1
|
Chowdhury P, Velalopoulou A, Verginadis II, Morcos G, Loo PE, Kim MM, Motlagh SAO, Shoniyozov K, Diffenderfer ES, Ocampo EA, Putt M, Assenmacher CA, Radaelli E, Lu J, Qin L, Liu H, Leli NM, Girdhani S, Denef N, Vander Stappen F, Cengel KA, Busch TM, Metz JM, Dong L, Lin A, Koumenis C. Proton FLASH Radiotherapy Ameliorates Radiation-induced Salivary Gland Dysfunction and Oral Mucositis and Increases Survival in a Mouse Model of Head and Neck Cancer. Mol Cancer Ther 2024; 23:877-889. [PMID: 38593239 PMCID: PMC11148539 DOI: 10.1158/1535-7163.mct-23-0663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Head and neck cancer radiotherapy often damages salivary glands and oral mucosa, severely negatively impacting patients' quality of life. The ability of FLASH proton radiotherapy (F-PRT) to decrease normal tissue toxicity while maintaining tumor control compared with standard proton radiotherapy (S-PRT) has been previously demonstrated for several tissues. However, its potential in ameliorating radiation-induced salivary gland dysfunction and oral mucositis and controlling orthotopic head and neck tumor growth has not been reported. The head and neck area of C57BL/6 mice was irradiated with a single dose of radiotherapy (ranging from 14-18 Gy) or a fractionated dose of 8 Gy × 3 of F-PRT (128 Gy/second) or S-PRT (0.95 Gy/second). Following irradiation, the mice were studied for radiation-induced xerostomia by measuring their salivary flow. Oral mucositis was analyzed by histopathologic examination. To determine the ability of F-PRT to control orthotopic head and neck tumors, tongue tumors were generated in the mice and then irradiated with either F-PRT or S-PRT. Mice treated with either a single dose or fractionated dose of F-PRT showed significantly improved survival than those irradiated with S-PRT. F-PRT-treated mice showed improvement in their salivary flow. S-PRT-irradiated mice demonstrated increased fibrosis in their tongue epithelium. F-PRT significantly increased the overall survival of the mice with orthotopic tumors compared with the S-PRT-treated mice. The demonstration that F-PRT decreases radiation-induced normal tissue toxicity without compromising tumor control, suggests that this modality could be useful for the clinical management of patients with head and neck cancer.
Collapse
Affiliation(s)
- Priyanka Chowdhury
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anastasia Velalopoulou
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - George Morcos
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Phoebe E Loo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Stanford University, Stanford, California
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Seyyedeh Azar Oliaei Motlagh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Khayrullo Shoniyozov
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilio A Ocampo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- University of California, Los Angeles, California
| | - Mary Putt
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles-Antoine Assenmacher
- Penn Vet comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Enrico Radaelli
- Penn Vet comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiawei Lu
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ling Qin
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengxi Liu
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nektaria Maria Leli
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Swati Girdhani
- IBA (Ion Beam Applications S.A.), Ottignies-Louvain-la-Neuve, Belgium
| | - Nicolas Denef
- IBA (Ion Beam Applications S.A.), Ottignies-Louvain-la-Neuve, Belgium
| | | | - Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James M Metz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Dong
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Lin
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Fujihara C, Murakami K, Magi S, Motooka D, Nantakeeratipat T, Canela A, Tanaka RJ, Okada M, Murakami S. Omics-Based Mathematical Modeling Unveils Pathogenesis of Periodontitis in an Experimental Murine Model. J Dent Res 2023; 102:1468-1477. [PMID: 37800405 DOI: 10.1177/00220345231196530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Periodontitis is a multifactorial disease that progresses via dynamic interaction between bacterial and host-derived genetic factors. The recent trend of omics analyses has discovered many periodontitis-related risk factors. However, how much the individual factor affects the pathogenesis of periodontitis is still unknown. This article aims to identify multiple key factors related to the pathogenesis of periodontitis and quantitatively predict the influence of each factor on alveolar bone resorption by omics analysis and mathematical modeling. First, we induced periodontitis in mice (n = 3 or 4 at each time point) by tooth ligation. Next, we assessed alveolar bone resorption by micro-computed tomography, alterations in the gene expression by RNA sequencing, and the microbiome of the gingivae by 16S ribosomal RNA sequencing during disease pathogenesis. Omics data analysis identified key players (bacteria and molecules) involved in the pathogenesis of periodontitis. We then constructed a mathematical model of the pathogenesis of periodontitis by employing ordinary differential equations that described the dynamic regulatory interplay between the key players and predicted the alveolar bone integrity as output. Finally, we estimated the model parameters using our dynamic experimental data and validated the model prediction of influence on alveolar bone resorption by in vivo experiments. The model predictions and experimental results revealed that monocyte recruitment induced by bacteria-mediated Toll-like receptor activation was the principal reaction regulating alveolar bone resorption in a periodontitis condition. On the other hand, osteoblast-mediated osteoclast differentiation had less impact on bone integrity in a periodontitis condition.
Collapse
Affiliation(s)
- C Fujihara
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - K Murakami
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - S Magi
- Department of Physiology, Division of Cell Physiology, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - D Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - T Nantakeeratipat
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Conservative Dentistry and Prothodontics, Faculty of Dentistry, Srinakharinwirot University, Bangkok, Thailand
| | - A Canela
- The Hakubi Center for Advanced Research, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - R J Tanaka
- Department of Bioengineering, Imperial College London, London, UK
| | - M Okada
- Laboratory of Cell Systems, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan
| | - S Murakami
- Department of Periodontology and Regenerative Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
3
|
Jantaboon S, Sakunrangsit N, Toejing P, Leelahavanichkul A, Pisitkun P, Greenblatt MB, Lotinun S. Lipopolysaccharide Impedes Bone Repair in FcγRIIB-Deficient Mice. Int J Mol Sci 2023; 24:16944. [PMID: 38069267 PMCID: PMC10707393 DOI: 10.3390/ijms242316944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Chronic inflammation contributes to the development of skeletal disorders in patients with systemic lupus erythematosus (SLE). Activation of the host immune response stimulates osteoclast activity, which in turn leads to bone loss. Regenerating bone in the inflammatory microenvironments of SLE patients with critical bone defects remains a great challenge. In this study, we utilized lipopolysaccharide (LPS) to imitate locally and systemically pathogenic bacterial infection and examined the bone regeneration performance of LPS-associated mandibular and tibial bone regeneration impairment in FcγRIIB-/- mice. Our results indicated that a loss of FcγRIIB alleviates bone regeneration in both mandibles and tibiae. After LPS induction, FcγRIIB-/- mice were susceptible to impaired fracture healing in tibial and mandibular bones. LPS decreased the mineralization to collagen ratio in FcγRIIB-/- mice, indicating a mineralization defect during bone repair. An osteoblast-associated gene (Col1a1) was attenuated in FcγRIIB-deficient mice, whereas Bglap, Hhip, and Creb5 were further downregulated with LPS treatment in FcγRIIB-/- mice compared to FcγRIIB-/- mice. Alpl and Bglap expression was dcreased in osteoblasts derived from bone chips. An osteoclast-associated gene, Tnfsf11/Tnfrsf11 ratio, ewas increased in LPS-induced FcγRIIB-/- mice and in vitro. Furthermore, systemic LPS was relatively potent in stimulating production of pro-inflammatory cytokines including TNF-α, IL-6, and MCP-1 in FcγRIIB-/- mice compared to FcγRIIB-/- mice. The levels of TNF-α, IFN-β, IL-1α, and IL-17A were increased, whereas IL-10 and IL-23 were decreased in FcγRIIB-/- mice treated locally with LPS. These findings suggest that both local and systemic LPS burden can exacerbate bone regeneration impairment, delay mineralization and skeletal repair, and induce inflammation in SLE patients.
