1
|
Jovanovic N, Zach V, Crocini C, Bahr LS, Forslund-Startceva SK, Franz K. A gender perspective on diet, microbiome, and sex hormone interplay in cardiovascular disease. Acta Physiol (Oxf) 2024; 240:e14228. [PMID: 39263901 DOI: 10.1111/apha.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
A unique interplay between body and environment embeds and reflects host-microbiome interactions that contribute to sex-differential disease susceptibility, symptomatology, and treatment outcomes. These differences derive from individual biological factors, such as sex hormone action, sex-divergent immune processes, X-linked gene dosage effects, and epigenetics, as well as from their interaction across the lifespan. The gut microbiome is increasingly recognized as a moderator of several body systems that are thus impacted by its function and composition. In humans, biological sex components further interact with gender-specific exposures such as dietary preferences, stressors, and life experiences to form a complex whole, requiring innovative methodologies to disentangle. Here, we summarize current knowledge of the interactions among sex hormones, gut microbiota, immune system, and vascular health and their relevance for sex-differential epidemiology of cardiovascular diseases. We outline clinical implications, identify knowledge gaps, and place emphasis on required future studies to address these gaps. In addition, we provide an overview of the caveats associated with conducting cardiovascular research that require consideration of sex/gender differences. While previous work has inspected several of these components separately, here we call attention to further translational utility of a combined perspective from cardiovascular translational research, gender medicine, and microbiome systems biology.
Collapse
Affiliation(s)
- Nina Jovanovic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Veronika Zach
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Claudia Crocini
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lina Samira Bahr
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia Kirke Forslund-Startceva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Kristina Franz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| |
Collapse
|
2
|
Litt MJ, Ali A, Reza N. Familial Hypertrophic Cardiomyopathy: Diagnosis and Management. Vasc Health Risk Manag 2023; 19:211-221. [PMID: 37050929 PMCID: PMC10084873 DOI: 10.2147/vhrm.s365001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is widely recognized as one of the most common inheritable cardiac disorders. Since its initial description over 60 years ago, advances in multimodality imaging and translational genetics have revolutionized our understanding of the disorder. The diagnosis and management of patients with HCM are optimized with a multidisciplinary approach. This, along with increased safety and efficacy of medical, percutaneous, and surgical therapies for HCM, has afforded more personalized care and improved outcomes for this patient population. In this review, we will discuss our modern understanding of the molecular pathophysiology that underlies HCM. We will describe the range of clinical presentations and discuss the role of genetic testing in diagnosis. Finally, we will summarize management strategies for the hemodynamic subtypes of HCM with specific emphasis on the rationale and evidence for the use of implantable cardioverter defibrillators, septal reduction therapy, and cardiac myosin inhibitors.
Collapse
MESH Headings
- Humans
- Cardiomyopathy, Hypertrophic, Familial/diagnosis
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/therapy
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/therapy
- Diagnostic Imaging
- Defibrillators, Implantable
Collapse
Affiliation(s)
- Michael J Litt
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ayan Ali
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Correspondence: Nosheen Reza, Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, 3400 Civic Center Boulevard, 11th Floor South Pavilion, Philadelphia, PA, 19104, USA, Tel +1 215 615 0044, Fax +1 215 615 1263, Email
| |
Collapse
|
3
|
Enzan N, Matsushima S, Ide T, Kaku H, Tohyama T, Funakoshi K, Higo T, Tsutsui H. Sex Differences in Time-Dependent Changes in B-Type Natriuretic Peptide in Hypertrophic Cardiomyopathy. Circ Rep 2021; 3:594-603. [PMID: 34703937 PMCID: PMC8492405 DOI: 10.1253/circrep.cr-21-0110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background:
Female sex is reported to be associated with poor prognosis in hypertrophic cardiomyopathy (HCM). The plasma B-type natriuretic peptide (BNP) concentration is a prognostic predictor in HCM. However, the effect of sex on BNP concentrations remains unclear among HCM patients. Methods and Results:
Patient records in the Clinical Personal Records of HCM national database of the Japanese Ministry of Health, Labour and Welfare from 2009 to 2014 were analyzed. Of 3,570 HCM patients, 611 in whom BNP concentrations were assessed at both baseline and the 2-year follow-up were included in this analysis. The mean age was 60.4 years and 254 (41.6%) patients were female. Median (interquartile range) BNP concentrations were higher in females than males at both baseline (320.3 [159.0–583.1] vs. 182.8 [86.1–363.9] pg/mL; P<0.001) and the 2-year follow-up (299.2 [147.0–535.3] vs. 161.0 [76.2–310.0] pg/mL; P<0.001). Female sex was associated with higher natural log-transformed BNP at the 2-year follow-up regardless of clinical characteristics, including echocardiographic findings and BNP concentrations at baseline (coefficient 0.31; 95% confidence interval 0.13–0.48; P<0.001). Cubic spline analysis showed that, among patients with high BNP concentrations at baseline, females had higher BNP concentrations at the 2-year follow-up than males. Conclusions:
In HCM, female sex was associated with higher BNP concentrations than male sex, independent of clinical characteristics, including BNP concentrations at baseline.
