activation function 1 but not 2. J Bone Miner Res 2013; 28:291-301. [PMID: 22972752 PMCID: PMC3575695 DOI: 10.1002/jbmr.1754] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023]
Abstract
Estrogen receptor-α (ERα) is crucial for the adaptive response of bone to loading but the role of endogenous estradiol (E2) for this response is unclear. To determine in vivo the ligand dependency and relative roles of different ERα domains for the osteogenic response to mechanical loading, gene-targeted mouse models with (1) a complete ERα inactivation (ERα(-/-) ), (2) specific inactivation of activation function 1 (AF-1) in ERα (ERαAF-1(0) ), or (3) specific inactivation of ERαAF-2 (ERαAF-2(0) ) were subjected to axial loading of tibia, in the presence or absence (ovariectomy [ovx]) of endogenous E2. Loading increased the cortical bone area in the tibia mainly as a result of an increased periosteal bone formation rate (BFR) and this osteogenic response was similar in gonadal intact and ovx mice, demonstrating that E2 (ligand) is not required for this response. Female ERα(-/-) mice displayed a severely reduced osteogenic response to loading with changes in cortical area (-78% ± 15%, p < 0.01) and periosteal BFR (-81% ± 9%, p < 0.01) being significantly lower than in wild-type (WT) mice. ERαAF-1(0) mice also displayed a reduced response to mechanical loading compared with WT mice (cortical area -40% ± 11%, p < 0.05 and periosteal BFR -41% ± 8%, p < 0.01), whereas the periosteal osteogenic response to loading was unaffected in ERαAF-2(0) mice. Mechanical loading of transgenic estrogen response element (ERE)-luciferase reporter mice did not increase luciferase expression in cortical bone, suggesting that the loading response does not involve classical genomic ERE-mediated pathways. In conclusion, ERα is required for the osteogenic response to mechanical loading in a ligand-independent manner involving AF-1 but not AF-2.
Collapse
Affiliation(s)
- Sara H Windahl
- Department of Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Galea GL, Meakin LB, Sugiyama T, Zebda N, Sunters A, Taipaleenmaki H, Stein GS, van Wijnen AJ, Lanyon LE, Price JS. Estrogen receptor α mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor β. J Biol Chem 2013; 288:9035-48. [PMID: 23362266 PMCID: PMC3610976 DOI: 10.1074/jbc.m112.405456] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mechanical strain and estrogens both stimulate osteoblast proliferation through estrogen receptor (ER)-mediated effects, and both down-regulate the Wnt antagonist Sost/sclerostin. Here, we investigate the differential effects of ERα and -β in these processes in mouse long bone-derived osteoblastic cells and human Saos-2 cells. Recruitment to the cell cycle following strain or 17β-estradiol occurs within 30 min, as determined by Ki-67 staining, and is prevented by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride. ERβ inhibition with 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-β]pyrimidin-3-yl] phenol (PTHPP) increases basal proliferation similarly to strain or estradiol. Both strain and estradiol down-regulate Sost expression, as does in vitro inhibition or in vivo deletion of ERα. The ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and ERB041 also down-regulated Sost expression in vitro, whereas the ERα agonist 4,4′,4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl]tris-phenol or the ERβ antagonist PTHPP has no effect. Tamoxifen, a nongenomic ERβ agonist, down-regulates Sost expression in vitro and in bones in vivo. Inhibition of both ERs with fulvestrant or selective antagonism of ERβ, but not ERα, prevents Sost down-regulation by strain or estradiol. Sost down-regulation by strain or ERβ activation is prevented by MEK/ERK blockade. Exogenous sclerostin has no effect on estradiol-induced proliferation but prevents that following strain. Thus, in osteoblastic cells the acute proliferative effects of both estradiol and strain are ERα-mediated. Basal Sost down-regulation follows decreased activity of ERα and increased activity of ERβ. Sost down-regulation by strain or increased estrogens is mediated by ERβ, not ERα. ER-targeting therapy may facilitate structurally appropriate bone formation by enhancing the distinct ligand-independent, strain-related contributions to proliferation of both ERα and ERβ.
Collapse
Affiliation(s)
- Gabriel L Galea
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Weatherholt AM, Fuchs RK, Warden SJ. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model. Bone 2013; 52:372-9. [PMID: 23111313 PMCID: PMC3513639 DOI: 10.1016/j.bone.2012.10.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 11/17/2022]
Abstract
The mouse tibial axial compression loading model has recently been described to allow simultaneous exploration of cortical and trabecular bone adaptation within the same loaded element. However, the model frequently induces cortical woven bone formation and has produced inconsistent results with regards to trabecular bone adaptation. The aim of this study was to investigate bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model, with the ultimate goal of revealing a load that simultaneously induced lamellar cortical and trabecular bone adaptation. Adult (16 weeks old) female C57BL/6 mice were randomly divided into three load magnitude groups (5, 7 and 9N), and had their right tibia axially loaded using a continuous 2-Hz haversine waveform for 360 cycles/day, 3 days/week for 4 consecutive weeks. In vivo peripheral quantitative computed tomography was used to longitudinally assess midshaft tibia cortical bone adaptation, while ex vivo micro-computed tomography and histomorphometry were used to assess both midshaft tibia cortical and proximal tibia trabecular bone adaptation. A dose response to loading magnitude was observed within cortical bone, with increasing load magnitude inducing increasing levels of lamellar cortical bone adaptation within the upper two thirds of the tibial diaphysis. Greatest cortical bone adaptation was observed at the midshaft where there was a 42% increase in estimated mechanical properties (polar moment of inertia) in the highest (9N) load group. A dose response to load magnitude was not clearly evident within trabecular bone, with only the highest load (9N) being able to induce measureable adaptation (31% increase in trabecular bone volume fraction at the proximal tibia). The ultimate finding was that a load of 9N (engendering a tensile strain of 1833 με on medial surface of the midshaft tibia) was able to simultaneously induce measurable lamellar cortical and trabecular bone adaptation when using the mouse tibial axial compression loading model in 16 week old female C57BL/6 mice. This finding will help plan future studies aimed at exploring simultaneous lamellar cortical and trabecular bone adaptation within the same loaded element.
Collapse
Affiliation(s)
- Alyssa M. Weatherholt
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, USA
| | - Robyn K. Fuchs
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, IN 46202, USA
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Corresponding author: Stuart J. Warden, PT, PhD, FACSM, Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, 1140 W. Michigan Street, CF-326, Indianapolis, IN 46202, USA. Phone: +1-317-278-8401; Fax: +1-317-278-1876;
| |
Collapse
|