Collapse
Affiliation(s)
- Sirikanda Jantaboon
- Interdisciplinary Program of Physiology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nithidol Sakunrangsit
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| | - Parichart Toejing
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| | - Asada Leelahavanichkul
- Division of Immunology, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine and Research Division, Hospital for Special Surgery, New York, NY 10065, USA;
| | - Sutada Lotinun
- Center of Excellence in Skeletal Disorders and Enzyme Reaction Mechanism, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand (P.T.)
| |
Collapse
|
4
|
Fricke HP, Krajco CJ, Perry MJ, Brettingen LJ, Wake LA, Charles JF, Hernandez LL. Fluoxetine treatment during the postpartal period may have short-term impacts on murine maternal skeletal physiology. Front Pharmacol 2023; 14:1244580. [PMID: 38074149 PMCID: PMC10701399 DOI: 10.3389/fphar.2023.1244580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Postpartum depression affects many individuals after parturition, and selective serotonin reuptake inhibitors (SSRIs) are often used as the first-line treatment; however, both SSRIs and lactation are independently associated with bone loss due to the role of serotonin in bone remodeling. Previously, we have established that administration of the SSRI fluoxetine during the peripartal period results in alterations in long-term skeletal characteristics. In the present study, we treated mice with either a low or high dose of fluoxetine during lactation to determine the consequences of the perturbation of serotonin signaling during this time period on the dam skeleton. We found that lactational fluoxetine exposure affected both cortical and trabecular parameters, altered gene expression and circulating markers of bone turnover, and affected mammary gland characteristics, and that these effects were more pronounced in the dams that were exposed to the low dose of fluoxetine in comparison to the high dose. Fluoxetine treatment during the postpartum period in rodents had short term effects on bone that were largely resolved 3 months post-weaning. Despite the overall lack of long-term insult to bone, the alterations in serotonin-driven lactational bone remodeling raises the question of whether fluoxetine is a safe option for the treatment of postpartum depression.
Collapse
Affiliation(s)
- Hannah P. Fricke
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Chandler J. Krajco
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly J. Perry
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Lauren J. Brettingen
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Lella A. Wake
- Departments of Orthopedics and Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Julia F. Charles
- Departments of Orthopedics and Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| | - Laura L. Hernandez
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, United States
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Wei X, Liu Q, Liu L, Tian W, Wu Y, Guo S. Periostin plays a key role in maintaining the osteogenic abilities of dental follicle stem cells in the inflammatory microenvironment. Arch Oral Biol 2023; 153:105737. [PMID: 37320885 DOI: 10.1016/j.archoralbio.2023.105737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
OBJECTIVE This study aimed to explore the effect of periostin in the osteogenic abilities of dental follicle stem cells (DFSCs) and DFSC sheets in the inflammatory microenvironment. DESIGN DFSCs were isolated from dental follicles and identified. A lentiviral vector was used to knock down periostin in DFSCs. 250 ng/ml lipopolysaccharide from Porphyromonas gingivalis (P.g-LPS) was used to construct the inflammatory microenvironment. Osteogenic differentiation was evaluated by alizarin red staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot. The formation of extracellular matrix was assessed by qRT-PCR and immunofluorescence. The expressions of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) were measured by western blot. RESULTS Knockdown of periostin inhibited osteogenic differentiation and promoted adipogenic differentiation of DFSCs. In an inflammatory microenvironment, knockdown of periostin attenuated the proliferation and osteogenic differentiation of DFSCs. Knockdown of periostin inhibited the formation of extracellular matrix collagen I (COL-I), fibronectin, and laminin in DFSC sheets, but did not affect the expression of osteogenesis-related markers alkaline phosphatase (ALP) and osteocalcin (OCN). In the inflammatory microenvironment, knocking down periostin inhibited the expression of OCN and OPG in DFSC sheets, and promoted the expression of RANKL. CONCLUSION Periostin played a key role in maintaining the osteogenic abilities of DFSCs and DFSC sheets in the inflammatory microenvironment and might be an important molecule in the process of DFSCs coping with inflammatory microenvironment and promoting periodontal tissues regeneration.
Collapse
Affiliation(s)
- Xiuqun Wei
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qian Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Li Liu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases, &National Clinical Research Center for Oral Diseases, & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China School of Stomatology, Sichuan University, Chengdu 610041, PR China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
6
|
Abdullameer MA, Abdulkareem AA. Diagnostic potential of salivary interleukin-17, RANKL, and OPG to differentiate between periodontal health and disease and discriminate stable and unstable periodontitis: A case-control study. Health Sci Rep 2023; 6:e1103. [PMID: 36778772 PMCID: PMC9900720 DOI: 10.1002/hsr2.1103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Background and Aims Limitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)-17, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable and unstable periodontitis. Methods Participants with periodontitis (n = 50) and gingivitis (n = 25), both diseases represented the cases, and subjects with healthy periodontium (n = 15) as a control were recruited for this study. Periodontitis cases were further equally subdivided into stable and unstable. Whole unstimulated salivary sample were collected from all participants. Periodontal parameters including bleeding on probing, probing pocket depth, clinical attachment loss, and number of missing teeth were recorded. The protein levels of salivary IL-17, RANKL, and OPG were determined by using enzyme-linked immunosorbent assays technique. Results Salivary IL-17, OPG, RANKL, and RANKL/OPG showed high sensitivity and specificity to differentiate periodontal health from gingivitis and periodontitis. Similar pattern was observed in discriminating stable and unstable periodontitis. Salivary IL-17 and RANKL showed a good accuracy to differentiate gingivitis from periodontitis. However, OPG and RANKL/OPG did not exhibit enough sensitivity and specificity to differentiate the latter conditions. Conclusion Salivary IL-17, RANKL, OPG, and RANKL/OPG system are potential candidates for differentiating periodontal health and disease and discriminate stable and unstable periodontitis.
Collapse
Affiliation(s)
- Marwa A. Abdullameer
- Department of HealthMinistry of HealthBaghdadIraq
- College of DentistryUniversity of BaghdadBaghdadIraq
| | | |
Collapse
|
7
|
Ando Y, Tsukasaki M. [RANKL and periodontitis]. Nihon Yakurigaku Zasshi 2023; 158:263-268. [PMID: 37121710 DOI: 10.1254/fpj.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Periodontal disease is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone. It is one of the most common infectious diseases in humans, being the leading cause of tooth loss in adults. Recently, it has been shown that the receptor activator of NF-κB ligand (RANKL) produced by osteoblasts and periodontal ligament fibroblasts critically contributes to the bone destruction caused by periodontal disease. Activation of the immune system plays an important role in the induction of RANKL during periodontal inflammation. Here we discuss the molecular mechanisms of periodontal bone destruction by focusing on the osteoimmune molecule RANKL.
Collapse
Affiliation(s)
- Yutaro Ando
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
- Department of Microbiology, Tokyo Dental College
| | - Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo
| |
Collapse
|
8
|
Ikeuchi T, Moutsopoulos NM. Osteoimmunology in periodontitis; a paradigm for Th17/IL-17 inflammatory bone loss. Bone 2022; 163:116500. [PMID: 35870792 PMCID: PMC10448972 DOI: 10.1016/j.bone.2022.116500] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Periodontitis is a prevalent human disease of inflammation-induced bone destruction. Through studies in patient lesions of rare and common forms of periodontitis and animal model experimentation, Th17/IL-17 related immune pathways have emerged as mediators of disease pathology. In this focused review, we examine mechanisms of induction, amplification and pathogenicity of Th17 cells in periodontitis.
Collapse
Affiliation(s)
- Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, 30 convent Dr, Bldg30, Room 327, Bethesda, MD 20892, United States of America.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, 30 convent Dr, Bldg30, Room 327, Bethesda, MD 20892, United States of America.
| |
Collapse
|
9
|
Wu F, Fang B, Wuri G, Zhao L, Liu F, Zhang M. Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:2125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125 10.3390/nu14102125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
Affiliation(s)
- Fang Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China;
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
- Correspondence:
| |
Collapse
|
10
|
Wu F, Fang B, Wuri G, Zhao L, Liu F, Zhang M. Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:2125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125+10.3390/nu14102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
Affiliation(s)
- Fang Wu
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Guna Wuri
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
| | - Liang Zhao
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
- Beijing Laboratory of Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China;
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100084, China; (F.W.); (G.W.)
- Correspondence:
| |
Collapse
|
11
|
Metagenomic Analysis Reveals a Mitigating Role for Lactobacillus paracasei and Bifidobacterium animalis in Experimental Periodontitis. Nutrients 2022; 14:nu14102125. [PMID: 35631266 PMCID: PMC9146436 DOI: 10.3390/nu14102125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.
