1
|
Everton E, Del Rio-Moreno M, Villacorta-Martin C, Singh Bawa P, Lindstrom-Vautrin J, Muramatsu H, Rizvi F, Smith AR, Tam Y, Pardi N, Kineman R, Waxman DJ, Gouon-Evans V. Growth Hormone Accelerates Recovery From Acetaminophen-Induced Murine Liver Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537197. [PMID: 37131727 PMCID: PMC10153200 DOI: 10.1101/2023.04.17.537197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background and Aims Acetaminophen (APAP) overdose is the leading cause of acute liver failure, with one available treatment, N-acetyl cysteine (NAC). Yet, NAC effectiveness diminishes about ten hours after APAP overdose, urging for therapeutic alternatives. This study addresses this need by deciphering a mechanism of sexual dimorphism in APAP-induced liver injury, and leveraging it to accelerate liver recovery via growth hormone (GH) treatment. GH secretory patterns, pulsatile in males and near-continuous in females, determine the sex bias in many liver metabolic functions. Here, we aim to establish GH as a novel therapy to treat APAP hepatotoxicity. Approach and Results Our results demonstrate sex-dependent APAP toxicity, with females showing reduced liver cell death and faster recovery than males. Single-cell RNA sequencing analyses reveal that female hepatocytes have significantly greater levels of GH receptor expression and GH pathway activation compared to males. In harnessing this female-specific advantage, we demonstrate that a single injection of recombinant human GH protein accelerates liver recovery, promotes survival in males following sub-lethal dose of APAP, and is superior to standard-of-care NAC. Alternatively, slow-release delivery of human GH via the safe nonintegrative lipid nanoparticle-encapsulated nucleoside-modified mRNA (mRNA-LNP), a technology validated by widely used COVID-19 vaccines, rescues males from APAP-induced death that otherwise occurred in control mRNA-LNP-treated mice. Conclusions Our study demonstrates a sexually dimorphic liver repair advantage in females following APAP overdose, leveraged by establishing GH as an alternative treatment, delivered either as recombinant protein or mRNA-LNP, to potentially prevent liver failure and liver transplant in APAP-overdosed patients.
Collapse
|
2
|
Zhu G, Chen W, Tang CY, McVicar A, Edwards D, Wang J, McConnell M, Yang S, Li Y, Chang Z, Li YP. Knockout and Double Knockout of Cathepsin K and Mmp9 reveals a novel function of Cathepsin K as a regulator of osteoclast gene expression and bone homeostasis. Int J Biol Sci 2022; 18:5522-5538. [PMID: 36147479 PMCID: PMC9461675 DOI: 10.7150/ijbs.72211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/02/2022] [Indexed: 01/26/2023] Open
Abstract
Cathepsins play a role in regulation of cell function through their presence in the cell nucleus. However, the role of Cathepsin K (Ctsk) as an epigenetic regulator in osteoclasts remains unknown. Our data demonstrated that Ctsk-/-Mmp9-/- mice have a striking phenotype with a 5-fold increase in bone volume compared with WT. RNA-seq analysis of Ctsk-/- , Mmp9-/- and Ctsk-/-/Mmp9-/- osteoclasts revealed their distinct functions in gene expression regulation, including reduced Cebpa expression, increased Nfatc1 expression, and in signaling pathways activity regulation. Western blots and qPCR data validated these changes. ATAC-seq profiling of Ctsk-/- , Mmp9-/-, and Ctsk-/-/Mmp9-/- osteoclasts indicated the changes resulted from reduced chromatin openness in the promoter region of Cebpa and increased chromatin openness in Nfatc1 promoter in Ctsk-/-/Mmp9-/- osteoclasts compared to that in osteoclasts of WT, Ctsk/- and Mmp9-/- . We found co-localization of Ctsk with c-Fos and cleavage of H3K27me3 in wild-type osteoclasts. Remarkably, cleavage of H3K27me3 was blocked in osteoclasts of Ctsk-/- and Ctsk-/-/Mmp9-/- mice, suggesting that Ctsk may epigenetically regulate distinctive groups of genes' expression by regulating proteolysis of H3K27me3. Ctsk-/-/Mmp9-/- double knockout dramatically protects against ovariectomy induced bone loss. We found that Ctsk may function as an essential epigenetic regulator in modulating levels of H3K27me3 in osteoclast activation and maintaining bone homeostasis. Our study revealed complementary and unique functions of Ctsk as epigenetic regulators for maintaining osteoclast activation and bone homeostasis by orchestrating multiple signaling pathways and targeting both Ctsk and Mmp9 is a novel therapeutic approach for osteolytic diseases such as osteoporosis.