Collapse
Affiliation(s)
- Nobuyuki Enzan
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| | - Hidetaka Kaku
- Department of Cardiology, Japan Community Healthcare Organization Kyushu Hospital Fukuoka Japan
| | - Takeshi Tohyama
- Center for Clinical and Translational Research, Kyushu University Hospital Fukuoka Japan
| | - Kouta Funakoshi
- Center for Clinical and Translational Research, Kyushu University Hospital Fukuoka Japan
| | - Taiki Higo
- Department of Cardiovascular Medicine, National Hospital Organization, Kyushu Medical Center Fukuoka Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University Fukuoka Japan
| |
Collapse
|
4
|
Kim M, Kim B, Choi YJ, Lee HJ, Lee H, Park JB, Lee SP, Han KD, Kim YJ, Kim HK. Sex differences in the prognosis of patients with hypertrophic cardiomyopathy. Sci Rep 2021; 11:4854. [PMID: 33649405 PMCID: PMC7921653 DOI: 10.1038/s41598-021-84335-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
We investigated sex-related differences in the prognosis of patients with hypertrophic cardiomyopathy (HCM) using the Korea National Health Insurance Service database. From 2010 to 2016, 9524 patients diagnosed with HCM and had more than 1-year follow-up period were analyzed. The primary endpoint was the composite of cardiovascular death or new-onset heart failure (HF) admission. Propensity score-matching analysis was performed to adjust for different baseline characteristics. With a 4.4-years’ median follow-up interval (range 2.0–6.6 years) and male predominance (77.6%), women with HCM were older (52.6 ± 9.7 vs. 51.4 ± 9.1, p < 0.001), had lower incomes, more comorbidities based on Charlson comorbidity index. Women with HCM had a higher incidence of the primary endpoint than men (incidence rate: 34.15 vs. 22.83 per 1000 person-years, log-rank p < 0.001). Multivariable Cox analysis showed that female sex was a poor prognostic factor for the primary endpoint (HR 1.43, 95% CI 1.24–1.64, p < 0.001). This was mainly driven by a higher incidence of new-onset HF admission (HR 1.55, 95% CI 1.34–1.80). However, there was no difference in the incidence of cardiovascular death between the sexes. This result was concordant in the propensity score-matched cohort. In conclusion, women with HCM have worse prognosis, which was mainly driven by a higher new-onset HF admission.
Collapse
Affiliation(s)
- Minkwan Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Bongsung Kim
- Department of Statistics and Actuarial Science, The Soongsil University, Seoul, Republic of Korea
| | - You-Jung Choi
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Jung Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Heesun Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Jun-Bean Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung-Pyo Lee
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, The Soongsil University, Seoul, Republic of Korea
| | - Yong-Jin Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyung-Kwan Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Adalsteinsdottir B, Burke M, Maron BJ, Danielsen R, Lopez B, Diez J, Jarolim P, Seidman J, Seidman CE, Ho CY, Gunnarsson GT. Hypertrophic cardiomyopathy in myosin-binding protein C ( MYBPC3) Icelandic founder mutation carriers. Open Heart 2020; 7:e001220. [PMID: 32341788 PMCID: PMC7174027 DOI: 10.1136/openhrt-2019-001220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
Objective The myosin-binding protein C (MYBPC3) c.927-2A>G founder mutation accounts for >90% of sarcomeric hypertrophic cardiomyopathy (HCM) in Iceland. This cross-sectional observational study explored the penetrance and phenotypic burden among carriers of this single, prevalent founder mutation. Methods We studied 60 probands with HCM caused by MYBPC3 c.927-2A>G and 225 first-degree relatives. All participants underwent comprehensive clinical evaluation and relatives were genotyped. Results Genetic and clinical evaluation of relatives identified 49 genotype-positive (G+) relatives with left ventricular hypertrophy (G+/LVH+), 59 G+without LVH (G+/LVH-) and 117 genotype-negative relatives (unaffected). Compared with HCM probands, G+/LVH+ relatives were older at HCM diagnosis, had less LVH, a less prevalent diastolic dysfunction, fewer ECG abnormalities, lower serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I levels, and fewer symptoms. The penetrance of HCM was influenced by age and sex; specifically, LVH was present in 39% of G+males but only 9% of G+females under age 40 years (p=0.015), versus 86% and 83%, respectively, after age 60 (p=0.89). G+/LVH- subjects had normal wall thicknesses, diastolic function and NT-proBNP levels, but subtle changes in LV geometry and more ECG abnormalities than their unaffected relatives. Conclusions Phenotypic expression of the Icelandic MYBPC3 founder mutation varies by age, sex and proband status. Men are more likely to have LVH at a younger age, and disease manifestations were more prominent in probands than in relatives identified via family screening. G+/LVH- individuals had subtle clinical differences from unaffected relatives well into adulthood, indicating subclinical phenotypic expression of the pathogenic mutation.
Collapse
Affiliation(s)
- Berglind Adalsteinsdottir
- Department of Medicine, University of Iceland, Reykjavik, Iceland.,Division of Cardiology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Michael Burke
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Cardiology Division, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barry J Maron
- Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Massachusetts, USA
| | - Ragnar Danielsen
- Division of Cardiology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Begoña Lopez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain.,Carlos III Health Institute, Madrid, Spain
| | - Javier Diez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain.,Carlos III Health Institute, Madrid, Spain
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Gunnar Th Gunnarsson
- Department of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Medicine, Akureyri Hospital, Akureyri, Iceland
| |
Collapse
|
6
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
7
|
Peter AK, Rossi AC, Buvoli M, Ozeroff CD, Crocini C, Perry AR, Buvoli AE, Lee LA, Leinwand LA. Expression of Normally Repressed Myosin Heavy Chain 7b in the Mammalian Heart Induces Dilated Cardiomyopathy. J Am Heart Assoc 2019; 8:e013318. [PMID: 31364453 PMCID: PMC6761648 DOI: 10.1161/jaha.119.013318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background In mammals, muscle contraction is controlled by a family of 10 sarcomeric myosin motors. The expression of one of its members, MYH7b, is regulated by alternative splicing, and while the protein is restricted to specialized muscles such as extraocular muscles or muscle spindles, RNA that cannot encode protein is expressed in most skeletal muscles and in the heart. Remarkably, birds and snakes express MYH7b protein in both heart and skeletal muscles. This observation suggests that in the mammalian heart, the motor activity of MYH7b may only be needed during development since its expression is prevented in adult tissue, possibly because it could promote disease by unbalancing myocardial contractility. Methods and Results We have analyzed MYH7b null mice to determine the potential role of MYH7b during cardiac development and also generated transgenic mice with cardiac myocyte expression of MYH7b protein to measure its impact on cardiomyocyte function and contractility. We found that MYH7b null mice are born at expected Mendelian ratios and do not have a baseline cardiac phenotype as adults. In contrast, transgenic cardiac MYH7b protein expression induced early cardiac dilation in males with significantly increased left ventricular mass in both sexes. Cardiac dilation is progressive, leading to early cardiac dysfunction in males, but later dysfunction in females. Conclusions The data presented show that the expression of MYH7b protein in the mammalian heart has been inhibited during the evolution of mammals most likely to prevent the development of a severe cardiomyopathy that is sexually dimorphic.