Collapse
|
12
|
Tsuruda T, Yamashita A, Otsu M, Koide M, Nakamichi Y, Sekita-Hatakeyama Y, Hatakeyama K, Funamoto T, Chosa E, Asada Y, Udagawa N, Kato J, Kitamura K. Angiotensin II Induces Aortic Rupture and Dissection in Osteoprotegerin-Deficient Mice. J Am Heart Assoc 2022; 11:e025336. [PMID: 35411794 PMCID: PMC9238451 DOI: 10.1161/jaha.122.025336] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The biological mechanism of action for osteoprotegerin, a soluble decoy receptor for the receptor activator of nuclear factor‐kappa B ligand in the vascular structure, has not been elucidated. The study aim was to determine if osteoprotegerin affects aortic structural integrity in angiotensin II (Ang II)‐induced hypertension. Methods and Results Mortality was higher (P<0.0001 by log‐rank test) in 8‐week‐old male homozygotes of osteoprotegerin gene‐knockout mice given subcutaneous administration of Ang II for 28 days, with an incidence of 21% fatal aortic rupture and 23% aortic dissection, than in age‐matched wild‐type mice. Ang II‐infused aorta of wild‐type mice showed that osteoprotegerin immunoreactivity was present with proteoglycan. The absence of osteoprotegerin was associated with decreased medial and adventitial thickness and increased numbers of elastin breaks as well as with increased periostin expression and soluble receptor activator of nuclear factor‐kappa B ligand concentrations. PEGylated human recombinant osteoprotegerin administration decreased all‐cause mortality (P<0.001 by log‐rank test), the incidence of fatal aortic rupture (P=0.08), and aortic dissection (P<0.001) with decreasing numbers of elastin breaks, periostin expressions, and soluble receptor activator of nuclear factor‐kappa B ligand concentrations in Ang II‐infused osteoprotegerin gene‐knockout mice. Conclusions These data suggest that osteoprotegerin protects against aortic rupture and dissection in Ang II‐induced hypertension by inhibiting receptor activator of nuclear factor‐kappa B ligand activity and periostin expression.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Division of Internal Medicine, Cardiovascular Medicine and Nephrology Faculty of Medicine University of Miyazaki Japan
| | - Atsushi Yamashita
- Department of Pathology Faculty of Medicine University of Miyazaki Japan
| | - Misa Otsu
- Division of Internal Medicine, Cardiovascular Medicine and Nephrology Faculty of Medicine University of Miyazaki Japan
| | - Masanori Koide
- Institute for Oral Science Matsumoto Dental University Nagano Japan
| | - Yuko Nakamichi
- Institute for Oral Science Matsumoto Dental University Nagano Japan
| | | | - Kinta Hatakeyama
- Department of Pathology National Cerebral and Cardiovascular Center Osaka Japan
| | - Taro Funamoto
- Division of Orthopedic Surgery Department of Medicine of Sensory and Motor Organs Faculty of Medicine University of Miyazaki Japan
| | - Etsuo Chosa
- Division of Orthopedic Surgery Department of Medicine of Sensory and Motor Organs Faculty of Medicine University of Miyazaki Japan
| | - Yujiro Asada
- Department of Pathology Faculty of Medicine University of Miyazaki Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry Matsumoto Dental University Nagano Japan
| | - Johji Kato
- Frontier Science Research Center University of Miyazaki Japan
| | - Kazuo Kitamura
- Frontier Science Research Center University of Miyazaki Japan
| |
Collapse
|
13
|
Cheng X, Zhou X, Liu C, Xu X. Oral Osteomicrobiology: The Role of Oral Microbiota in Alveolar Bone Homeostasis. Front Cell Infect Microbiol 2021; 11:751503. [PMID: 34869060 PMCID: PMC8635720 DOI: 10.3389/fcimb.2021.751503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
Osteomicrobiology is a new research field in which the aim is to explore the role of microbiota in bone homeostasis. The alveolar bone is that part of the maxilla and mandible that supports the teeth. It is now evident that naturally occurring alveolar bone loss is considerably stunted in germ-free mice compared with specific-pathogen-free mice. Recently, the roles of oral microbiota in modulating host defense systems and alveolar bone homeostasis have attracted increasing attention. Moreover, the mechanistic understanding of oral microbiota in mediating alveolar bone remodeling processes is undergoing rapid progress due to the advancement in technology. In this review, to provide insight into the role of oral microbiota in alveolar bone homeostasis, we introduced the term “oral osteomicrobiology.” We discussed regulation of alveolar bone development and bone loss by oral microbiota under physiological and pathological conditions. We also focused on the signaling pathways involved in oral osteomicrobiology and discussed the bridging role of osteoimmunity and influencing factors in this process. Finally, the critical techniques for osteomicrobiological investigations were introduced.
Collapse
Affiliation(s)
- Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Gao Y, Patil S, Jia J. The Development of Molecular Biology of Osteoporosis. Int J Mol Sci 2021; 22:8182. [PMID: 34360948 PMCID: PMC8347149 DOI: 10.3390/ijms22158182] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is one of the major bone disorders that affects both women and men, and causes bone deterioration and bone strength. Bone remodeling maintains bone mass and mineral homeostasis through the balanced action of osteoblasts and osteoclasts, which are responsible for bone formation and bone resorption, respectively. The imbalance in bone remodeling is known to be the main cause of osteoporosis. The imbalance can be the result of the action of various molecules produced by one bone cell that acts on other bone cells and influence cell activity. The understanding of the effect of these molecules on bone can help identify new targets and therapeutics to prevent and treat bone disorders. In this article, we have focused on molecules that are produced by osteoblasts, osteocytes, and osteoclasts and their mechanism of action on these cells. We have also summarized the different pharmacological osteoporosis treatments that target different molecular aspects of these bone cells to minimize osteoporosis.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| | - Suryaji Patil
- Lab for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jingxian Jia
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China;
| |
Collapse
|
15
|
Zhou N, Zou F, Cheng X, Huang Y, Zou H, Niu Q, Qiu Y, Shan F, Luo A, Teng W, Sun J. Porphyromonas gingivalis induces periodontitis, causes immune imbalance, and promotes rheumatoid arthritis. J Leukoc Biol 2021; 110:461-473. [PMID: 34057740 DOI: 10.1002/jlb.3ma0121-045r] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Periodontitis induced by bacteria especially Porphyromonas gingivalis (P. gingivalis) is the most prevalent microbial disease worldwide and is a significant risk factor for systemic diseases such as rheumatoid arthritis (RA). RA and periodontitis share similar clinical and pathologic features. Moreover, the prevalence of RA is much higher in patients with periodontitis than in those without periodontitis. To explore the immunologic mechanism of periodontitis involved in RA, we established a mouse model of periodontitis and then induced RA. According to the results of paw thickness, arthritis clinical score, arthritis incidence, microscopic lesion using H&E staining, and micro-CT analysis, periodontitis induced by P. gingivalis promoted the occurrence and development of collagen-induced arthritis (CIA) in mice. Furthermore, periodontitis enhanced the frequency of CD19+ B cells, Th17, Treg, gMDSCs, and mMDSCs, whereas down-regulated IL-10 producing regulatory B cells (B10) in CIA mice preinduced for periodontitis with P. gingivalis. In vitro stimulation with splenic cells revealed that P. gingivalis directly enhanced differentiation of Th17, Treg, and mMDSCs but inhibited the process of B cell differentiation into B10 cells. Considering that adoptive transfer of B10 cells prevent RA development, our study, although preliminary, suggests that down-regulation of B10 cells may be the key mechanism that periodontitis promotes RA as the other main immune suppressive cells such as Treg and MDSCs are up-regulated other than down-regulated in group of P. gingivalis plus CIA.
Collapse
Affiliation(s)
- Niu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guangzhou Zoo, Guangzhou, China
| | - Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiao Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yilian Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hang Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingru Niu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | - Aoxiang Luo
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Teng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
16
|
Udagawa N, Koide M, Nakamura M, Nakamichi Y, Yamashita T, Uehara S, Kobayashi Y, Furuya Y, Yasuda H, Fukuda C, Tsuda E. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 2021; 39:19-26. [PMID: 33079279 DOI: 10.1007/s00774-020-01162-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In bone tissue, bone resorption by osteoclasts and bone formation by osteoblasts are repeated continuously. Osteoclasts are multinucleated cells that derive from monocyte-/macrophage-lineage cells and resorb bone. In contrast, osteoblasts mediate osteoclastogenesis by expressing receptor activator of nuclear factor-kappa B ligand (RANKL), which is expressed as a membrane-associated cytokine. Osteoprotegerin (OPG) is a soluble RANKL decoy receptor that is predominantly produced by osteoblasts and which prevents osteoclast formation and osteoclastic bone resorption by inhibiting the RANKL-RANKL receptor interaction. MATERIALS AND METHODS In this review, we would like to summarize our experimental results on signal transduction that regulates the expression of RANKL and OPG. RESULTS Using OPG gene-deficient mice, we have demonstrated that OPG and sclerostin produced by osteocytes play an important role in the maintenance of cortical and alveolar bone. In addition, it was shown that osteoclast-derived leukemia inhibitory factor (LIF) reduces the expression of sclerostin in osteocytes and promotes bone formation. WP9QY (W9) is a peptide that was designed to be structurally similar to one of the cysteine-rich TNF-receptortype-I domains. Addition of the W9 peptide to bone marrow culture simultaneously inhibited osteoclast differentiation and stimulated osteoblastic cell proliferation. An anti-sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) antibody inhibited multinucleated osteoclast formation induced by RANKL and macrophage colony-stimulating factor (M-CSF). Pit-forming activity of osteoclasts was also inhibited by the anti-Siglec-15 antibody. In addition, anti-Siglec-15 antibody treatment stimulated the appearance of osteoblasts in cultures of mouse bone marrow cells in the presence of RANKL and M-CSF. CONCLUSIONS Bone mass loss depends on the RANK-RANKL-OPG system, which is a major regulatory system of osteoclast differentiation induction, activation, and survival.
