1
|
Johnson TA, Fettweis G, Wagh K, Ceacero-Heras D, Krishnamurthy M, Sánchez de Medina F, Martínez-Augustin O, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The glucocorticoid receptor potentiates aldosterone-induced transcription by the mineralocorticoid receptor. Proc Natl Acad Sci U S A 2024; 121:e2413737121. [PMID: 39541347 PMCID: PMC11588051 DOI: 10.1073/pnas.2413737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR coexpression on MR genome-wide transcriptional responses and chromatin binding upon activation by aldosterone and glucocorticoids, both physiological ligands of this receptor. Transcriptional responses of MR in the absence of GR result in fewer regulated genes. In contrast, coexpression of GR potentiates MR-mediated transcription, particularly in response to aldosterone, both in cell lines and in the more physiologically relevant model of mouse colon organoids. MR chromatin binding is altered by GR coexpression in a locus- and ligand-specific way. Single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that coexpression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Department of Physics, University of Maryland, College Park, MD20742
| | - Diego Ceacero-Heras
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Fermín Sánchez de Medina
- Department of Pharmacology, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada18071, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology 2, Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, Instituto de Nutrición y Tecnología de los Alimentos José Mataix, University of Granada, Granada18071, Spain
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD20742
- Institute for Physical Science and Technology, University of Maryland, College Park, MD20742
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Bethesda, MD20892
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, San Cristóbal de La Laguna38200, Spain
| |
Collapse
|
2
|
Fettweis G, Johnson TA, Almeida‐Prieto B, Weller‐Pérez J, Presman DM, Hager GL, Alvarez de la Rosa D. The mineralocorticoid receptor forms higher order oligomers upon DNA binding. Protein Sci 2024; 33:e4890. [PMID: 38160317 PMCID: PMC10868434 DOI: 10.1002/pro.4890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The prevailing model of steroid hormone nuclear receptor function assumes ligand-induced homodimer formation followed by binding to DNA hormone response elements (HREs). This model has been challenged by evidence showing that the glucocorticoid receptor (GR) forms tetramers upon ligand and DNA binding, which then drive receptor-mediated gene transactivation and transrepression. GR and the closely-related mineralocorticoid receptors (MR) interact to transduce corticosteroid hormone signaling, but whether they share the same quaternary arrangement is unknown. Here, we used a fluorescence imaging technique, Number & Brightness, to study oligomerization in a cell system allowing real-time analysis of receptor-DNA interactions. Agonist-bound MR forms tetramers in the nucleoplasm and higher order oligomers upon binding to HREs. Antagonists form intermediate-size quaternary arrangements, suggesting that large oligomers are essential for function. Divergence between MR and GR quaternary structure is driven by different functionality of known and new multimerization interfaces, which does not preclude formation of heteromers. Thus, influencing oligomerization may be important to selectively modulate corticosteroid signaling.
Collapse
Affiliation(s)
- Gregory Fettweis
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
- Present address:
Laboratory of Gene Expression and Cancer, GIGA‐Molecular Biology of DiseaseUniversity of LiègeLiègeBelgium
| | - Thomas A. Johnson
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Brian Almeida‐Prieto
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Julián Weller‐Pérez
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| | - Diego M. Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET‐Universidad de Buenos AiresFacultad de Ciencias Exactas y NaturalesBuenos AiresArgentina
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías BiomédicasUniversidad de La LagunaLa LagunaSpain
| |
Collapse
|
3
|
Johnson TA, Fettweis G, Wagh K, Almeida-Prieto B, Krishnamurthy M, Upadhyaya A, Hager GL, Alvarez de la Rosa D. The Glucocorticoid Receptor is Required for Efficient Aldosterone-Induced Transcription by the Mineralocorticoid Receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525745. [PMID: 36789429 PMCID: PMC9928040 DOI: 10.1101/2023.01.26.525745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) have distinct, yet overlapping physiological and pathophysiological functions. There are indications that both receptors interact functionally and physically, but the precise role of this interdependence is poorly understood. Here, we analyzed the impact of GR co-expression on MR genome-wide chromatin binding and transcriptional responses to aldosterone and glucocorticoids, both physiological ligands of this receptor. Our data show that GR co-expression alters MR genome-wide binding to consensus DNA sequences in a locus- and ligand-specific way. MR binding to consensus DNA sequences is affected by GR. Transcriptional responses of MR in the absence of GR are weak and show poor correlation with chromatin binding. In contrast, co-expression of GR potentiates MR-mediated transcription, particularly in response to aldosterone. Finally, single-molecule tracking of MR suggests that the presence of GR contributes to productive binding of MR/aldosterone complexes to chromatin. Together, our data indicate that co-expression of GR potentiates aldosterone-mediated MR transcriptional activity, even in the absence of glucocorticoids.