Collapse
Affiliation(s)
- Angela K Peter
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Alberto C Rossi
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Massimo Buvoli
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Christopher D Ozeroff
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Claudia Crocini
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Amy R Perry
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Ada E Buvoli
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Lindsey A Lee
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology Biofrontiers Institute University of Colorado Boulder CO
| |
Collapse
|
8
|
|
9
|
Di Gioia F, Petropoulos SA. Phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:351-421. [PMID: 31445599 DOI: 10.1016/bs.afnr.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Phytoestrogens are non-steroidal secondary metabolites with similarities in structure and biological activities with human estrogens divided into various classes of compounds, including lignans, isoflavones, ellagitannins, coumestans and stilbenes. Similarly, phytosteroids are steroidal compounds of plant origin which have estrogenic effects and can act as agonists, antagonists, or have a mixed agonistic/antagonistic activity to animal steroid receptors. On the other hand, saponins are widely distributed plant glucosides divided into triterpenoid and steroidal saponins that contribute to plant defense mechanism against herbivores. They present a great variation from a structural point of view, including compounds from different classes. In this chapter, the main vegetable sources of these compounds will be presented, while details regarding their biosynthesis and plant functions will be also discussed. Moreover, considering the significant bioactive properties that these compounds exhibit, special focus will be given on their health effects, either beneficial or adverse. The practical applications of these compounds in agriculture and phytomedicine will be also demonstrated, as well as the future prospects for related research.
Collapse
Affiliation(s)
- Francesco Di Gioia
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Spyridon A Petropoulos
- Department of Crop Production and Rural Environment, University of Thessaly, Volos, Greece.
| |
Collapse
|
10
|
Geske JB, Ong KC, Siontis KC, Hebl VB, Ackerman MJ, Hodge DO, Miller VM, Nishimura RA, Oh JK, Schaff HV, Gersh BJ, Ommen SR. Women with hypertrophic cardiomyopathy have worse survival. Eur Heart J 2018; 38:3434-3440. [PMID: 29020402 DOI: 10.1093/eurheartj/ehx527] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023] Open
Abstract
Aims Sex differences in hypertrophic cardiomyopathy (HCM) remain unclear. We sought to characterize sex differences in a large HCM referral centre population. Methods and results Three thousand six hundred and seventy-three adult patients with HCM underwent evaluation between January 1975 and September 2012 with 1661 (45.2%) female. Kaplan-Meier survival curves were assessed via log-rank test. Cox proportional hazard regression analyses evaluated the relation of sex with survival. At index visit, women were older (59 ± 16 vs. 52 ± 15 years, P < 0.0001) had more symptoms [New York Heart Association (NYHA) Class III-IV 45.0% vs. 35.3%, P < 0.0001], more obstructive physiology (77.4% vs. 71.8%, P = 0.0001), more mitral regurgitation (moderate or greater in 56.1% vs. 43.9%, P < 0.0001), higher E/e' ratio (n = 1649, 20.6 vs. 15.6, P < 0.0001), higher estimated pulmonary artery systolic pressure (n = 1783, 40.8 ± 15.4 vs. 34.8 ± 10.8 mmHg, P < 0.0001), worse cardiopulmonary exercise performance (n = 1267; percent VO2 predicted 62.8 ± 20% vs. 65.8 ± 19.2%, P = 0.007), and underwent more frequent alcohol septal ablation (4.9% vs. 3.0%, P = 0.004) but similar frequency of myectomy (28% vs. 30%, P = 0.24). Median follow-up was 10.9 (IQR 7.4-16.2) years. Kaplan-Meier analysis demonstrated lower survival in women compared with men (P < 0.0001). In multivariable modelling, female sex remained independently associated with mortality (HR 1.13 [1.03-1.22], P = 0.01) when adjusted for age, NYHA Class III-IV symptoms, and cardiovascular comorbidities. Conclusion Women with HCM present at more advanced age, with more symptoms, worse cardiopulmonary exercise tolerance, and different haemodynamics than men. Sex is an important determinant in HCM management as women with HCM have worse survival. Women may require more aggressive diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jeffrey B Geske
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Kevin C Ong
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Konstantinos C Siontis
- Department of Internal Medicine, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Virginia B Hebl
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Michael J Ackerman
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA.,Department of Pediatrics, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA.,Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - David O Hodge
- Department of Biomedical Statistics and Informatics, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Virginia M Miller
- Women's Health Research Center, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Rick A Nishimura
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Jae K Oh
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Hartzell V Schaff
- Department of Cardiovascular Surgery, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Bernard J Gersh
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| | - Steve R Ommen
- Department of Cardiovascular Diseases, Mayo Clinic, 200 First St. S.W., Rochester, MN 55905, USA
| |
Collapse
|
11
|
Trexler CL, Odell AT, Jeong MY, Dowell RD, Leinwand LA. Transcriptome and Functional Profile of Cardiac Myocytes Is Influenced by Biological Sex. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001770. [PMID: 29030402 PMCID: PMC5679409 DOI: 10.1161/circgenetics.117.001770] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although cardiovascular disease is the primary killer of women in the United States, women and female animals have traditionally been omitted from research studies. In reports that do include both sexes, significant sexual dimorphisms have been demonstrated in development, presentation, and outcome of cardiovascular disease. However, there is little understanding of the mechanisms underlying these observations. A more thorough understanding of sex-specific cardiovascular differences both at baseline and in disease is required to effectively consider and treat all patients with cardiovascular disease. METHODS AND RESULTS We analyzed contractility in the whole rat heart, adult rat ventricular myocytes (ARVMs), and myofibrils from both sexes of rats and observed functional sex differences at all levels. Hearts and ARVMs from female rats displayed greater fractional shortening than males, and female ARVMs and myofibrils took longer to relax. To define factors underlying these functional differences, we performed an RNA sequencing experiment on ARVMs from male and female rats and identified ≈600 genes were expressed in a sexually dimorphic manner. Further analysis revealed sex-specific enrichment of signaling pathways and key regulators. At the protein level, female ARVMs exhibited higher protein kinase A activity, consistent with pathway enrichment identified through RNA sequencing. In addition, activating the protein kinase A pathway diminished the contractile sexual dimorphisms previously observed. CONCLUSIONS These data support the notion that sex-specific gene expression differences at baseline influence cardiac function, particularly through the protein kinase A pathway, and could potentially be responsible for differences in cardiovascular disease presentation and outcomes.