Collapse
Affiliation(s)
- Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan.
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan.
| | - Masanori Koide
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuko Nakamichi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Teruhito Yamashita
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri, Nagano, 399-0781, Japan
| | - Yasuhiro Kobayashi
- Division of Hard Tissue Research, I, nstitute for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Yuriko Furuya
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Nagahama, Japan
| | - Chie Fukuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Eisuke Tsuda
- Specialty Medicine Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
17
|
Abstract
Periodontitis, one of the most common infectious diseases in humans, is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone, which ultimately leads to tooth loss. Recently, it was revealed that the osteoclastic bone damage that occurs during periodontitis is dependent on the receptor activator of NF-kB ligand (RANKL) produced by osteoblastic cells and periodontal ligament cells. Immune cells provide essential cues for the RANKL induction that takes place during periodontal inflammation. The knowledge accumulated and experimental tools established in the field of "osteoimmunology" have made crucial contributions to a better understanding of periodontitis pathogenesis and, reciprocally, the investigation of periodontitis has provided important insights into the field. This review discusses the molecular mechanisms underlying periodontal bone loss by focusing on the osteoimmune interactions and RANKL.
Collapse
Affiliation(s)
- Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
18
|
D'Ângelo MQ, Queiroz-Junior CM, Maltos KLDM, Ferreira AJ, Pacheco CMDF, Soares RV. The blockade of kappa opioid receptors exacerbates alveolar bone resorption in rats. Arch Oral Biol 2020; 120:104923. [PMID: 33091661 DOI: 10.1016/j.archoralbio.2020.104923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Bone resorption associated to chronic diseases, such as arthritis and periodontitis, results from exacerbated immuno-inflammatory host response that leads to tissue breakdown. The significance of opioid pathways as endogenous modulators of inflammatory events has already been described. Thus, the aim of this work is to determine whether some of the main three opioid receptors are endogenously activated to prevent bone loss during experimentally-induced alveolar bone resorption. DESIGN This study used an experimental model of alveolar bone resorption induced by ligature in rats. A silk thread was placed around the 2nd maxillary molar of male Wistar rats. In the 3rd, 4th and 5th day after ligation the rats received a local injection of different concentrations of opioid antagonists Cyprodime, Naltrindole, or Nor-binaltorphimine, which specifically block mü, delta and kappa opioid receptors, respectively. In the 7th experimental day, rats were euthanized and their maxillae collected for evaluation of alveolar bone and fiber attachment loss, morphometric counting of osteoclasts and osteoblasts, as well as the levels of cytokines IL-1β, IFN-γ, and IL-6 by ELISA. RESULTS Selective antagonism of kappa opioid receptors, but not mü and delta, exacerbated alveolar bone resorption induced by ligature in rats. The increased bone loss associated with higher number of osteoclasts surrounding alveolar bone, although osteoblasts' counting remained unchanged. The concentrations of IL-1β and IL-6 in periodontal tissues were also significantly higher in the rats treated with the kappa antagonist. CONCLUSION Inhibiting kappa opioid receptors exacerbates alveolar bone resorption.
Collapse
Affiliation(s)
- Marcelo Queiroz D'Ângelo
- Graduate Program in Dentistry, Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Rua Dom José Gaspar 500, Coração Eucarístico, Belo Horizonte, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Translational Biology Laboratory, Morphology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais (ICB-UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Kátia Lucy de Melo Maltos
- School of Dentistry, Universidade Federal de Minas Gerais (FOUFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | - Anderson José Ferreira
- Translational Biology Laboratory, Morphology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais (ICB-UFMG), Avenida Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | | | - Rodrigo Villamarim Soares
- Graduate Program in Dentistry, Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Pontifícia Universidade Católica de Minas Gerais (PUCMINAS), Rua Dom José Gaspar 500, Coração Eucarístico, Belo Horizonte, MG, Brazil
| |
Collapse
|
19
|
Gruber R. Osteoimmunology: Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol 2019; 46 Suppl 21:52-69. [PMID: 30623453 DOI: 10.1111/jcpe.13056] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/09/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
AIM Osteoimmunology covers the cellular and molecular mechanisms responsible for inflammatory osteolysis that culminates in the degradation of alveolar bone. Osteoimmunology also focuses on the interplay of immune cells with bone cells during bone remodelling and regeneration. The aim of this review was to provide insights into how osteoimmunology affects alveolar bone health and disease. METHOD This review is based on a narrative approach to assemble mouse models that provide insights into the cellular and molecular mechanisms causing inflammatory osteolysis and on the impact of immune cells on alveolar bone regeneration. RESULTS Mouse models have revealed the molecular pathways by which microbial and other factors activate immune cells that initiate an inflammatory response. The inflammation-induced alveolar bone loss occurs with the concomitant suppression of bone formation. Mouse models also showed that immune cells contribute to the resolution of inflammation and bone regeneration, even though studies with a focus on alveolar socket healing are rare. CONCLUSIONS Considering that osteoimmunology is evolutionarily conserved, osteolysis removes the cause of inflammation by provoking tooth loss. The impact of immune cells on bone regeneration is presumably a way to reinitiate the developmental mechanisms of intramembranous and endochondral bone formation.
Collapse
Affiliation(s)
- Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Kumar G, Roger PM. From Crosstalk between Immune and Bone Cells to Bone Erosion in Infection. Int J Mol Sci 2019; 20:E5154. [PMID: 31627424 PMCID: PMC6834200 DOI: 10.3390/ijms20205154] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Bone infection and inflammation leads to the infiltration of immune cells at the site of infection, where they modulate the differentiation and function of osteoclasts and osteoblasts by the secretion of various cytokines and signal mediators. In recent years, there has been a tremendous effort to understand the cells involved in these interactions and the complex pathways of signal transduction and their ultimate effect on bone metabolism. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Diseases falling into the category of osteoimmunology, such as osteoporosis, periodontitis, and bone infections are considered to have a significant implication in mortality and morbidity of patients, along with affecting their quality of life. There is a much-needed research focus in this new field, as the reported data on the immunomodulation of immune cells and their signaling pathways seems to have promising therapeutic benefits for patients.
Collapse
Affiliation(s)
- Gaurav Kumar
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Pierre-Marie Roger
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Service d'Infectiologie, Hôpital Archet 1, Centre Hospitalier Universitaire de Nice, Université de Nice Sophia-Antipolis, 06200 Nice, France.
| |
Collapse
|
21
|
Blockade of the angiotensin II type 1 receptor increases bone mineral density and left ventricular contractility in a mouse model of juvenile Paget disease. Eur J Pharmacol 2019; 859:172519. [PMID: 31271743 DOI: 10.1016/j.ejphar.2019.172519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022]
Abstract
Juvenile Paget disease (JPD1), an autosomal-recessive disorder, is characterized by extremely rapid bone turnover due to osteoprotegerin deficiency. Its extra-skeletal manifestations, such as hypertension and heart failure, suggest a pathogenesis with shared skeletal and cardiovascular system components. In spite of this, the effects of anti-hypertensive drugs on bone morphometry remain unknown. We administered an angiotensin II type 1 receptor blocker, olmesartan (5 mg/kg/day) to 8-week-old male mice lacking the osteoprotegerin gene, with and without 1 μg/kg/min of angiotensin II infusion for 14 days. Olmesartan treatment decreased systolic blood pressure, and echocardiography showed increased left ventricular systolic contractility. Three-dimensional micro-computed tomography scans demonstrated that olmesartan treatment increased trabecular bone volume (sham, +176%; angiotensin II infusion, +335%), mineral density (sham, +150%; angiotensin II infusion, +313%), and trabecular number (sham, +407%; angiotensin II infusion, +622%) in the tibia. Olmesartan increased cortical mineral density (sham, +19%; angiotensin II infusion, +24%), decreased the cortical bone section area (sham, -16%; angiotensin II infusion, -18%), decreased thickness (sham, -18%; angiotensin II infusion, -31%), and decreased the lacunar area (sham, -41%; angiotensin II infusion, -27%) in the tibia. Similar trend was observed in the femur. Moreover, olmesartan decreased angiotensin II-induced increases in tartrate-resistant acid phosphatase concentrations in plasma, but it affected neither type I procollagen N-terminal propeptides, nor the receptor activator of nuclear factor kappa-B ligand. Our data suggest that blockade of the angiotensin II type 1 receptor improves bone vulnerability, and helps to maintain the heart's structural integrity in osteoprotegerin-deficient mice.