Collapse
Affiliation(s)
- Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| | - Manan Krishnamurthy
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, 4296 Stadium Drive, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, NIH, Building 41, 41 Library Drive, Bethesda, MD, USA
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
4
|
Fettweis G, Johnson TA, Almeida-Prieto B, Presman DM, Hager GL, Alvarez de la Rosa D. The mineralocorticoid receptor forms higher order oligomers upon DNA binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525752. [PMID: 36789424 PMCID: PMC9928021 DOI: 10.1101/2023.01.26.525752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prevailing model of steroid hormone nuclear receptor function assumes ligand-induced homodimer formation followed by binding to DNA hormone response elements (HREs). This model has been challenged by evidence showing that the glucocorticoid receptor (GR) forms tetramers upon ligand and DNA binding, which then drive receptor-mediated gene transactivation and transrepression. GR and the closely-related mineralocorticoid receptors (MR) interact to transduce corticosteroid hormone signaling, but whether they share the same quaternary arrangement is unknown. Here, we used a fluorescence imaging technique, Number & Brightness, to study oligomerization in a cell system allowing real-time analysis of receptor-DNA interactions. Agonist-bound MR forms tetramers in the nucleoplasm and higher order oligomers upon binding to HREs. Antagonists form intermediate quaternary arrangements, suggesting that large oligomers are essential for function. Divergence between MR and GR quaternary structure is driven by different functionality of known and new multimerization interfaces, which does not preclude formation of heteromers. Thus, influencing oligomerization may be important to selectively modulate corticosteroid signaling.
Collapse
Affiliation(s)
- Gregory Fettweis
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | - Thomas A. Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | - Brian Almeida-Prieto
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Spain
| | - Diego M. Presman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | - Diego Alvarez de la Rosa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
- Departmento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna 38200, Spain
| |
Collapse
|
5
|
Pérez-Gordillo FL, Serrano-Morillas N, Acosta-García LM, Aranda MT, Passeri D, Pellicciari R, Pérez de Vega MJ, González-Muñiz R, Alvarez de la Rosa D, Martín-Martínez M. Novel 1,4-Dihydropyridine Derivatives as Mineralocorticoid Receptor Antagonists. Int J Mol Sci 2023; 24:ijms24032439. [PMID: 36768761 PMCID: PMC9917360 DOI: 10.3390/ijms24032439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The mineralocorticoid receptor (MR) belongs to the steroid receptor subfamily of nuclear receptors. MR is a transcription factor key in regulating blood pressure and mineral homeostasis. In addition, it plays an important role in a broad range of biological and pathological conditions, greatly expanding its interest as a pharmacological target. Non-steroidal MR antagonists (MRAs) are of particular interest to avoid side effects and achieve tissue-specific modulation of the receptor. The 1,4-dihydropyridine (1,4-DHP) ring has been identified as an appropriate scaffold to develop non-steroidal MRAs. We report the identification of a novel series of 1,4-DHP that has been guided by structure-based drug design, focusing on the less explored DHP position 2. Interestingly, substituents at this position might interfere with MR helix H12 disposition, which is essential for the recruitment of co-regulators. Several of the newly synthesized 1,4-DHPs show interesting properties as MRAs and have a good selectivity profile. These 1,4-DHPs promote MR nuclear translocation with less efficiency than the natural agonist aldosterone, which explains, at least in part, its antagonist character. Molecular dynamic studies are suggestive of several derivatives interfering with the disposition of H12 in the agonist-associated conformation, and thus, they might stabilize an MR conformation unable to recruit co-activators.