Collapse
Affiliation(s)
- Christa L Trexler
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Aaron T Odell
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Mark Y Jeong
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Robin D Dowell
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.).
| |
Collapse
|
12
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
13
|
Determination of Isoflavones in Soybean Flour by Matrix Solid-Phase Dispersion Extraction and Liquid Chromatography with UV-Diode Array Detection. J FOOD QUALITY 2017. [DOI: 10.1155/2017/8049039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new analytical method, based on liquid chromatography (LC) with UV-diode array detection, for the simultaneous determination of daidzein, genistein, and glycitein and their 7-O-β-D-glucopyranoside (daidzin, genistin, and glycitin, resp.) has been successfully developed. All the calibration curves showed good linearity within the concentration range 0.02–2 μg/ml. The limits of detection and quantitation were 0.057 (genistin and glycitein), 0.124 μg/ml (genistein), 0.190 μg/ml (genistin and glycitein), and 0.410 μg/ml (genistein), respectively. Within-day and between-days precision were found not to be significantly different according to an F-test; values (% RSD) ranged from 2.0 to 2.9%. Extraction and clean-up of soybean flour samples were carried out using matrix solid-phase dispersion extraction (MSPD). The main parameters affecting extraction yield, such as dispersant, type and amount of additives, cosorbent, and extractive solvent, were evaluated and optimized. The average recovery values were between 85.7 and 102.6%. The target isoflavone concentration levels estimated in this work fit existing literature data and were comprised between 39.3 and 345.3 μg/g. The whole procedure has proved to be simple, accurate, precise, and cheap.
Collapse
|
14
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
15
|
Landete JM, Arqués J, Medina M, Gaya P, de Las Rivas B, Muñoz R. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Crit Rev Food Sci Nutr 2016; 56:1826-43. [PMID: 25848676 DOI: 10.1080/10408398.2013.789823] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Phytoestrogens are polyphenols similar to human estrogens found in plants or derived from plant precursors. Phytoestrogens are found in high concentration in soya, flaxseed and other seeds, fruits, vegetables, cereals, tea, chocolate, etc. They comprise several classes of chemical compounds (stilbenes, coumestans, isoflavones, ellagitannins, and lignans) which are structurally similar to endogenous estrogens but which can have both estrogenic and antiestrogenic effects. Although epidemiological and experimental evidence indicates that intake of phytoestrogens in foods may be protective against certain chronic diseases, discrepancies have been observed between in vivo and in vitro experiments. The microbial transformations have not been reported so far in stilbenes and coumestans. However, isoflavones, ellagitanins, and lignans are metabolized by intestinal bacteria to produce equol, urolithins, and enterolignans, respectively. Equol, urolithin, and enterolignans are more bioavailable, and have more estrogenic/antiestrogenic and antioxidant activity than their precursors. Moreover, equol, urolithins and enterolignans have anti-inflammatory effects and induce antiproliferative and apoptosis-inducing activities. The transformation of isoflavones, ellagitanins, and lignans by intestinal microbiota is essential to be protective against certain chronic diseases, as cancer, cardiovascular disease, osteoporosis, and menopausal symptoms. Bioavailability, bioactivity, and health effects of dietary phytoestrogens are strongly determined by the intestinal bacteria of each individual.
Collapse
Affiliation(s)
- J M Landete
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - J Arqués
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - M Medina
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - P Gaya
- a Departamento de Tecnología de Alimentos , Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) . Madrid , Spain
| | - B de Las Rivas
- b Departamento de Biotecnología Bacteriana , Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC) , Madrid , Spain
| | - R Muñoz
- b Departamento de Biotecnología Bacteriana , Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN), Consejo Superior de Investigaciones Científicas (CSIC) , Madrid , Spain
| |
Collapse
|
16
|
Pugach EK, Blenck CL, Dragavon JM, Langer SJ, Leinwand LA. Estrogen receptor profiling and activity in cardiac myocytes. Mol Cell Endocrinol 2016; 431:62-70. [PMID: 27164442 PMCID: PMC4899180 DOI: 10.1016/j.mce.2016.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/14/2016] [Accepted: 05/05/2016] [Indexed: 01/01/2023]
Abstract
Estrogen signaling appears critical in the heart. However a mechanistic understanding of the role of estrogen in the cardiac myocyte is lacking. Moreover, there are multiple cell types in the heart and multiple estrogen receptor (ER) isoforms. Therefore, we studied expression, localization, transcriptional and signaling activity of ERs in isolated cardiac myocytes. We found only ERα RNA (but no ERβ RNA) in cardiac myocytes using two independent methods. The vast majority of full-length ERα protein (ERα66) localizes to cardiac myocyte nuclei where it is competent to activate transcription. Alternate isoforms of ERα encoded by the same genomic locus (ERα46 and ERα36) have differential transcriptional activity in cardiac myocytes but also primarily localize to nuclei. In contrast to other reports, no ERα isoform is competent to activate MAPK or PI3K signaling in cardiac myocytes. Together these data support a role for ERα at the level of transcription in cardiac myocytes.