Collapse
Affiliation(s)
- Guochun Zhu
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Chen-Yi Tang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Abigail McVicar
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Diep Edwards
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Jinwen Wang
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| | - Matthew McConnell
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, School of Medicine, Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, 70112, USA
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama 35294-2182, USA
| |
Collapse
|
3
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
4
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Ligibel JA, Schmitz KH, Berger NA. Sarcopenia in aging, obesity, and cancer. Transl Cancer Res 2020; 9:5760-5771. [PMID: 33163373 PMCID: PMC7643855 DOI: 10.21037/tcr-2019-eaoc-05] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022]
Abstract
Sarcopenia, defined as loss of muscle mass, strength and physical performance, is a hallmark of aging and is invariably associated with perturbation of amino acid metabolism, increased muscle protein catabolism relative to anabolism, and loss of muscle fibers. Sarcopenia may be associated with general loss of body mass, or it may also occur along with obesity [sarcopenic obesity (SO)]. Although sarcopenia is associated with multiple comorbidities in older adults, its effects may even be more severe in patients with malignant disease where it has been shown to contribute to poor surgical outcomes, increased chemotherapy toxicity associated with both cytotoxic and targeted agents, as well as adversely impacting survival. While development of sarcopenia is a common age-related phenomenon, the associated catabolic processes appear to be promoted by physical inactivity, inadequate nutrition, and systemic low-grade inflammation, as well as intrinsic muscle and molecular changes, including mitochondrial dysfunction and impaired muscle stem cell regenerative capacity. Increased physical activity and adequate protein intake can reduce incidence and severity of sarcopenia in cancer patients, but many older cancer patients do not meet physical activity and nutrition recommendations, and cancer treatment can make it more difficult to make favorable lifestyle changes. Sarcopenia is discussed in terms of its adverse clinical consequences in older subjects and particularly, in older patients with cancer. Contributions of lifestyle, molecular, and cellular factors are likewise reviewed with suggestions for interventions to improve sarcopenia and its comorbid sequalae.
Collapse
Affiliation(s)
- Jennifer A. Ligibel
- Division of Women’s Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kathryn H. Schmitz
- Department Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Nathan A. Berger
- Department Medicine, Biochemistry, Oncology, Genetics & Genome Sciences, Center for Science, Health and Society, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
6
|
Martini M, Irvin JW, Lee CG, Lynch WJ, Rissman EF. Sex chromosome complement influences vulnerability to cocaine in mice. Horm Behav 2020; 125:104821. [PMID: 32721403 PMCID: PMC7541729 DOI: 10.1016/j.yhbeh.2020.104821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023]
Abstract
Women acquire cocaine habits faster and are more motivated to obtain drug than men. In general, female rodents acquire intravenous cocaine self-administration (SA) faster and show greater locomotor responses to cocaine than males. Sex differences are attributed to differences in circulating estradiol. We used the four core genotype (FCG) mouse to ask whether sex chromosome complement influences vulnerability to cocaine's reinforcing and/or locomotor-activating effects. The FCG cross produces ovary-bearing mice with XX or XY genotypes (XXF, XYF) and testes-bearing mice with XX or XY genotypes (XXM, XYM). A greater percentage of gonadal females acquired cocaine SA via infusions into jugular catheters as compared with XYM mice, but XXM mice were not significantly different than any other group. Discrimination of the active versus inactive nose poke holes and cocaine intake were in general greater in gonadal females than in gonadal males. Progressive ratio tests for motivation revealed an interaction between sex chromosomes and gonads: XYM mice were more motivated to self-administer cocaine taking more infusions than mice in any other group. Locomotor responses to cocaine exposure revealed effects of sex chromosomes. After acute exposure, activity was greater in XX than in XY mice and the reverse was true for behavioral sensitization. Mice with XY genotypes displayed more activity than XX mice when given cocaine after a 10-day drug-free period. Our data demonstrate that sex chromosome complement alone and/or interacting with gonadal status can modify cocaine's reinforcing and locomotor-activating effects. These data should inform current studies of sex differences in drug use.
Collapse
Affiliation(s)
- Mariangela Martini
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Joshua W Irvin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Christina G Lee
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Emilie F Rissman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
7
|
Salvoza NC, Giraudi PJ, Tiribelli C, Rosso N. Sex differences in non-alcoholic fatty liver disease: hints for future management of the disease. EXPLORATION OF MEDICINE 2020; 1:51-74. [DOI: 10.37349/emed.2020.00005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a major cause of chronic liver disease worldwide. Despite extensive studies, the heterogeneity of the risk factors as well as different disease mechanisms complicate the goals toward effective diagnosis and management. Recently, it has been shown that sex differences play a role in the prevalence and progression of NAFLD. In vitro, in vivo, and clinical studies revealed that the lower prevalence of NAFLD in premenopausal as compared to postmenopausal women and men is mainly due to the protective effects of estrogen and body fat distribution. It has been also described that males and females present differential pathogenic features in terms of biochemical profiles and histological characteristics. However, the exact molecular mechanisms for the gender differences that exist in the pathogenesis of NAFLD are still elusive. Lipogenesis, oxidative stress, and inflammation play a key role in the progression of NAFLD. For NAFLD, only a few studies characterized these mechanisms at the molecular level. Therefore, we aim to review the reported differential molecular mechanisms that trigger such different pathogenesis in both sexes. Differences in lipid metabolism, glucose homeostasis, oxidative stress, inflammation, and fibrosis were discussed based on the evidence reported in recent publications. In conclusion, with this review, we hope to provide a new perspective for the development of future practice guidelines as well as a new avenue for the management of the disease.