Collapse
|
22
|
Vargas-Franco JW, Castaneda B, Gama A, Mueller CG, Heymann D, Rédini F, Lézot F. Genetically-achieved disturbances to the expression levels of TNFSF11 receptors modulate the effects of zoledronic acid on growing mouse skeletons. Biochem Pharmacol 2019; 168:133-148. [PMID: 31260659 DOI: 10.1016/j.bcp.2019.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/26/2019] [Indexed: 01/17/2023]
Abstract
Zoledronic acid (ZOL), a nitrogen bisphosphonate (N-BP), is currently used to treat and control pediatric osteolytic diseases. Variations in the intensity of the effects and side effects of N-BPs have been reported with no clear explanations regarding their origins. We wonder if such variations could be associated with different levels of RANKL signaling activity in growing bone during and after the treatment with N-BPs. To answer this question, ZOL was injected into neonate C57BL/6J mice with different genetically-determined RANKL signaling activity levels (Opg+/+\RankTg-, Opg+/+\RankTg+, Opg+/-\RankTg-, Opg+/-\RankTg+, Opg-/-\RankTg- and Opg-/-\RankTg+ mice) following a protocol (4 injections from post-natal day 1 to 7 at the dose of 50 μg/kg) that mimics those used in onco-pediatric patients. At the end of pediatric growth (1 and half months) and at an adult age (10 months), the bone morphometric and mineral parameters were measured using μCT in the tibia and skull for the different mice. A histologic analysis of the dental and periodontal tissues was also performed. At the end of pediatric growth, a delay in long bone and skull bone growth, a blockage of tooth eruption, some molar root alterations and a neoplasia-like structure associated with incisor development were found. Interestingly, the magnitude of these side effects was reduced by Opg deficiency (Opg-/-) but increased by Rank overexpression (RankTg). Analysis of the skeletal phenotype at ten months confirmed respectively the beneficial and harmful effects of Opg deficiency and Rank overexpression. These results validated the hypothesis that the RANKL signaling activity level in the bone microenvironment is implicated in the modulation of the response to ZOL. Further studies will be necessary to understand the underlying molecular mechanisms, which will help decipher the variability in the effects of N-BPs reported in the human population. SIGNIFICANT STATEMENTS: The present study establishes that in mice the RANKL signaling activity level is a major modulator of the effects and side-effects of bisphosphonates on the individual skeleton during growth. However, the modulatory actions are dependent on the ways in which this level of activity is increased. A decrease in OPG expression is beneficial to the skeletal phenotype observed at the end of growth, while RANK overexpression deteriorates it. Far removed from pediatric treatment, in adults, the skeletal phenotypes initially observed at the end of growth for the different levels of RANKL signaling activity were maintained, although significant improvement was associated only with reductions in OPG expression.
Collapse
Affiliation(s)
- Jorge William Vargas-Franco
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France; Department of Basic Studies, Faculty of Odontology, University of Antioquia, Medellin, Colombia
| | - Beatriz Castaneda
- Service d'Odontologie-Stomatologie, Hôpital Pitié-Salpêtrière, AP-HP, Paris F-75013, France
| | - Andrea Gama
- INSERM, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers, Paris F-75006, France; Odontology Center of District Federal Military Police, Brasília, Brazil; Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Christopher G Mueller
- CNRS, UPR 9021, Institut de Biologie Moléculaire et Cellulaire (IBMC), Laboratoire Immunologie et Chimie Thérapeutiques, Université de Strasbourg, Strasbourg F-67084, France
| | - Dominique Heymann
- INSERM, LEA Sarcoma Research Unit, University of Sheffield, Department of Oncology and Human Metabolism, Medical School, Sheffield S10 2RX, UK; INSERM, UMR 1232, LabCT, Université de Nantes, Université d'Angers, Institut de Cancérologie de l'Ouest, site René Gauducheau, Saint-Herblain F-44805, France
| | - Françoise Rédini
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France
| | - Frédéric Lézot
- INSERM, UMR-1238, Equipe 1, Faculté de Médecine, Université de Nantes, Nantes F-44035, France.
| |
Collapse
|
23
|
Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 2019; 19:626-642. [PMID: 31186549 DOI: 10.1038/s41577-019-0178-8] [Citation(s) in RCA: 409] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 12/14/2022]
Abstract
In terrestrial vertebrates, bone tissue constitutes the 'osteoimmune' system, which functions as a locomotor organ and a mineral reservoir as well as a primary lymphoid organ where haematopoietic stem cells are maintained. Bone and mineral metabolism is maintained by the balanced action of bone cells such as osteoclasts, osteoblasts and osteocytes, yet subverted by aberrant and/or prolonged immune responses under pathological conditions. However, osteoimmune interactions are not restricted to the unidirectional effect of the immune system on bone metabolism. In recent years, we have witnessed the discovery of effects of bone cells on immune regulation, including the function of osteoprogenitor cells in haematopoietic stem cell regulation and osteoblast-mediated suppression of haematopoietic malignancies. Moreover, the dynamic reciprocal interactions between bone and malignancies in remote organs have attracted attention, extending the horizon of osteoimmunology. Here, we discuss emerging concepts in the osteoimmune dialogue in health and disease.
Collapse
|
24
|
Ochiai N, Nakachi Y, Yokoo T, Ichihara T, Eriksson T, Yonemoto Y, Kato T, Ogata H, Fujimoto N, Kobayashi Y, Udagawa N, Kaku S, Ueki T, Okazaki Y, Takahashi N, Suda T. Murine osteoclasts secrete serine protease HtrA1 capable of degrading osteoprotegerin in the bone microenvironment. Commun Biol 2019; 2:86. [PMID: 30854478 PMCID: PMC6397181 DOI: 10.1038/s42003-019-0334-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Osteoclasts are multinucleated cells responsible for bone resorption. The differentiation of osteoclasts from bone marrow macrophages (BMMs) is induced by receptor activator of NF-κB ligand (RANKL). Osteoprotegerin (OPG), a decoy receptor of RANKL, inhibits osteoclastogenesis by blocking RANKL signaling. Here we investigated the degradation of OPG in vitro. Osteoclasts, but not BMMs, secreted OPG-degrading enzymes. Using mass spectrometry and RNA-sequencing analysis, we identified high-temperature requirement A serine peptidase 1 (HtrA1) as an OPG-degrading enzyme. HtrA1 did not degrade OPG pre-reduced by dithiothreitol, suggesting that HtrA1 recognizes the three-dimensional structure of OPG. HtrA1 initially cleaved the amide bond between leucine 90 and glutamine 91 of OPG, then degraded OPG into small fragments. Inhibitory activity of OPG on RANKL-induced osteoclastogenesis was suppressed by adding HtrA1 in RAW 264.7 cell cultures. These results suggest that osteoclasts potentially prepare a microenvironment suitable for osteoclastogenesis. HtrA1 may be a novel drug target for osteoporosis.