Collapse
Affiliation(s)
- Emily K Pugach
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Christa L Blenck
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Joseph M Dragavon
- University of Colorado, BioFrontiers Advanced Light Microscopy Core, BioFrontiers Institute, Boulder, CO 80309 USA
| | - Stephen J Langer
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| | - Leslie A Leinwand
- University of Colorado at Boulder, Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, Boulder, CO 80303 USA
| |
Collapse
|
17
|
Sex-Dependent Effects of Dietary Genistein on Echocardiographic Profile and Cardiac GLUT4 Signaling in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1796357. [PMID: 27471542 PMCID: PMC4947657 DOI: 10.1155/2016/1796357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 01/13/2023]
Abstract
This study aimed to determine whether genistein diet resulted in changes in cardiac function, using echocardiography, and expression of key proteins involved in glucose uptake by the myocardium. Intact male and female C57BL/6J mice (aged 4–6 weeks) were fed either 600 mg genistein/kg diet (600 G) or 0 mg genistein/kg diet (0 G) for 4 weeks. Echocardiography data revealed sex-dependent differences in the absence of genistein: compared to females, hearts from males exhibited increased systolic left ventricle internal dimension (LVIDs), producing a decrease in function, expressed as fractional shortening (FS). Genistein diet also induced echocardiographic changes in function: in female hearts, 600G induced a 1.5-fold (P < 0.05) increase in LVIDs, resulting in a significant decrease in FS and whole heart surface area when compared to controls (fed 0 G). Genistein diet increased cardiac GLUT4 protein expression in both males (1.51-fold, P < 0.05) and females (1.76-fold, P < 0.05). However, no effects on the expression of notable intracellular signaling glucose uptake-regulated proteins were observed. Our data indicate that consumption of genistein diet for 4 weeks induces echocardiographic changes in indices of systolic function in females and has beneficial effects on cardiac GLUT4 protein expression in both males and females.
Collapse
|
18
|
Islam MA, Bekele R, Vanden Berg JHJ, Kuswanti Y, Thapa O, Soltani S, van Leeuwen FXR, Rietjens IMCM, Murk AJ. Deconjugation of soy isoflavone glucuronides needed for estrogenic activity. Toxicol In Vitro 2015; 29:706-15. [PMID: 25661160 DOI: 10.1016/j.tiv.2015.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 01/17/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
Abstract
Soy isoflavones (SIF) are present in the systemic circulation as conjugated forms of which the estrogenic potency is not yet clear. The present study provides evidence that the major SIF glucuronide metabolites in blood, genistein-7-O-glucuronide (GG) and daidzein-7-O-glucuronide (DG), only become estrogenic after deconjugation. The estrogenic potencies of genistein (Ge), daidzein (Da), GG and DG were determined using stably transfected U2OS-ERα, U2OS-ERβ reporter gene cells and proliferation was tested in T47D-ERβ cells mimicking the ERα/ERβ ratio of healthy breast cells and inT47D breast cancer cells. In all assays applied, the estrogenic potency of the aglycones was significantly higher than that of their corresponding glucuronides. UPLC analysis revealed that in U2OS and T47D cells, 0.2-1.6% of the glucuronides were deconjugated to their corresponding aglycones. The resulting aglycone concentrations can account for the estrogenicity observed upon glucuronide exposure. Interestingly, under similar experimental conditions, rat breast tissue S9 fraction was about 30 times more potent in deconjugating these glucuronides than human breast tissue S9 fraction. Our study confirms that SIF glucuronides are not estrogenic as such, and that the small % of deconjugation in the cell is enough to explain the slight bioactivity observed for the SIF-glucuronides. Species differences in deconjugation capacity should be taken into account when basing risk-benefit assessment of these SIF for the human population on animal data.
Collapse
Affiliation(s)
- M A Islam
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands.
| | - R Bekele
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - J H J Vanden Berg
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - Y Kuswanti
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - O Thapa
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - S Soltani
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - F X R van Leeuwen
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - I M C M Rietjens
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| | - A J Murk
- Division of Toxicology, Wageningen University, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
19
|
Harvey PA, Leinwand LA. Oestrogen enhances cardiotoxicity induced by Sunitinib by regulation of drug transport and metabolism. Cardiovasc Res 2015; 107:66-77. [PMID: 26009590 DOI: 10.1093/cvr/cvv152] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 05/06/2015] [Indexed: 01/13/2023] Open
Abstract
AIMS To define the molecular mechanisms of cardiotoxicity induced by Sunitinib and to identify the role of biological sex in modulating toxicity. METHODS AND RESULTS Exposure of isolated cardiomyocytes to plasma-relevant concentrations of Sunitinib and other tyrosine kinase inhibitors produces a broad spectrum of abnormalities and cell death via apoptosis downstream of sexually dimorphic kinase inhibition. Phosphorylation of protein kinase C and phospholipase γ abrogates these effects for most tyrosine kinase inhibitors tested. Female sex and estradiol cause increased cardiotoxicity, which is mediated by reduced expression of a drug efflux transporter and a metabolic enzyme. Female but not male mice exposed to a 28-day course of oral Sunitinib exhibit similar abnormalities as well as functional deficits and their hearts exhibit differential expression of genes responsible for transport and metabolism of Sunitinib. CONCLUSION We identify the specific pathways affected by tyrosine kinase inhibitors in mammalian cardiomyocytes, interactions with biological sex, and a role for oestrogen in modulating drug efflux and metabolism. These findings represent a critical step toward reducing the incidence of cardiotoxicity with tyrosine kinase inhibitor chemotherapeutics.