Collapse
Affiliation(s)
- Noel C. Salvoza
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy; Philippine Council for Health Research and Development, DOST Compound, Bicutan Taguig City 1631, Philippines
| | - Pablo J. Giraudi
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato ONLUS, Area Science Park Basovizza SS14 km 163.5, 34149 Trieste, Italy
| |
Collapse
|
8
|
Kim NR, Jardí F, Khalil R, Antonio L, Schollaert D, Deboel L, van Lenthe GH, Decallonne B, Carmeliet G, Gustafsson JÅ, Claessens F, Ohlsson C, Lagerquist MK, Dubois V, Vanderschueren D. Estrogen receptor alpha signaling in extrahypothalamic neurons during late puberty decreases bone size and strength in female but not in male mice. FASEB J 2020; 34:7118-7126. [PMID: 32239553 DOI: 10.1096/fj.202000272r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Sexually dimorphic bone structure emerges largely during puberty. Sex steroids are critical for peak bone mass acquisition in both genders. In particular, the biphasic effects of estrogens mediate the skeletal sexual dimorphism. However, so far the stimulatory vs inhibitory actions of estrogens on bone mass are not fully explained by direct effects on bone cells. Recently, it has become evident that there is possible neuroendocrine action of estrogen receptor alpha (ERα) on the skeleton. Based on these considerations, we hypothesized that neuronal ERα-signaling may contribute to the skeletal growth during puberty. Here, we generated mice with tamoxifen-inducible Thy1-Cre mediated ERα inactivation during late puberty specifically in extrahypothalamic neurons (N-ERαKO). Inactivation of neuronal ERα did not alter the body weight in males, whereas N-ERαKO females exhibited a higher body weight and increased body and bone length compared to their control littermates at 16 weeks of age. Ex vivo microCT analysis showed increased radial bone expansion of the midshaft femur in female N-ERαKO along with higher serum levels of insulin-like growth factor (IGF)-1 as well as IGF-binding protein (IGFBP)-3. Furthermore, the 3-point bending test revealed increased bone strength in female N-ERαKO. In contrast, inactivation of neuronal ERα had no major effect on bone growth in males. In conclusion, we demonstrate that central ERα-signaling limits longitudinal bone growth and radial bone expansion specifically in females potentially by interacting with the GH/IGF-1 axis.
Collapse
Affiliation(s)
- Na Ri Kim
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Leen Antonio
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dieter Schollaert
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Ludo Deboel
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - G Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vanessa Dubois
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism, and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Bamji SF, Rouchka E, Zhang Y, Li X, Kalbfleisch T, Corbitt C. Next generation sequencing analysis of soy glyceollins and 17-β estradiol: Effects on transcript abundance in the female mouse brain. Mol Cell Endocrinol 2018; 471:15-21. [PMID: 28483703 DOI: 10.1016/j.mce.2017.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
Glyceollins (Glys) are produced by soy plants in response to stress and are known for their anti-estrogenic activity both in vivo and in vitro in cancer cell lines as well as peripheral tissues. Glys can also exhibit non-estrogen receptor (ER) mediated effects. The effects of Glys on gene expression in the brain are still unclear. For this study, 17-β estradiol (E2) or placebo slow-release pellets were implanted into ovariectomized CFW mice followed by 11 days of exposure to either Glys or vehicle i.p. injections. We then examined the female mouse brain transcriptome using paired-end RNA sequencing (RNA-Seq) on the Illumina GAIIx platform. The goal of this study was to compare and contrast the results obtained from RNA-Seq with the results from our previous whole brain microarray experiment, which indicated that Glys potentially act through both ER-mediated and non-ER-mediated mechanisms, exhibiting a gene expression profile distinct from E2-treated groups. Our results suggest that the transcripts regulated by both E2 and Glys alone or in combination annotated to similar pathway maps and networks in both microarray and RNA-Seq experiments. Additionally, unlike our microarray data analysis, RNA-Seq enabled the detection of treatment effects on low expression transcripts of interest (e.g., prolactin and growth hormone). Collectively, our results suggest that depending on the gene, Glys can regulate expression independently of E2 action, similarly to E2, or oppose E2's effects in the female mouse brain.
Collapse
Affiliation(s)
- Sanaya F Bamji
- Department of Biology, University of Louisville, United States
| | - Eric Rouchka
- Department of Computer Engineering and Computer Science, Speed School of Engineering, University of Louisville, United States
| | - Yan Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, United States
| | - Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, United States; Department of Bioinformatics and Biostatistics, University of Louisville, United States
| | - Ted Kalbfleisch
- Department of Biochemistry & Molecular Genetics, University of Louisville, United States
| | - Cynthia Corbitt
- Department of Biology, University of Louisville, United States.