Collapse
Affiliation(s)
- Nagahiro Ochiai
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, 350-1298, Japan
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Yutaka Nakachi
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, 350-1298, Japan
| | - Tomotaka Yokoo
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, 350-1298, Japan
| | - Takahiro Ichihara
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Tore Eriksson
- Chemistry Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Yuki Yonemoto
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Takehiko Kato
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Hitoshi Ogata
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Natsuko Fujimoto
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Yasuhiro Kobayashi
- Institutes for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Shinsuke Kaku
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Tomokazu Ueki
- Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, 331-9530, Japan
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, 350-1298, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Naoyuki Takahashi
- Institutes for Oral Science, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, 350-1298, Japan.
| |
Collapse
|
25
|
Ganesan R, Rasool M. Ferulic acid inhibits interleukin 17-dependent expression of nodal pathogenic mediators in fibroblast-like synoviocytes of rheumatoid arthritis. J Cell Biochem 2019; 120:1878-1893. [PMID: 30160792 DOI: 10.1002/jcb.27502] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/20/2018] [Indexed: 01/24/2023]
Abstract
Interleukin 17 (IL-17), a proinflammatory cytokine produced by T helper (Th) 17 cells, potentially controls fibroblast-like synoviocytes (FLS)-mediated disease activity of rheumatoid arthritis (RA) via IL-17/ IL-17 receptor type A (IL-17RA)/signal transducer and activator of transcription 3 (STAT-3) signaling cascade. This has suggested that targeting IL-17 signaling could serve as an important strategy to treat FLS-mediated RA progression. Ferulic acid (FA), a key polyphenol, attenuates the development of gouty arthritis and cancer through its anti-inflammatory effects, but its therapeutic efficiency on IL-17 signaling in FLS-mediated RA pathogenesis remains unknown. In the current study, FA markedly inhibited the IL-17-mediated expression of its specific transmembrane receptor IL-17RA in FLS isolated from adjuvant-induced arthritis (AA) rats. Importantly, FA dramatically suppressed the IL-17-mediated expression of toll-like receptor 3 (TLR-3), cysteine-rich angiogenic inducer 61 (Cyr61), IL-23, granulocyte-macrophage colony stimulating factor (GM-CSF) in AA-FLS via the inhibition of IL-17/IL-17RA/STAT-3 signaling cascade. In addition, FA significantly decreased the formation of osteoclast cells and bone resorption potential in a coculture system consisting of IL-17 treated AA-FLS and rat bone marrow derived monocytes/macrophages. Furthermore, FA remarkably inhibited the IL-17-mediated expression of receptor activator of nuclear factor κ-Β ligand (RANKL) and increased the expression of osteoprotegerin (OPG) in AA-FLS via the regulation of IL-17/IL-17RA/STAT-3 signaling cascade. The therapeutic efficiency of FA on IL-17 signaling was further confirmed by knockdown of IL-17RA using small interfering RNA or blocking of STAT-3 activation with S3I-201. The molecular docking analysis revealed that FA manifests significant ligand efficiency toward IL-17RA, STAT-3, IL-23, and RANKL proteins. This study provides new evidence that FA can be used as a potential therapeutic agent for inhibiting IL-17-mediated disease severity and bone erosion in RA.
Collapse
Affiliation(s)
- Ramamoorthi Ganesan
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
26
|
Zhou X, Yu R, Long Y, Zhao J, Yu S, Tang Q, Chen L. BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. Cell Prolif 2018; 51:e12470. [PMID: 30117209 PMCID: PMC6528896 DOI: 10.1111/cpr.12470] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Skeletal mandibular hypoplasia (SMH), a common type of developmental deformities, results in impaired aesthetics of facial profile, occlusal dysfunction and poor life quality. In this study, BMAL1 deficiency leads to SMH formation, and we aim to investigate the mechanism by which BMAL1 deficiency induces SMH. MATERIALS AND METHODS Circadian rhythm-disordered mouse models were constructed by placing animals in a jet lag schedule of 6-h light advance every 7 days for 4 or 8 weeks. The OPG expression was evaluated by histomorphometry, immunohistochemistry and western blot analysis. The mechanism by which BMAL1 affects OPG expression was investigated by chromatin immunoprecipitation and luciferase reporter assays. The phenotypes caused by BMAL1 knockout can be rescued by exogenous supplementation with OPG. RESULTS We demonstrate that the expressions of BMAL1 and OPG decreased in SMH patients. Circadian rhythm-disordered mice and Bmal1-/- mice exhibited decreased expression of OPG, reduced bone mass and bone size of mandibles. Our results revealed that BMAL1 bound directly to the Opg promoter and upregulated its expression, thus inhibiting osteoclast differentiation. BMAL1 deficiency increased osteoclast differentiation by downregulating OPG expression. In vitro, the enhancement effect of osteoclast differentiation caused by BMAL1 knockdown was significantly reversed by exogenous supplementation with OPG. Importantly, bone loss caused by BMAL1 knockout can be partially reversed by injecting OPG Intraperitoneally. CONCLUSIONS These results indicate that the circadian clock plays a critical role in the growth and development of mandible by regulating OPG expression, and present a potential therapeutic strategy to prevent SMH.
Collapse
Affiliation(s)
- Xin Zhou
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Ran Yu
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanlin Long
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiajia Zhao
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shaoling Yu
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Qingming Tang
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lili Chen
- Department of StomatologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
27
|
Yan Z, Wang P, Wu J, Feng X, Cai J, Zhai M, Li J, Liu X, Jiang M, Luo E, Jing D. Fluid shear stress improves morphology, cytoskeleton architecture, viability, and regulates cytokine expression in a time-dependent manner in MLO-Y4 cells. Cell Biol Int 2018; 42:1410-1422. [DOI: 10.1002/cbin.11032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Zedong Yan
- Department of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Pan Wang
- Department of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; Department of Orthodontics; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - Xue Feng
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases; Department of Orthodontics; School of Stomatology; Fourth Military Medical University; Xi'an China
| | - Jing Cai
- College of Basic Medicine; Shaanxi University of Chinese Medicine; Xianyang China
| | - Mingming Zhai
- Department of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Juan Li
- Department of Neurosurgery; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Xiyu Liu
- Department of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Maogang Jiang
- Department of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Erping Luo
- Department of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Da Jing
- Department of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| |
Collapse
|
28
|
Irie K, Tomofuji T, Ekuni D, Fukuhara D, Uchida Y, Kataoka K, Kobayashi S, Kikuchi T, Mitani A, Shimazaki Y, Morita M. Age-related changes of CD4 + T cell migration and cytokine expression in germ-free and SPF mice periodontium. Arch Oral Biol 2017; 87:72-78. [PMID: 29274620 DOI: 10.1016/j.archoralbio.2017.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Increasing age is a potential risk factor for periodontal tissue breakdown, which may be affected by commensal flora. The aim of this study evaluated age-related changes in CD4+ T cells, C-C chemokine ligand 5 (CCL5), interleukin (IL)-17A, and receptor activator of nuclear factor-kappa B ligand (RANKL) expression using germ-free (GF) and conventionally reared (SPF) mice. DESIGN GF and SPF mice at 8 (n = 6/group) and 22 weeks old (n = 6/group) were used. Immunohistochemical analyses were performed to determine the effects of aging on protein expression in periodontal tissues. Age-related changes in alveolar bone were quantified using micro-CT analysis. RESULTS SPF mice, but not GF mice, showed an age-related increase in alveolar bone loss (P < 0.01). SPF mice at 22 weeks of age increased expression of CD4+ T cells, CCL5, IL-17A, and RANKL compared to those at 8 weeks of age in connective tissue and alveolar bone surface (P < 0.01). Furthermore, there was increased CD4+ T cells, which were co-expressed with IL-17A and RANKL in SPF mice at 22 weeks of age. On the other hand, the GF mice did not show any significant differences in CD4+ T cells, CCL5, IL-17A and RANKL expression between the two age groups. CONCLUSIONS SPF mice induced an age-related increase in CD4+ T cells co- expressed with IL-17A and RANKL, with occurring alveolar bone loss. In contrast, GF mice did not show age-related changes in CD4+ T cell migration and cytokine expression.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Takaaki Tomofuji
- Department of Community Oral Health, Asahi University School of Dentistry, Gifu, Japan
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daiki Fukuhara
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoko Uchida
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Kataoka
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuichiro Kobayashi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Takeshi Kikuchi
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Akio Mitani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Yoshihiro Shimazaki
- Department of Preventive Dentistry and Dental Public Health, School of Dentistry, Aichi, Gakuin University, Nagoya, Japan
| | - Manabu Morita
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