Collapse
Affiliation(s)
- Pamela Ann Harvey
- Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Leslie Anne Leinwand
- Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
20
|
Chen Y, Zhang Z, Hu F, Yang W, Yuan J, Cui J, Hao S, Hu J, Zhou Y, Qiao S. 17β-estradiol prevents cardiac diastolic dysfunction by stimulating mitochondrial function: a preclinical study in a mouse model of a human hypertrophic cardiomyopathy mutation. J Steroid Biochem Mol Biol 2015; 147:92-102. [PMID: 25541436 DOI: 10.1016/j.jsbmb.2014.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated the effect of ovariectomy (OVX) and 17β-estradiol (E2) replacement on both mitochondrial and myocardial function in cTnT-Q92 transgenic mice generated by cardiac-restricted expression of a human hypertrophic cardiomyopathy (HCM) mutation. METHODS The cTnT-Q92 mice were ovariectomized at twenty weeks of age and were treated with either placebo (OVX group) or E2 (OVX+E2 group) for twelve weeks before being sacrificed. Wild-type and cTnT-Q92 female mice receiving sham operation were used as controls. Indices of diastolic function such as mitral early (E) and late (A) inflow as well as isovolumic relaxation time (IVRT) were measured by echocardiography. A Clark-type electrode was used to detect respiratory control, and ATP levels were determined at the mitochondrial level using HPLC. Key components related to mitochondrial energy metabolism, such as peroxisome proliferator-activated receptor α (PPARα), PPARγ coactivator 1α (PGC-1α) and nuclear respiratory factor-1 (NRF-1), were also analyzed using Western blot and RT-PCR. The levels of oxidative stress markers were determined by measuring malondialdehyde (MDA) using the thiobarbituric acid assay. RESULTS The cTnT-Q92 mice had impaired diastolic function compared with wild-type mice (E/A ratio, 1.39 ± 0.04 vs. 1.21 ± 0.01, p<0.001; IVRT, 19.17 ± 0.85 vs. 22.15 ± 1.43 ms, p=0.028). In response to ovariectomy, cardiac function further decreased compared with that observed in cTnT-Q92 mice that received the sham operation (E/A ratio, 1.15 ± 0.04 vs. 1.21 ± 0.01, p<0.001; IVRT, 28.31 ± 0.39 vs. 22.15 ± 1.43 ms, p=0.002). Myocardial energy metabolism, as determined by ATP levels (3.49 ± 0.31 vs. 5.07 ± 0.47 μmol/g, p<0.001), and the mitochondrial respiratory ratio (2.04 ± 0.10 vs. 2.63 ± 0.11, p=0.01) also decreased significantly. By contrast, myocardial concentrations of MDA increased significantly in the OVX group, and PGC-1α, PPARα and NRF-1decreased significantly. E2 supplementation significantly elevated myocardial ATP levels (4.55 ± 0.21 vs. 3.49 ± 0.31 μmol/g, p=0.003) and mitochondrial respiratory function (3.93 ± 0.05 vs. 2.63 ± 0.11, p=0.001); however, it reduced the MDA level (0.21 ± 0.02 vs. 0.36 ± 0.03 nmol/g, p<0.001), which subsequently improved diastolic function (E/A ratio, 1.35 ± 0.06 vs. 1.15 ± 0.04, p<0.001; IVRT, 18.22 ± 1.16 vs. 28.31 ± 0.39 ms, p=0.007). CONCLUSIONS Our study has shown that 17β-estradiol improved myocardial diastolic function, prevented myocardial energy dysregulation, and reduced myocardial oxidative stress in cTnT-Q92 mice.
Collapse
Affiliation(s)
- Youzhou Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Zhuoli Zhang
- Department of Radiology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 737 N Michigan Ave., 16th Floor, Chicago, USA
| | - Fenghuan Hu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Weixian Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiansong Yuan
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jingang Cui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shujing Hao
- Clinical Laboratory of Zhongke, Beijing, China
| | - Jie Hu
- Clinical Laboratory of Zhongke, Beijing, China
| | - Ying Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shubin Qiao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
21
|
Harvey PA, Leinwand LA. Dietary phytoestrogens present in soy dramatically increase cardiotoxicity in male mice receiving a chemotherapeutic tyrosine kinase inhibitor. Mol Cell Endocrinol 2015; 399:330-5. [PMID: 25458703 PMCID: PMC4278405 DOI: 10.1016/j.mce.2014.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 11/18/2022]
Abstract
Use of soy supplements to inhibit cancer cell growth is increasing among patients due to the perception that phytoestrogens in soy inhibit carcinogenesis via induction of apoptosis. Genistein, the most prevalent phytoestrogen in soy, is a potent endocrine disruptor and tyrosine kinase inhibitor (TKI) that causes apoptosis in many cells types. Chemotherapeutic TKIs limit cancer cell growth via the same mechanisms. However, TKIs such as Sunitinib cause cardiotoxicity in a significant number of patients. Molecular interactions between Sunitinib and dietary TKIs like genistein have not been examined in cardiomyocytes. Significant lethality occurred in mice treated with Sunitinib and fed a phytoestrogen-supplemented diet. Isolated cardiomyocytes co-treated with genistein and Sunitinib exhibited additive inhibition of signaling molecules important for normal cardiac function and increased apoptosis compared with Sunitinib alone. Thus, dietary soy supplementation should be avoided during administration of Sunitinib due to exacerbated cardiotoxicity, despite evidence for positive effects in cancer.
Collapse
Affiliation(s)
- Pamela Ann Harvey
- Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Leslie Anne Leinwand
- Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
22
|
Islam MA, Hooiveld GJEJ, van den Berg JHJ, Boekschoten MV, van der Velpen V, Murk AJ, Rietjens IMCM, van Leeuwen FXR. Plasma bioavailability and changes in PBMC gene expression after treatment of ovariectomized rats with a commercial soy supplement. Toxicol Rep 2015; 2:308-321. [PMID: 28962364 PMCID: PMC5598277 DOI: 10.1016/j.toxrep.2014.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 11/02/2022] Open
Abstract
The health effects of soy supplementation in (post)menopausal women are still a controversial issue. The aim of the present study was to establish the effect of the soy isoflavones (SIF) present in a commercially available supplement on ovariectomized rats and to investigate whether these rats would provide an adequate model to predict effects of SIF in (post)menopausal women. Two dose levels (i.e. 2 and 20 mg/kg b.w.) were used to characterize plasma bioavailability, urinary and fecal concentrations of SIF and changes in gene expression in peripheral blood mononuclear cells (PBMC). Animals were dosed at 0 and 48 h and sacrificed 4 h after the last dose. A clear dose dependent increase of SIF concentrations in plasma, urine and feces was observed, together with a strong correlation in changes in gene expression between the two dose groups. All estrogen responsive genes and related biological pathways (BPs) that were affected by the SIF treatment were regulated in both dose groups in the same direction and indicate beneficial effects. However, in general no correlation was found between the changes in gene expression in rat PBMC with those in PBMC of (post)menopausal women exposed to a comparable dose of the same supplement. The outcome of this short-term study in rats indicates that the rat might not be a suitable model to predict effects of SIF in humans. Although the relative exposure period in this rat study is comparable with that of the human study, longer repetitive administration of rats to SIF may be required to draw a final conclusion on the suitability of the rat a model to predict effects of SIF in humans.