| |
Collapse
|
10
|
Arellanes-Licea EC, Ávila-Mendoza J, Ramírez-Martínez EC, Ramos E, Uribe-González N, Arámburo C, Morales T, Luna M. Upregulation of GH, but not IGF1, in the hippocampus of the lactating dam after kainic acid injury. Endocr Connect 2018; 7:258-267. [PMID: 29321175 PMCID: PMC5812059 DOI: 10.1530/ec-17-0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/10/2018] [Indexed: 12/21/2022]
Abstract
Lactation embodies a natural model of morphological, neurochemical, and functional brain plasticity. In this reproductive stage, the hippocampus of the female is less sensitive to excitotoxins in contrast to nulliparity. Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are known to be neuroprotective in several experimental models of brain lesion. Here, activation of the GH-IGF1 pituitary-brain axis following kainic acid (7.5 mg/kg i.p. KA) lesion was studied in lactating and nulliparous rats. Serum concentrations of GH and IGF1 were uncoupled in lactation. Compared to virgin rats, the basal concentration of GH increased up to 40% but IGF1 decreased 58% in dams, and only GH increased further after KA treatment. In the hippocampus, basal expression of GH mRNA was higher (2.8-fold) in lactating rats than in virgin rats. GH mRNA expression in lactating rats increased further after KA administration in the hippocampus and in the hypothalamus, in parallel to GH protein concentration in the hippocampus of KA-treated lactating rats (43% vs lactating control), as detected by Western blot and immunofluorescence. Except for the significantly lower mRNA concentration in the liver of lactating rats, IGF1 expression was not altered by the reproductive condition or by KA treatment in the hippocampus and hypothalamus. Present results indicate upregulation of GH expression in the hippocampus after an excitotoxic lesion, suggesting paracrine/autocrine actions of GH as a factor underlying neuroprotection in the brain of the lactating dam. Since no induction of IGF1 was detected, present data suggest a direct action of GH.
Collapse
Affiliation(s)
- Elvira C Arellanes-Licea
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - José Ávila-Mendoza
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - Elizabeth C Ramírez-Martínez
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - Eugenia Ramos
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - Nancy Uribe-González
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - Carlos Arámburo
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - Teresa Morales
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| | - Maricela Luna
- Neurobiología Celular y MolecularInstituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
11
|
Martínez-Moreno CG, Calderón-Vallejo D, Harvey S, Arámburo C, Quintanar JL. Growth Hormone (GH) and Gonadotropin-Releasing Hormone (GnRH) in the Central Nervous System: A Potential Neurological Combinatory Therapy? Int J Mol Sci 2018; 19:E375. [PMID: 29373545 PMCID: PMC5855597 DOI: 10.3390/ijms19020375] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
This brief review of the neurological effects of growth hormone (GH) and gonadotropin-releasing hormone (GnRH) in the brain, particularly in the cerebral cortex, hypothalamus, hippocampus, cerebellum, spinal cord, neural retina, and brain tumors, summarizes recent information about their therapeutic potential as treatments for different neuropathologies and neurodegenerative processes. The effect of GH and GnRH (by independent administration) has been associated with beneficial impacts in patients with brain trauma and spinal cord injuries. Both GH and GnRH have demonstrated potent neurotrophic, neuroprotective, and neuroregenerative action. Positive behavioral and cognitive effects are also associated with GH and GnRH administration. Increasing evidence suggests the possibility of a multifactorial therapy that includes both GH and GnRH.
Collapse
Affiliation(s)
- Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - Denisse Calderón-Vallejo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro 76230, Mexico.
| | - José Luis Quintanar
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Mexico.
| |
Collapse
|
12
|
Gray SM, Thorner MO. Spatiotemporal Regulation of Insulin-Like Growth Factor-1 and Its Receptor in the Brain: Is There a Role for Growth Hormone? Endocrinology 2017; 158:229-232. [PMID: 28430923 PMCID: PMC5413082 DOI: 10.1210/en.2016-1884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Sarah M Gray
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Michael O Thorner
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
13
|
Bentz AB, Sirman AE, Wada H, Navara KJ, Hood WR. Relationship between maternal environment and DNA methylation patterns of estrogen receptor alpha in wild Eastern Bluebird (Sialia sialis) nestlings: a pilot study. Ecol Evol 2016; 6:4741-52. [PMID: 27547309 PMCID: PMC4979703 DOI: 10.1002/ece3.2162] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 12/18/2022] Open
Abstract