29
|
Dobsak T, Heimel P, Tangl S, Schwarze UY, Schett G, Gruber R. Impaired periodontium and temporomandibular joints in tumour necrosis factor-α transgenic mice. J Clin Periodontol 2017; 44:1226-1235. [DOI: 10.1111/jcpe.12799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Toni Dobsak
- Core Facility Hard Tissue and Biomaterial Research; Karl Donath Laboratory; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research; Karl Donath Laboratory; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Vienna Austria
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research; Karl Donath Laboratory; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Uwe Y. Schwarze
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Biology; School of Dentistry; Medical University of Vienna; Vienna Austria
| | - Georg Schett
- Department of Internal Medicine 3; Friedrich Alexander University of Erlangen- Nuremberg; Erlangen Germany
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Biology; School of Dentistry; Medical University of Vienna; Vienna Austria
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| |
Collapse
|
30
|
de Vries TJ, Andreotta S, Loos BG, Nicu EA. Genes Critical for Developing Periodontitis: Lessons from Mouse Models. Front Immunol 2017; 8:1395. [PMID: 29163477 PMCID: PMC5663718 DOI: 10.3389/fimmu.2017.01395] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Stefano Andreotta
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, VU University Amsterdam, Amsterdam, Netherlands.,Opris Dent SRL, Sibiu, Sibiu, Romania
| |
Collapse
|
31
|
Ozaki Y, Koide M, Furuya Y, Ninomiya T, Yasuda H, Nakamura M, Kobayashi Y, Takahashi N, Yoshinari N, Udagawa N. Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. PLoS One 2017; 12:e0184904. [PMID: 28937990 PMCID: PMC5609750 DOI: 10.1371/journal.pone.0184904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/01/2017] [Indexed: 01/15/2023] Open
Abstract
Osteoblasts express two key molecules for osteoclast differentiation, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), a soluble decoy receptor for RANKL. RANKL induces osteoclastogenesis, while OPG inhibits it by blocking the binding of RANKL to RANK, a cellular receptor of RANKL. OPG-deficient (OPG–/–) mice exhibit severe alveolar bone loss with enhanced bone resorption. WP9QY (W9) peptide binds to RANKL and blocks RANKL-induced osteoclastogenesis. W9 is also reported to stimulate bone formation in vivo. Here, we show that treatment with W9 restores alveolar bone loss in OPG–/–mice by suppressing osteoclastogenesis and enhancing osteoblastogenesis. Administration of W9 or risedronate, a bisphosphonate, to OPG–/–mice significantly decreased the osteoclast number in the alveolar bone. Interestingly, treatment with W9, but not risedronate, enhanced Wnt/β-catenin signaling and induced alveolar bone formation in OPG–/–mice. Expression of sclerostin, an inhibitor of Wnt/β-catenin signaling, was significantly lower in tibiae of OPG–/–mice than in wild-type mice. Treatment with risedronate recovered sclerostin expression in OPG–/–mice, while W9 treatment further suppressed sclerostin expression. Histomorphometric analysis confirmed that bone formation-related parameters in OPG–/–mice, such as osteoblast number, osteoblast surface and osteoid surface, were increased by W9 administration but not by risedronate administration. These results suggest that treatment of OPG–/–mice with W9 suppressed osteoclastogenesis by inhibiting RANKL signaling and enhanced osteoblastogenesis by attenuating sclerostin expression in the alveolar bone. Taken together, W9 may be a useful drug to prevent alveolar bone loss in periodontitis.
Collapse
Affiliation(s)
- Yuki Ozaki
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yuriko Furuya
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Shiga, Japan
| | - Tadashi Ninomiya
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Shiga, Japan
| | - Midori Nakamura
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Nobuo Yoshinari
- Graduate School of Oral Medicine, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Department of Periodontology, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | - Nobuyuki Udagawa
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano, Japan
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
- * E-mail:
| |
Collapse
|
32
|
Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Sci Rep 2017; 7:8753. [PMID: 28821826 PMCID: PMC5562866 DOI: 10.1038/s41598-017-09326-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Orthodontic tooth movement is achieved by the remodeling of the alveolar bone surrounding roots of teeth. Upon the application of orthodontic force, osteoclastic bone resorption occurs on the compression side of alveolar bone, towards which the teeth are driven. However, the molecular basis for the regulatory mechanisms underlying alveolar bone remodeling has not been sufficiently elucidated. Osteoclastogenesis is regulated by receptor activator of nuclear factor-κB ligand (RANKL), which is postulated to be expressed by the cells surrounding the tooth roots. Here, we show that osteocytes are the critical source of RANKL in alveolar bone remodeling during orthodontic tooth movement. Using a newly established method for the isolation of periodontal tissue component cells from alveolar bone, we found that osteocytes expressed a much higher amount of RANKL than other cells did in periodontal tissue. The critical role of osteocyte-derived RANKL was confirmed by the reduction of orthodontic tooth movement in mice specifically lacking RANKL in osteocytes. Thus, we provide in vivo evidence for the key role of osteocyte-derived RANKL in alveolar bone remodeling, establishing a molecular basis for orthodontic force-mediated bone resorption.
Collapse
|
33
|
|
34
|
Sojod B, Chateau D, Mueller CG, Babajko S, Berdal A, Lézot F, Castaneda B. RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model. Front Physiol 2017; 8:338. [PMID: 28596739 PMCID: PMC5442248 DOI: 10.3389/fphys.2017.00338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
Periodontitis is based on a complex inflammatory over-response combined with possible genetic predisposition factors. The RANKL/RANK/OPG signaling pathway is implicated in bone resorption through its key function in osteoclast differentiation and activation, as well as in the inflammatory response. This central element of osteo-immunology has been suggested to be perturbed in several diseases, including periodontitis, as it is a predisposing factor for this disease. The aim of the present study was to validate this hypothesis using a transgenic mouse line, which over-expresses RANK (RTg) and develops a periodontitis-like phenotype at 5 months of age. RTg mice exhibited severe alveolar bone loss, an increased number of TRAP positive cells, and disorganization of periodontal ligaments. This phenotype was more pronounced in females. We also observed dental root resorption lacunas. Hyperplasia of the gingival epithelium, including Malassez epithelial rests, was visible as early as 25 days, preceding any other symptoms. These results demonstrate that perturbations of the RANKL/RANK/OPG system constitute a core element of periodontitis, and more globally, osteo-immune diseases.
Collapse
Affiliation(s)
- Bouchra Sojod
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Danielle Chateau
- INSERM, UMR-1138, Intestine: Nutrition, Barrier, and Diseases Group, Centre de Recherche des CordeliersParis, France
| | - Christopher G Mueller
- Laboratoire Immunologie et Chimie Thérapeutiques, Centre National de la Recherche Scientifique, UPR-9021, Institut de Biologie Moléculaire et Cellulaire, Université de StrasbourgStrasbourg, France
| | - Sylvie Babajko
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Ariane Berdal
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France
| | - Frédéric Lézot
- INSERM, UMR-957, Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de NantesNantes, France
| | - Beatriz Castaneda
- INSERM, UMR-1138, Laboratoire de Physiopathologie Orale Moléculaire, Centre de Recherche des CordeliersParis, France.,Department of Basic Studies, Faculty of Odontology, University of AntioquiaMedellin, Colombia
| |
Collapse
|
35
|
Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet. Nutrients 2017; 9:nu9010064. [PMID: 28098768 PMCID: PMC5295108 DOI: 10.3390/nu9010064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.
Collapse
|
36
|
Jayash SN, Hashim NM, Misran M, Baharuddin NA. In vitro evaluation of osteoprotegerin in chitosan for potential bone defect applications. PeerJ 2016; 4:e2229. [PMID: 27635307 PMCID: PMC5012333 DOI: 10.7717/peerj.2229] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/16/2016] [Indexed: 01/07/2023] Open
Abstract
Background The receptor activator of nuclear factor kappa-B (RANK)/RANK ligand/osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. OPG has been used systemically in the treatment of bone diseases. In searching for more effective and safer treatment for bone diseases, we investigated newly formulated OPG-chitosan complexes, which is prepared as a local application for its osteogenic potential to remediate bone defects. Methods We examined high, medium and low molecular weights of chitosan combined with OPG. The cytotoxicity of OPG in chitosan and its proliferation in vitro was evaluated using normal, human periodontal ligament (NHPL) fibroblasts in 2D and 3D cell culture. The cytotoxicity of these combinations was compared by measuring cell survival with a tetrazolium salt reduction (MTT) assay and AlamarBlue assay. The cellular morphological changes were observed under an inverted microscope. A propidium iodide and acridine orange double-staining assay was used to evaluate the morphology and quantify the viable and nonviable cells. The expression level of osteopontin and osteocalcin protein in treated normal human osteoblast cells was evaluated by using Western blot. Results The results demonstrated that OPG in combination with chitosan was non-toxic, and OPG combined with low molecular weight chitosan has the most significant effect on NHPL fibroblasts and stimulates proliferation of cells over the period of treatment.