Collapse
Key Words
- BPs, biological pathways
- Bioavailability
- DMSO, dimethyl sulfoxide
- Dose effect
- E2, estradiol
- ECM, extracellular matrix
- EREs, estrogen-responsive elements
- ERs, estrogen receptors
- GSEA, gene set enrichment analysis
- Gene expression
- HD, high dose
- HPLC, high performance liquid chromatography
- KEGG, kyoto encyclopedia of genes and genomes
- LD, low dose
- MDS, multidimensional scaling
- NCBI, National Center for Biotechnology Information
- PBMC, peripheral blood mononuclear cells
- SIF, soy isoflavones
- Soy supplementation
- Species differences
- UPC, universal expression code
Collapse
Affiliation(s)
- Mohammed A Islam
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | | | - Mark V Boekschoten
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands
| | - Vera van der Velpen
- Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703 HE Wageningen, The Netherlands.,Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Albertinka J Murk
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| | - F X Rolaf van Leeuwen
- Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands
| |
Collapse
|
23
|
Wang Y, Wang J, Zou Y, Bao J, Sun K, Zhu L, Tian T, Shen H, Zhou X, Ahmad F, Hui R, Song L. Female sex is associated with worse prognosis in patients with hypertrophic cardiomyopathy in China. PLoS One 2014; 9:e102969. [PMID: 25047602 PMCID: PMC4105411 DOI: 10.1371/journal.pone.0102969] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022] Open
Abstract
Background Sex plays an important role in the clinical expression and prognosis of various cardiovascular diseases. This study was designed to observe the effects of sex on hypertrophic cardiomyopathy (HCM). Methods and Results A total of 621 unrelated patients with HCM without heart failure (460 males) were enrolled from 1999 to 2011. Compared to male patients, at baseline female patients were older at diagnosis (49.6±17.2 years vs. 46.7±14.4 years, P = 0.033), and had greater frequency of left ventricular outflow tract obstruction (72/161, 44.7% vs. 149/460, 32.4%, P = 0.005). During the average four year follow-up period (range 2–7 years), survival analysis showed that the incidences of mortality from all causes, cardiovascular death and progression to chronic heart failure were greater in women than in men (P = 0.031, 0.040 and 0.012, respectively). After adjustment for multiple factors that may confound survival and cardiac function, female sex remained an independent risk factor for all-cause mortality, cardiovascular death, and chronic heart failure [hazard ratio (HR) 2.19, 95% confidence interval (CI) 1.21–3.95, P = 0.010; HR 2.19, 95% CI 1.17–4.09, P = 0.014; HR 1.73, 95% CI 1.12–2.69, P = 0.014, respectively] in HCM patients. Subgroup analysis revealed that female sex as a risk factor was identified only in patients younger than 50 years old (P = 0.011, 0.011 and 0.009, respectively), but not for those 50 years or older. Conclusion Our results suggest that female sex is associated with worse survival and heart failure in HCM patients. Further studies are required to determine whether female hormones modify the clinical expression and prognosis of HCM.
Collapse
Affiliation(s)
- Yilu Wang
- Department of ICU, China Meitan General Hospital, Beijing, China
| | - Jizheng Wang
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yubao Zou
- Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingru Bao
- Center for cardiovascular diseases, PLA Navy General Hospital, Beijing, China
| | - Kai Sun
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Zhu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shanxi Province, China
| | - Tao Tian
- Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hu Shen
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an, Shanxi Province, China
| | - Xianliang Zhou
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Rutai Hui
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (LS); (RH)
| | - Lei Song
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Internal Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (LS); (RH)
| |
Collapse
|
24
|
Pellegrini M, Bulzomi P, Lecis M, Leone S, Campesi I, Franconi F, Marino M. Endocrine disruptors differently influence estrogen receptor β and androgen receptor in male and female rat VSMC. J Cell Physiol 2014; 229:1061-8. [PMID: 24347325 DOI: 10.1002/jcp.24530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
Abstract
Sex steroid hormones differently control the major physiological processes in male and female organisms. In particular, their effects on vascular smooth muscle cells (VSMCs) migration are at the root of sex/gender-related differences reported in the cardiovascular system. Several exogenous substances, defined endocrine disruptor chemicals (EDCs), could interfere with these androgen and estrogen effects; however, the sex/gender-related susceptibility of VSMC motility to EDCs is completely unknown. Here, the effect of naturally occurring (naringenin, Nar) and synthetic (bisphenol A, BPA) EDCs on male and female VSMC motility has been evaluated. 17β-estradiol (E2, 0.1 nM-1 µM) induced a dose-dependent inhibition of motility in female-derived VSMC. In contrast, neither dihydrotestosterone (DHT, 0.01-100 nM) nor the common precursor of sex steroid hormones, testosterone (Tes, 0.01-100 nM) modified male-derived VSMC motility. Estrogen receptor (ER) β subtype-dependent activation of p38 was necessary for the E2 effect on cell motility. High BPA concentration prevented E2 effects in female-derived cells being without any effect in male-derived cells. Nar mimicked E2 effects on female-derived cells even in the presence of E2 or BPA. Intriguingly, Nar also inhibited the male-derived VSMC mobility. This latter effect was prevented by ERβ inhibitor, but not by the androgen receptor (AR) inhibitor. As a whole, ERβ-dependent signals in VSMC results more susceptible to the impact of EDCs than AR signals suggesting a possible high and overall susceptibility of female to EDCs. However, several male-derived cells, including VSMC, express ERβ, which could also serve as target of EDC disruption in male organisms.