There is mounting evidence that, across taxa, females breeding in competitive environments tend to allocate more testosterone to their offspring prenatally and these offspring typically have more aggressive and faster‐growing phenotypes. To date, no study has determined the mechanisms mediating this maternal effect's influence on offspring phenotype. However, levels of estrogen receptor alpha (ERα) gene expression are linked to differences in early growth and aggression; thus, maternal hormones may alter gene regulation, perhaps via DNA methylation, of ERα in offspring during prenatal development. We performed a pilot study to examine natural variation in testosterone allocation to offspring through egg yolks in wild Eastern Bluebirds (Sialia sialis) in varying breeding densities and percent DNA methylation of CG dinucleotides in the ERα promoter in offspring brain regions associated with growth and behavior. We hypothesized that breeding density would be positively correlated with yolk testosterone, and prenatal exposure to maternal‐derived yolk testosterone would be associated with greater offspring growth and decreased ERα promoter methylation. Yolk testosterone concentration was positively correlated with breeding density, nestling growth rate, and percent DNA methylation of one out of five investigated CpG sites (site 3) in the diencephalon ERα promoter, but none in the telencephalon (n = 10). Percent DNA methylation of diencephalon CpG site 3 was positively correlated with growth rate. These data suggest a possible role for epigenetics in mediating the effects of the maternal environment on offspring phenotype. Experimentally examining this mechanism with a larger sample size in future studies may help elucidate a prominent way in which animals respond to their environment. Further, by determining the mechanisms that mediate maternal effects, we can begin to understand the potential for the heritability of these mechanisms and the impact that maternal effects are capable of producing at an evolutionary scale.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Poultry Science Department University of Georgia 203 Poultry Science Bldg. Athens Georigia 30602
| | - Aubrey E Sirman
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| | - Haruka Wada
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| | - Kristen J Navara
- Poultry Science Department University of Georgia 203 Poultry Science Bldg. Athens Georigia 30602
| | - Wendy R Hood
- Department of Biological Sciences Auburn University 101 Life Science Building Auburn Alabama 36849
| |
Collapse
|
14
|
Effect of dietary intake on somatotrophic axis–related gene expression and endocrine profile in Osmanabadi goats. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2016.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Yang JA, Mamounis KJ, Yasrebi A, Roepke TA. Regulation of gene expression by 17β-estradiol in the arcuate nucleus of the mouse through ERE-dependent and ERE-independent mechanisms. Steroids 2016; 107:128-38. [PMID: 26768413 PMCID: PMC4775315 DOI: 10.1016/j.steroids.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 12/29/2015] [Accepted: 01/03/2016] [Indexed: 12/15/2022]
Abstract
17β-Estradiol (E2) modulates gene expression in the hypothalamic arcuate nucleus (ARC) to control homeostatic functions. In the ARC, estrogen receptor (ER) α is highly expressed and is an important contributor to E2's actions, controlling gene expression through estrogen response element (ERE)-dependent and -independent mechanisms. The objective of this study was to determine if known E2-regulated genes are regulated through these mechanisms. The selected genes have been shown to regulate homeostasis and have been separated into three subsections: channels, receptors, and neuropeptides. To determine if ERE-dependent or ERE-independent mechanisms regulate gene expression, two transgenic mouse models, an ERα knock-out (ERKO) and an ERα knock-in/knock-out (KIKO), which lacks a functional ERE binding domain, were used in addition to their wild-type littermates. Females of all genotypes were ovariectomized and injected with oil or estradiol benzoate (E2B). Our results suggest that E2B regulates multiple genes through these mechanisms. Of note, Cacna1g and Kcnmb1 channel expression was increased by E2B in WT females only, suggesting an ERE-dependent regulation. Furthermore, the NKB receptor, Tac3r, was suppressed by E2B in WT and KIKO females but not ERKO females, suggesting that ERα-dependent, ERE-independent signaling is necessary for Tac3r regulation. The adrenergic receptor Adra1b was suppressed by E2B in all genotypes indicating that ERα is not the primary receptor for E2B's actions. The neuropeptide Tac2 was suppressed by E2B through ERE-dependent mechanisms. These results indicate that E2B activates both ERα-dependent and independent signaling in the ARC through ERE-dependent and ERE-independent mechanisms to control gene expression.
Collapse
Affiliation(s)
- Jennifer A Yang
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Kyle J Mamounis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ali Yasrebi
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
16
|
Daude N, Lee I, Kim TK, Janus C, Glaves JP, Gapeshina H, Yang J, Sykes BD, Carlson GA, Hood LE, Westaway D. A Common Phenotype Polymorphism in Mammalian Brains Defined by Concomitant Production of Prolactin and Growth Hormone. PLoS One 2016; 11:e0149410. [PMID: 26894278 PMCID: PMC4760942 DOI: 10.1371/journal.pone.0149410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/01/2016] [Indexed: 11/18/2022] Open
Abstract
Pituitary Prolactin (PRL) and Growth Hormone (GH) are separately controlled and sub-serve different purposes. Surprisingly, we demonstrate that extra-pituitary expression in the adult mammalian central nervous system (CNS) is coordinated at mRNA and protein levels. However this was not a uniform effect within populations, such that wide inter-individual variation was superimposed on coordinate PRL/GH expression. Up to 44% of individuals in healthy cohorts of mice and rats showed protein levels above the norm and coordinated expression of PRL and GH transcripts above baseline occurred in the amygdala, frontal lobe and hippocampus of 10% of human subjects. High levels of PRL and GH present in post mortem tissue were often presaged by altered responses in fear conditioning and stress induced hyperthermia behavioral tests. Our data define a common phenotype polymorphism in healthy mammalian brains, and, given the pleiotropic effects known for circulating PRL and GH, further consequences of coordinated CNS over-expression may await discovery.