Collapse
Affiliation(s)
| | - Natalia Serrano-Morillas
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Luz Marina Acosta-García
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
| | - María Teresa Aranda
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | | | | | | | | | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 La Laguna, Spain
- Correspondence: (D.A.d.l.R.); (M.M.-M.)
| | - Mercedes Martín-Martínez
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
- Correspondence: (D.A.d.l.R.); (M.M.-M.)
| |
Collapse
|
6
|
Rivers CA, Rogers MF, Stubbs FE, Conway-Campbell BL, Lightman SL, Pooley JR. Glucocorticoid Receptor-Tethered Mineralocorticoid Receptors Increase Glucocorticoid-Induced Transcriptional Responses. Endocrinology 2019; 160:1044-1056. [PMID: 30980716 PMCID: PMC6462215 DOI: 10.1210/en.2018-00819] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Abstract
Mineralocorticoid and glucocorticoid receptors (MRs and GRs) constitute a functionally important dual receptor system detecting and transmitting circulating corticosteroid signals. High expression of MRs and GRs occurs in the same cells in the limbic system, the primary site of glucocorticoid action on cognition, behavior, and mood; however, modes of interaction between the receptors are poorly characterized. We used chromatin immunoprecipitation with nucleotide resolution using exonuclease digestion, unique barcode, and single ligation (ChIP-nexus) for high-resolution genome-wide characterization of MR and GR DNA binding profiles in neuroblastoma cells and demonstrate recruitment to highly similar DNA binding sites. Expressed MR or GR showed differential regulation of endogenous gene targets, including Syt2 and Ddc, whereas coexpression produced augmented transcriptional responses even when MRs were unable to bind DNA (MR-XDBD). ChIP confirmed that MR-XDBD could be tethered to chromatin by GR. Our data demonstrate that MR can interact at individual genomic DNA sites in multiple modes and suggest a role for MR in increasing the transcriptional response to glucocorticoids.
Collapse
Affiliation(s)
- Caroline A Rivers
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Mark F Rogers
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
| | - Felicity E Stubbs
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Becky L Conway-Campbell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - John R Pooley
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Correspondence: John R. Pooley, PhD, University of Bristol, Translational Health Sciences, Bristol Medical School, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, United Kingdom. E-mail:
| |
Collapse
|
7
|
Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis 2018; 9:588. [PMID: 29789551 PMCID: PMC5964110 DOI: 10.1038/s41419-018-0673-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022]
Abstract
Endogenous and synthetic glucocorticoids (GCs) regulate epidermal development and combat skin inflammatory diseases. GC actions can be mediated through the GC receptor (GR) and/or the mineralocorticoid receptor (MR), highly homologous ligand-activated transcription factors. While the role of GR as a potent anti-inflammatory mediator is well known, that of MR is not as clear, nor is whether these receptors cooperate or antagonize each other in the epidermis. To address this, we generated mice with epidermal-specific loss of both receptors (double knockout, DKO), and analyzed the phenotypical and functional consequences relative to single KOs or controls (CO). At birth, DKO epidermis displayed a phenotype of defective differentiation and inflammation, which was more severe than in either single KO, featuring neutrophil-containing infiltrates, and gene dysregulation characteristic of human psoriatic lesions. This phenotype resolved spontaneously. However, in adulthood, single or combined loss of GC receptors increased susceptibility to inflammation and hyperproliferation triggered by phorbol ester which, different to CO, was not effectively counteracted by GC treatment. Also, DKOs were more susceptible to imiquimod-induced psoriasis than CO showing severe defective epidermal differentiation and microabcesses while single KOs showed an intermediate response. Immortalized DKO keratinocytes featured increased proliferation kinetics and reduced cell size, a unique phenotype relative to single KO cells. The lack of GR and MR in keratinocytes, individual or combined, caused constitutive increases in p38 and ERK activities, which were partially reversed upon reinsertion of receptors into DKO cells. DKO keratinocytes also displayed significant increases in AP-1 and NF-κB transcriptional activities, which were partially rescued by ERK and p38 inhibition, respectively. Reinsertion of GR and MR in DKO keratinocytes resulted in physical and cooperative functional interactions that restored the transcriptional response to GCs. In conclusion, our data have revealed that epidermal GR and MR act cooperatively to regulate epidermal development and counteract skin inflammation.