Collapse
|
25
|
Bell JR, Bernasochi GB, Varma U, Boon WC, Ellem SJ, Risbridger GP, Delbridge LMD. Aromatase transgenic upregulation modulates basal cardiac performance and the response to ischemic stress in male mice. Am J Physiol Heart Circ Physiol 2014; 306:H1265-74. [DOI: 10.1152/ajpheart.00012.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen in females is conventionally considered a cardioprotective influence, but a role for estrogen in male cardioprotection has yet to be defined. Estrogen biosynthesis from testosterone is regulated by aromatase. Aromatase has recently been shown to be expressed in the adult heart, although little is known about its involvement in the regulation of myocardial function and stress responses. The goal of this study was to determine whether upregulation of tissue aromatase expression could improve ischemic resilience in male hearts. Isolated hearts from male transgenic aromatase-overexpressing (AROM+; high estrogen, low testosterone) mice and wild-type (WT) mice (12 wk) were Langendorff perfused and subjected to ischemia-reperfusion (25 min ischemia and 60 min of reperfusion). Basal systolic function was lower in AROM+ hearts (dP/d tmax: 4,121 ± 255 vs. 4,992 ± 283 mmHg/s, P < 0.05) and associated with augmented Akt phosphorylation, consistent with a suppressor action of estrogen on contractility. Ischemic contracture was attenuated in AROM+ hearts (43 ± 3 vs. 55 ± 4 mmHg, P < 0.05), yet AROM+ hearts were more arrhythmic in early reperfusion. At the end of 60 min of reperfusion, AROM+ systolic functional recovery was lower (left ventricular developed pressure: 39 ± 6 vs. 56 ± 5 %basal, P < 0.05) and diastolic dysfunction was accentuated (36 ± 4 vs. 24 ± 2 mmHg, P < 0.05). This is the first study to show that in vivo aromatase upregulation modulates basal cardiac performance and the response to ischemic stress. These data suggest that while chronic exposure to enhanced estrogenic influence may have benefits in limiting ischemic contracture severity, acute functional recovery in reperfusion is compromised. A temporally targeted, tissue-specific intervention combining aromatase treatment with inotropic support may offer therapeutic potential for men and women.
Collapse
Affiliation(s)
- James R. Bell
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Upasna Varma
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Stuart J. Ellem
- Prostate Cancer Research Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Gail P. Risbridger
- Prostate Cancer Research Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Lea M. D. Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Bell JR, Bernasochi GB, Varma U, Raaijmakers AJA, Delbridge LMD. Sex and sex hormones in cardiac stress--mechanistic insights. J Steroid Biochem Mol Biol 2013; 137:124-35. [PMID: 23770428 DOI: 10.1016/j.jsbmb.2013.05.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/14/2023]
Abstract
Important sex differences in the onset and characteristics of cardiovascular disease are evident, yet the mechanistic details remain unresolved. Men are more susceptible to cardiovascular disease earlier in life, though younger women who have a cardiovascular event are more likely to experience adverse outcomes. Emerging evidence is prompting a re-examination of the conventional view that estrogen is protective and testosterone a liability. The heart expresses both androgen and estrogen receptors and is functionally responsive to circulating sex steroids. New evidence of cardiac aromatase expression indicates local estrogen production may also exert autocrine/paracrine actions in the heart. Cardiomyocyte contractility studies suggest testosterone and estrogen have contrasting inotropic actions, and modulate Ca(2+) handling and transient characteristics. Experimentally, sex differences are also evident in cardiac stress responses. Female hearts are generally less susceptible to acute ischemic damage and associated arrhythmias, and generally are more resistant to stress-induced hypertrophy and heart failure, attributed to the cardioprotective actions of estrogen. However, more recent data show that testosterone can also improve acute post-ischemic outcomes and facilitate myocardial function and survival in chronic post-infarction. The myocardial actions of sex steroids are complex and context dependent. A greater mechanistic understanding of the specific actions of systemic/local sex steroids in different cardiovascular disease states has potential to lead to the development of cardiac therapies targeted specifically for men and women.
Collapse
Affiliation(s)
- James R Bell
- Department of Physiology, University of Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|
27
|
Haddad R, Kasneci A, Sebag IA, Chalifour LE. Cardiac structure/function, protein expression, and DNA methylation are changed in adult female mice exposed to diethylstilbestrol in utero. Can J Physiol Pharmacol 2013; 91:741-9. [PMID: 23984849 DOI: 10.1139/cjpp-2013-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The detrimental effects of in utero exposure to the non-steroidal estrogen diethylstilbestrol (DES) are particularly marked in women. Fetal hearts express estrogen receptors, making them potentially responsive to DES. To examine whether gestational exposure to DES would impact the heart, we exposed pregnant C57bl/6n dams to DES (0.1, 1.0, and 10.0 μg·(kg body mass)(-1)·day(-1)) on gestation days 11.5-14.5, and examined the measured cardiac structure/function and calcium homeostasis protein expression in adult females. At baseline, echocardiography revealed eccentric hypertrophy in mice treated with 10.0 μg·(kg body mass)(-1)·day(-1) DES, and immunoblots showed increased SERCA2a in all DES-treated mice. Mice were swim-trained to assess cardiac remodeling. Swim-trained vehicle-treated mice developed eccentric hypertrophy without changing SERCA2 or calsequestrin 2 expression. In contrast, no DES-treated mice hypertrophied, and all increased in SERCA2a and calsequestrin 2 expression after training. To determine whether DES-induced changes in DNA methylation is part of the mechanism for its long-term effects, we measured DNA methyltransferase expression and DNA methylation. Global DNA methylation and DNA methyltransferase 3a expression were unchanged. However, DES-treated mice had increased DNA methylation in the calsequestrin 2 promoter. Thus, gestational exposure to DES altered female ventricular DNA, cardiac structure/function, and calcium homeostasis protein expression. We conclude that gestational exposure to estrogenizing compounds may impact cardiac structure/function in adult females.
Collapse
Affiliation(s)
- Rami Haddad
- Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin de la Côte Sainte Catherine, Montréal, QC H3T 1E2, Canada
| | | | | | | |
Collapse
|