Collapse
Affiliation(s)
- Nathalie Daude
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Inyoul Lee
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109, United States of America
| | - Taek-Kyun Kim
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109, United States of America
| | - Christopher Janus
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32611, United States of America
| | - John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Hristina Gapeshina
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Jing Yang
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Brian D. Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - George A. Carlson
- Mclaughlin Research Institute, 1520 23rd Street South, Great Falls, MT, 59405, United States of America
| | - Leroy E. Hood
- Institute for Systems Biology, 401 Terry Ave North, Seattle, WA, 98109, United States of America
| | - David Westaway
- Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Mclaughlin Research Institute, 1520 23rd Street South, Great Falls, MT, 59405, United States of America
- * E-mail:
| |
Collapse
|
17
|
Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK. Toxicol Appl Pharmacol 2015; 289:466-73. [DOI: 10.1016/j.taap.2015.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022]
|
18
|
Quinnies KM, Bonthuis PJ, Harris EP, Shetty SR, Rissman EF. Neural growth hormone: regional regulation by estradiol and/or sex chromosome complement in male and female mice. Biol Sex Differ 2015; 6:8. [PMID: 25987976 PMCID: PMC4434521 DOI: 10.1186/s13293-015-0026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sex differences in pituitary growth hormone (GH) are well documented and coordinate maturation and growth. GH and its receptor are also produced in the brain where they may impact cognitive function and synaptic plasticity, and estradiol produces Gh sex differences in rat hippocampus. In mice, circulating estradiol increases Gh mRNA in female but not in male medial preoptic area (mPOA); therefore, additional factors regulate sexually dimorphic Gh expression in the brain. Thus, we hypothesized that sex chromosomes interact with estradiol to promote sex differences in GH. Here, we assessed the contributions of both estradiol and sex chromosome complement on Gh mRNA levels in three large brain regions: the hippocampus, hypothalamus, and cerebellum. METHODS We used the four core genotypes (FCG) mice, which uncouple effects of sex chromosomes and gonadal sex. The FCG model has a deletion of the sex-determining region on the Y chromosome (Sry) and transgenic insertion of Sry on an autosome. Adult FCG mice were gonadectomized and given either a blank Silastic implant or an implant containing 17β-estradiol. Significant differences in GH protein and mRNA were attributed to estradiol replacement, gonadal sex, sex chromosome complement, and their interactions, which were assessed by ANOVA and planned comparisons. RESULTS Estradiol increased Gh mRNA in the cerebellum and hippocampus, regardless of sex chromosome complement or gonadal sex. In contrast, in the hypothalamus, females had higher Gh mRNA than males, and XY females had more Gh mRNA than XY males and XX females. This same pattern was observed for GH protein. Because the differences in Gh mRNA in the hypothalamus did not replicate prior studies using other mouse models and tissue from mPOA or arcuate nucleus, we examined GH protein in the arcuate, a subdivision of the hypothalamus. Like the previous reports, and in contrast to the entire hypothalamus, a sex chromosome complement effect showed that XX mice had more GH than XY in the arcuate. CONCLUSIONS Sex chromosome complement regulates GH in some but not all brain areas, and within the hypothalamus, sex chromosomes have cell-specific actions on GH. Thus, sex chromosome complement and estradiol both contribute to GH sex differences in the brain.
Collapse
Affiliation(s)
- Kayla M Quinnies
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 USA ; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Paul J Bonthuis
- Department of Neurobiology and Anatomy, University of Utah, 20 North 1900 East, Salt Lake City, UT 84132-3401 USA
| | - Erin P Harris
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 USA ; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Savera Rj Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908 USA ; Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Emilie F Rissman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
19
|
Larsen MC, Bushkofsky JR, Gorman T, Adhami V, Mukhtar H, Wang S, Reeder SB, Sheibani N, Jefcoate CR. Cytochrome P450 1B1: An unexpected modulator of liver fatty acid homeostasis. Arch Biochem Biophys 2015; 571:21-39. [PMID: 25703193 DOI: 10.1016/j.abb.2015.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Cytochrome P450 1b1 (Cyp1b1) expression is absent in mouse hepatocytes, but present in liver endothelia and activated stellate cells. Increased expression during adipogenesis suggests a role of Cyp1b1 metabolism in fatty acid homeostasis. Wild-type C57BL/6j (WT) and Cyp1b1-null (Cyp1b1-ko) mice were provided low or high fat diets (LFD and HFD, respectively). Cyp1b1-deletion suppressed HFD-induced obesity, improved glucose tolerance and prevented liver steatosis. Suppression of lipid droplets in sinusoidal hepatocytes, concomitant with enhanced glycogen granules, was a consistent feature of Cyp1b1-ko mice. Cyp1b1 deletion altered the in vivo expression of 560 liver genes, including suppression of PPARγ, stearoyl CoA desaturase 1 (Scd1) and many genes stimulated by PPARα, each consistent with this switch in energy storage mechanism. Ligand activation of PPARα in Cyp1b1-ko mice by WY-14643 was, nevertheless, effective. Seventeen gene changes in Cyp1b1-ko mice correspond to mouse transgenic expression that attenuated diet-induced diabetes. The absence of Cyp1b1 in mouse hepatocytes indicates participation in energy homeostasis through extra-hepatocyte signaling. Extensive sexual dimorphism in hepatic gene expression suggests a developmental impact of estrogen metabolism by Cyp1b1. Suppression of Scd1 and increased leptin turnover support enhanced leptin participation from the hypothalamus. Cyp1b1-mediated effects on vascular cells may underlie these changes.