Collapse
|
8
|
Harada K, Matsuoka H, Inoue M. Expression and regulation of M-type K+ channel in PC12 cells and rat adrenal medullary cells. Cell Tissue Res 2018; 372:457-468. [DOI: 10.1007/s00441-018-2809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/24/2018] [Indexed: 11/30/2022]
|
9
|
Jiménez-Canino R, Lorenzo-Díaz F, Odermatt A, Bailey MA, Livingstone DEW, Jaisser F, Farman N, Alvarez de la Rosa D. 11β-HSD2 SUMOylation Modulates Cortisol-Induced Mineralocorticoid Receptor Nuclear Translocation Independently of Effects on Transactivation. Endocrinology 2017; 158:4047-4063. [PMID: 28938454 DOI: 10.1210/en.2017-00440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) has an essential role in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor (MR) by converting 11β-hydroxyglucocorticoids to inactive 11-ketosteroids. Congenital deficiency of 11β-HSD2 causes a form of salt-sensitive hypertension known as the syndrome of apparent mineralocorticoid excess. The disease phenotype, which ranges from mild to severe, correlates well with reduction in enzyme activity. Furthermore, polymorphisms in the 11β-HSD2 coding gene (HSD11B2) have been linked to high blood pressure and salt sensitivity, major cardiovascular risk factors. 11β-HSD2 expression is controlled by different factors such as cytokines, sex steroids, or vasopressin, but posttranslational modulation of its activity has not been explored. Analysis of 11β-HSD2 sequence revealed a consensus site for conjugation of small ubiquitin-related modifier (SUMO) peptide, a major posttranslational regulatory event in several cellular processes. Our results demonstrate that 11β-HSD2 is SUMOylated at lysine 266. Non-SUMOylatable mutant K266R showed slightly higher substrate affinity and decreased Vmax, but no effects on protein stability or subcellular localization. Despite mild changes in enzyme activity, mutant K266R was unable to prevent cortisol-dependent MR nuclear translocation. The same effect was achieved by coexpression of wild-type 11β-HSD2 with sentrin-specific protease 1, a protease that catalyzes SUMO deconjugation. In the presence of 11β-HSD2-K266R, increased nuclear MR localization did not correlate with increased response to cortisol or increased recruitment of transcriptional coregulators. Taken together, our data suggests that SUMOylation of 11β-HSD2 at residue K266 modulates cortisol-mediated MR nuclear translocation independently of effects on transactivation.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Fabián Lorenzo-Díaz
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Dawn E W Livingstone
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Frederic Jaisser
- INSERM UMRS 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 75006 Paris, France
| | - Nicolette Farman
- INSERM UMRS 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 75006 Paris, France
| | - Diego Alvarez de la Rosa
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| |
Collapse
|
10
|
Jiménez-Canino R, Fernandes MX, Alvarez de la Rosa D. Phosphorylation of Mineralocorticoid Receptor Ligand Binding Domain Impairs Receptor Activation and Has a Dominant Negative Effect over Non-phosphorylated Receptors. J Biol Chem 2016; 291:19068-78. [PMID: 27422824 DOI: 10.1074/jbc.m116.718395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of steroid receptors allows fine-tuning different properties of this family of proteins, including stability, activation, or interaction with co-regulators. Recently, a novel effect of phosphorylation on steroid receptor biology was described. Phosphorylation of human mineralocorticoid receptor (MR) on Ser-843, a residue placed on the ligand binding domain, lowers affinity for agonists, producing inhibition of gene transactivation. We now show that MR inhibition by phosphorylation occurs even at high agonist concentration, suggesting that phosphorylation may also impair coupling between ligand binding and receptor activation. Our results demonstrate that agonists are able to induce partial nuclear translocation of MR but fail to produce transactivation due at least in part to impaired co-activator recruitment. The inhibitory effect of phosphorylation on MR acts in a dominant-negative manner, effectively amplifying its functional effect on gene transactivation.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | - Miguel X Fernandes