Collapse
Affiliation(s)
- Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Justin R Bushkofsky
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, United States; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53706, United States
| | - Tyler Gorman
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Vaqar Adhami
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Madison, WI 53706, United States
| | - Suqing Wang
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI 53706, United States; Department of Medical Physics, University of Wisconsin, Madison, WI 53706, United States; Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, United States; Department of Medicine, University of Wisconsin, Madison, WI 53706, United States; Department of Emergency Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, United States
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53706, United States; Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, United States; Endocrinology and Reproductive Physiology Program, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
20
|
Cox KH, Bonthuis PJ, Rissman EF. Mouse model systems to study sex chromosome genes and behavior: relevance to humans. Front Neuroendocrinol 2014; 35:405-19. [PMID: 24388960 PMCID: PMC4079771 DOI: 10.1016/j.yfrne.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 10/25/2022]
Abstract
Sex chromosome genes directly influence sex differences in behavior. The discovery of the Sry gene on the Y chromosome (Gubbay et al., 1990; Koopman et al., 1990) substantiated the sex chromosome mechanistic link to sex differences. Moreover, the pronounced connection between X chromosome gene mutations and mental illness produces a strong sex bias in these diseases. Yet, the dominant explanation for sex differences continues to be the gonadal hormones. Here we review progress made on behavioral differences in mouse models that uncouple sex chromosome complement from gonadal sex. We conclude that many social and cognitive behaviors are modified by sex chromosome complement, and discuss the implications for human research. Future directions need to include identification of the genes involved and interactions with these genes and gonadal hormones.
Collapse
Affiliation(s)
- Kimberly H Cox
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Paul J Bonthuis
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics and Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| |
Collapse
|
21
|
Arámburo C, Alba-Betancourt C, Luna M, Harvey S. Expression and function of growth hormone in the nervous system: a brief review. Gen Comp Endocrinol 2014; 203:35-42. [PMID: 24837495 DOI: 10.1016/j.ygcen.2014.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 04/18/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
Abstract
There is increasing evidence that growth hormone (GH) expression is not confined exclusively to the pituitary somatotrophs as it is synthesized in many extrapituitary locations. The nervous system is one of those extrapituitary sites. In this brief review we summarize data that substantiate the expression, distribution and characterization of neural GH and detail its roles in neural function, including cellular growth, proliferation, differentiation, neuroprotection and survival, as well as its functional roles in behavior, cognition and neurotransmission. Although systemic GH may exert some of these effects, it is increasingly evident that locally expressed neural GH, acting through intracrine, autocrine or paracrine mechanisms, may also be causally involved as a neurotrophic factor.
Collapse
Affiliation(s)
- Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México.
| | - Clara Alba-Betancourt
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, México
| | - Steve Harvey
- Department of Physiology, University of Alberta, Edmonton T6G 2H7, Canada
| |
Collapse
|
22
|
Osterstock G, El Yandouzi T, Romanò N, Carmignac D, Langlet F, Coutry N, Guillou A, Schaeffer M, Chauvet N, Vanacker C, Galibert E, Dehouck B, Robinson ICAF, Prévot V, Mollard P, Plesnila N, Méry PF. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice. Endocrinology 2014; 155:1887-98. [PMID: 24601879 DOI: 10.1210/en.2013-1336] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.
Collapse
Affiliation(s)
- Guillaume Osterstock
- INSERM Unité 661 (G.O., T.E.Y., N.Co., N.R., A.G., M.S., N.Ch., E.G., P.M., P.-F.M.), Centre National de la Recherche Scientifique Unité Mixte de Recherche 5203 (G.O., T.E.Y., N.R., N.Co., A.G., M.S., N.Ch., E.G., P.M., P.-F.M.), Institut de Génomique Fonctionelle, 34094 Montpellier, France; Université Montpellier 1, 2 (G.O., T.E.Y., N.R., N.Co., A.G., M.S., N.Ch., E.G., P.M., P.-F.M.), 34967 Montpellier, France; Division of Molecular Neuroendocrinology (D.C., I.C.A.F.R.), Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom; Royal College of Surgeons in Ireland (G.O., T.E.Y., M.S., N.P.), Dublin 2, Ireland; INSERM Unité 837 (F.L., C.V., B.D., V.P.), Department of Development and Plasticity of the Postnatal Brain, Jean-Pierre Aubert Research Center, 59045 Lille, France; and University of Lille 2 (F.L., C.V., B.D., V.P.), 59000 Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
As for many human diseases, the incidence of obesity and its associated health risks are sexually dimorphic: worldwide the rate of obesity is higher in women. Sex differences in metabolism, appetite, body composition, and fat deposition are contributing biological factors. Gonadal hormones regulate the development of many sexually dimorphic traits in humans and animals, and, in addition, studies in mice indicate a role for direct genetic effects of sex chromosome dosage on body weight, deposition of fat, and circadian timing of feeding behavior. Specifically, mice of either sex with 2 X chromosomes, typical of normal females, have heavier body weights, gain more weight, and eat more food during the light portion of the day than mice of either sex with a single X chromosome. Here we test the effects of X chromosome dosage on body weight and report that gonadal females with 2 X chromosomes express higher levels of GH gene (Gh) mRNA in the preoptic area (POA) of the hypothalamus than females with 1 X chromosome and males. Furthermore, Gh expression in the POA of the hypothalamus of mice with 2 X chromosomes correlated with body weight; GH is known to have orexigenic properties. Acute infusion of GH into the POA increased immediate food intake in normal (XY) males. We propose that X inactivation-escaping genes modulate Gh expression and food intake, and this is part of the mechanism by which individuals with 2 X chromosomes are heavier than individuals with a single X chromosome.
Collapse
Affiliation(s)
- Paul J Bonthuis
- PO Box 800733, University of Virginia School of Medicine, Charlottesville, Virginia 22908.
| | | |
Collapse
|
25
|
What is relationship between the medial preoptic area, the organum vasculosum of the lamina terminalis and Kallmann syndrome? Med Hypotheses 2013; 81:219-21. [DOI: 10.1016/j.mehy.2013.04.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/26/2013] [Indexed: 11/21/2022]
|
26
|
Dai X, Liu Y, Wang C, Luo Y, Li X, Shen Z. Effects of estrogen on neuronal KCNQ2/3 channels expressed in PC-12 cells. Biol Pharm Bull 2013; 36:1583-6. [PMID: 23856638 DOI: 10.1248/bpb.b13-00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that 17β-estradiol (E2) improves long term potentiation (LTP) in hippocampal neurons after global ischemia in rat. In the present study, we investigated if E2 can directly modulate the activity of neuronal KCNQ2/3 channels, the molecular entity of neuronal M-current in hippocampus, expressed in the PC-12 cells. We found that exogenous E2 inhibits the KCNQ2/3 channels in a dose-dependent fashion. The minimal inhibitory concentration of E2 is 10 µM. At testing membrane potential of +90 mV, the whole cell current density was reduced to 56.5, 49.3 and 31.9% of the control by 50, 20 and 10 µM of E2, respectively. The voltage-dependency of the KCNQ2/3 currents was also affected. E2 at 10, 20 and 50 µM shifted the half maximal activation voltage (V₁/₂) from 13.8 ± 2.3 mV (n=12) to 20.6 ± 1.9 mV (n=8, p<0.05), 26.0 ± 1.9 mV (n=8, p<0.001) and 27.6 ± 3.5 mV (n=8, p<0.001), respectively. Our data indicate that exogenous E2 can directly affect the activity of KCNQ2/3 channels at pharmacological levels via a non-genomic pathway.
Collapse
Affiliation(s)
- Xiaoniu Dai
- Department of Physiology, Medical School of Southeast University
| | | | | | | | | | | |
Collapse
|
27
|
Alreja M. Electrophysiology of kisspeptin neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:349-62. [PMID: 23550014 DOI: 10.1007/978-1-4614-6199-9_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kisspeptin is an important regulator of reproduction. Electrophysiological studies show that kisspeptin neurons of the arcuate nucleus that co-localize neurokinin B and dynorphin (aka KNDy neurons) fire action potentials in a tonic, irregular, or burst firing manner. Gonadectomy dramatically alters the membrane properties of KNDY neurons from male mice and induces somatic hypertrophy. NMDA, leptin, and neurokinin B are potent activators of KNDY neuron electrical activity and GABA inhibits KNDY neurons. The firing pattern of kisspeptin neurons located in the RP3V fluctuates with the estrus cycle and is strongly modulated by glutamate and GABA. Thus, kisspeptin neurons are capable of burst firing, and their activity is modulated by sex steroids and other regulatory factors.
Collapse
|
28
|
Castañeyra-Ruiz L, González-Marrero I, Castañeyra-Ruiz A, González-Toledo JM, Castañeyra-Ruiz M, de Paz-Carmona H, Castañeyra-Perdomo A, Carmona-Calero EM. Luteinizing hormone-releasing hormone distribution in the anterior hypothalamus of the female rats. ISRN ANATOMY 2013; 2013:870721. [PMID: 25938107 PMCID: PMC4392965 DOI: 10.5402/2013/870721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/17/2013] [Indexed: 02/05/2023]
Abstract
Luteinizing hormone-releasing hormone (LHRH) neurons and fibers are located in the anteroventral hypothalamus, specifically in the preoptic medial area and the organum vasculosum of the lamina terminalis. Most luteinizing hormone-releasing hormone neurons project to the median eminence where they are secreted in the pituitary portal system in order to control the release of gonadotropin. The aim of this study is to provide, using immunohistochemistry and female brain rats, a new description of the luteinizing hormone-releasing hormone fibers and neuron localization in the anterior hypothalamus. The greatest amount of the LHRH immunoreactive material was found in the organum vasculosum of the lamina terminalis that is located around the anterior region of the third ventricle. The intensity of the reaction of LHRH immunoreactive material decreases from cephalic to caudal localization; therefore, the greatest immunoreaction is in the organum vasculosum of the lamina terminalis, followed by the dorsomedial preoptic area, the ventromedial preoptic area, and finally the ventrolateral medial preoptic area, and in fibers surrounding the suprachiasmatic nucleus and subependymal layer on the floor of the third ventricle where the least amount immunoreactive material is found.
Collapse
Affiliation(s)
- Leandro Castañeyra-Ruiz
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain ; Departamento de Farmacología, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Islas Canarias, Spain
| | - Ibrahim González-Marrero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain
| | - Agustín Castañeyra-Ruiz
- Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Juan M González-Toledo
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain
| | - María Castañeyra-Ruiz
- Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Héctor de Paz-Carmona
- Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Agustín Castañeyra-Perdomo
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain ; Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| | - Emilia M Carmona-Calero
- Departamento de Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Tenerife, Spain ; Departamento de Biotecnología, Instituto de Investigación y Ciencias de Puerto del Rosario, c/Tenerife 35, 35600 Puerto del Rosario, Fuerteventura, Isla Canarias, Spain
| |
Collapse
|
29
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2012; 19:520-4. [PMID: 23128577 DOI: 10.1097/med.0b013e32835af23e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|