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | - Diego Alvarez de la Rosa
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| |
Collapse
|
11
|
Jiménez-Canino R, Lorenzo-Díaz F, Jaisser F, Farman N, Giraldez T, Alvarez de la Rosa D. Histone Deacetylase 6-Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity. Endocrinology 2016; 157:2515-32. [PMID: 27100623 DOI: 10.1210/en.2015-2055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Fabián Lorenzo-Díaz
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Frederic Jaisser
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Nicolette Farman
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Teresa Giraldez
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Diego Alvarez de la Rosa
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| |
Collapse
|
12
|
Gravez B, Tarjus A, Jimenez-Canino R, El Moghrabi S, Messaoudi S, de la Rosa DA, Jaisser F. The diuretic torasemide does not prevent aldosterone-mediated mineralocorticoid receptor activation in cardiomyocytes. PLoS One 2013; 8:e73737. [PMID: 24040049 PMCID: PMC3767808 DOI: 10.1371/journal.pone.0073737] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/23/2013] [Indexed: 01/16/2023] Open
Abstract
Aldosterone binds to the mineralocorticoid receptor (MR) and exerts pleiotropic effects beyond enhancing renal sodium reabsorption. Excessive mineralocorticoid signaling is deleterious during the evolution of cardiac failure, as evidenced by the benefits provided by adding MR antagonists (MRA) to standard care in humans. In animal models of cardiovascular diseases, MRA reduce cardiac fibrosis. Interestingly diuretics such as torasemide also appear efficient to improve cardiovascular morbidity and mortality, through several mechanisms. Among them, it has been suggested that torasemide could block aldosterone binding to the MR. To evaluate whether torasemide acts as a MRA in cardiomyocytes, we compared its effects with a classic MRA such as spironolactone. We monitored ligand-induced nuclear translocation of MR-GFP and MR transactivation activity in the cardiac-like cell line H9C2 using a reporter gene assay and known endogenous aldosterone-regulated cardiac genes. Torasemide did not modify MR nuclear translocation. Aldosterone-induced MR transactivation activity was reduced by the MRA spironolactone, not by torasemide. Spironolactone blocked the induction by aldosterone of endogenous MR-responsive genes (Sgk-1, PAI-1, Orosomucoid-1, Rgs-2, Serpina-3, Tenascin-X), while torasemide was ineffective. These results show that torasemide is not an MR antagonist; its association with MRA in heart failure may however be beneficial, through actions on complementary pathways.
Collapse
Affiliation(s)
- Basile Gravez
- INSERM Unité 872, Université Pierre et Marie Curie, Team 1, Centre de Recherche des Cordeliers, Paris, France
| | - Antoine Tarjus
- INSERM Unité 872, Université Pierre et Marie Curie, Team 1, Centre de Recherche des Cordeliers, Paris, France
| | - Ruben Jimenez-Canino
- Department of Physiology and Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife, Spain
| | - Soumaya El Moghrabi
- INSERM Unité 872, Université Pierre et Marie Curie, Team 1, Centre de Recherche des Cordeliers, Paris, France
| | - Smail Messaoudi
- INSERM Unité 872, Université Pierre et Marie Curie, Team 1, Centre de Recherche des Cordeliers, Paris, France
| | - Diego Alvarez de la Rosa
- Department of Physiology and Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife, Spain
| | - Frederic Jaisser
- INSERM Unité 872, Université Pierre et Marie Curie, Team 1, Centre de Recherche des Cordeliers, Paris, France
- Centre d’ Investigation Clinique, Institut Lorrain du Coeur et des Vaisseaux, Centre Hospitalier Universitaire de Brabois, Vandoeuvre-lès-Nancy, France
- * E-mail:
| |
Collapse
|