Collapse
Affiliation(s)
- Soher Nagi Jayash
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Najihah M Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya,Kuala Lumpur,Malaysia; Centre For Natural Products And Drug Discovery (CENAR), Department of Chemistry, Faculty of Science, University of Malaya,Kuala Lumpur,Malaysia
| | - Misni Misran
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - N A Baharuddin
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Ball H, Moussa F, Mbimba T, Orman R, Safadi F, Cooper L. Methods and insights from the characterization of osteoprogenitor cells of bats (Mammalia: Chiroptera). Stem Cell Res 2016; 17:54-61. [DOI: 10.1016/j.scr.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 01/14/2023] Open
|
38
|
Smad2 overexpression induces alveolar bone loss and up regulates TNF-α, and RANKL. Arch Oral Biol 2016; 71:38-45. [PMID: 27421098 DOI: 10.1016/j.archoralbio.2016.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The aim of the current study was to investigate whether Smad2 overexpression in JE cells induced alveolar bone loss, and to understand the mechanisms regulating the bone loss. METHODS A mouse line was created that used a cytokeratin 14 (K14) promoter to overexpress Smad2 in the epithelium of the transgenic mice (K14-Smad2). Micro CT radiographs (μCT) were used to assess bone loss, bone volume, and bone density. The expression of Tnfα, Il1-β, Ifγ, Rankl, and Opg were assessed by RT-PCR. Western blots were used to detect the protein levels of TNF-α and IL1-β. Tartrate-resistant acid phosphatase (TRAP) was used as a marker for osteoclasts. Wild type (WT) mice were used as controls in all steps of the current study. RESULTS K14-Smad2 mice had 52.5% (±4.2) root exposed compared to 32.4%(±3.2) in the WT mice. There was a significant difference in alveolar bone volume in the K14-Smad2 mice when compared to WT mice 2.65mm3 (±0.3) and 4.3mm3 (±0.35) respectively. K14-Smad2 mice also had reduced bone density 696.8mg/cc (±70) at 12 months when compared to WT mice 845.9mg/cc(±10). The mRNA levels of Tnfα and Rankl increased by 3.26- and 2.5-fold respectively in the K14-Smad2 mice when compared to controls. The protein level of TNF-α was also significantly increased to 2.8-fold in K14-Smad2 mice when compared to WT mice. Smad2 overexpression increased the total numbers of osteoclasts in K14-Smad2 mice (3.4±0.2)-fold when compared to WT mice. CONCLUSION Smad2 overexpression induces alveolar bone loss and increases the numbers of osteoclasts. Also, Smad2 overexpression up-regulates TNF-α and RANKL.
Collapse
|
39
|
Zhang L, Ding Y, Rao GZ, Miao D. Effects of IL-10 and glucose on expression of OPG and RANKL in human periodontal ligament fibroblasts. Braz J Med Biol Res 2016; 49:e4324. [PMID: 27074164 PMCID: PMC4828925 DOI: 10.1590/1414-431x20154324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
The effects of interleukin-10 (IL-10) and glucose on mRNA and protein expression of
osteoprotegerin (OPG), and its ligand, receptor activator of nuclear factor-κB ligand
(RANKL), were investigated in human periodontal ligament fibroblasts (HPDLFs).
Primary HPDLFs were treated with different concentrations of IL-10 (0, 1, 10, 25, 50,
and 100 ng/mL) or glucose (0, 5.5, 10, 20, 30, and 40 mmol/L). Changes in mRNA and
protein expression were examined using the reverse-transcription polymerase chain
reaction (RT-PCR) and Western blot analysis, respectively. After IL-10 treatment,
mRNA and protein levels of OPG were increased, while mRNA and protein levels of RANKL
were decreased (P<0.05), both in a concentration-dependent manner. Glucose
stimulation had the opposite concentration-dependent effect to that of IL-10 on OPG
and RANKL expression. IL-10 upregulated OPG expression and downregulated RANKL
expression, whereas high glucose upregulated RANKL and downregulated OPG in HDPLFs.
Abnormal levels of IL-10 and glucose may contribute to the pathogenesis of
periodontal disease.
Collapse
Affiliation(s)
- L Zhang
- Stomatology Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Y Ding
- Wuxi Mental Health Center of, Nanjing Medical University, China
| | - G Z Rao
- Stomatology Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - D Miao
- Stomatology Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
40
|
Reveromycin A Administration Prevents Alveolar Bone Loss in Osteoprotegerin Knockout Mice with Periodontal Disease. Sci Rep 2015; 5:16510. [PMID: 26561427 PMCID: PMC4642347 DOI: 10.1038/srep16510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic periodontal disease is characterized by alveolar bone loss and inflammatory changes. Reveromycin A (RMA) was recently developed and is a unique agent for inhibiting osteoclast activity. This study analysed the effects of RMA in an experimental mouse model of periodontitis involving osteoprotegerin (OPG)-knockout mice, specifically, whether it could control osteoclasts and reduce inflammation in periodontal tissue. We examined wild-type (WT) and OPG knockout mice (OPG KO) ligated with wire around contact points on the left first and second molars. RMA was administered twice a day to half of the mice. Using micro-computed tomography, we measured the volume of alveolar bone loss between the first and second molars, and also performed histological analysis. The OPG KO RMA+ group had significantly decreased osteoclast counts, alveolar bone loss, attachment loss, and inflammatory cytokine expression 8 weeks after ligation. Thus, RMA may reduce alveolar bone loss and inflamed periodontal tissues in patients with periodontitis.
Collapse
|
41
|
Gama A, Navet B, Vargas JW, Castaneda B, Lézot F. Bone resorption: an actor of dental and periodontal development? Front Physiol 2015; 6:319. [PMID: 26594180 PMCID: PMC4633481 DOI: 10.3389/fphys.2015.00319] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/21/2015] [Indexed: 12/23/2022] Open
Abstract
Dental and periodontal tissue development is a complex process involving various cell-types. A finely orchestrated network of communications between these cells is implicated. During early development, communications between cells from the oral epithelium and the underlying mesenchyme govern the dental morphogenesis with successive bud, cap and bell stages. Later, interactions between epithelial and mesenchymal cells occur during dental root elongation. Root elongation and tooth eruption require resorption of surrounding alveolar bone to occur. For years, it was postulated that signaling molecules secreted by dental and periodontal cells control bone resorbing osteoclast precursor recruitment and differentiation. Reverse signaling originating from bone cells (osteoclasts and osteoblasts) toward dental cells was not suspected. Dental defects reported in osteopetrosis were associated with mechanical stress secondary to defective bone resorption. In the last decade, consequences of bone resorption over-activation on dental and periodontal tissue formation have been analyzed with transgenic animals (RANKTg and Opg−∕− mice). Results suggest the existence of signals originating from osteoclasts toward dental and periodontal cells. Meanwhile, experiments consisting in transitory inhibition of bone resorption during root elongation, achieved with bone resorption inhibitors having different mechanisms of action (bisphosphonates and RANKL blocking antibodies), have evidenced dental and periodontal defects that support the presence of signals originating bone cells toward dental cells. The aim of the present manuscript is to present the data we have collected in the last years that support the hypothesis of a role of bone resorption in dental and periodontal development.
Collapse
Affiliation(s)
- Andrea Gama
- Institut National de la Santé et de la Recherche Médicale, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers Paris, France ; Odontologic Center of District Federal Military Police Brasilia, Brazil
| | - Benjamin Navet
- Institut National de la Santé et de la Recherche Médicale, UMR-957, Equipe Ligue Nationale Contre le Cancer Nantes, France ; Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de Nantes Nantes, France
| | - Jorge William Vargas
- Institut National de la Santé et de la Recherche Médicale, UMR-957, Equipe Ligue Nationale Contre le Cancer Nantes, France ; Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de Nantes Nantes, France ; Department of Basic Studies, Faculty of Odontology, University of Antioquia Medellin, Colombia
| | - Beatriz Castaneda
- Institut National de la Santé et de la Recherche Médicale, UMR-1138, Equipe 5, Centre de Recherche des Cordeliers Paris, France ; Department of Basic Studies, Faculty of Odontology, University of Antioquia Medellin, Colombia
| | - Frédéric Lézot
- Institut National de la Santé et de la Recherche Médicale, UMR-957, Equipe Ligue Nationale Contre le Cancer Nantes, France ; Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Faculté de Médecine, Université de Nantes Nantes, France
| |
Collapse
|
42
|
Kobayashi Y, Thirukonda GJ, Nakamura Y, Koide M, Yamashita T, Uehara S, Kato H, Udagawa N, Takahashi N. Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Biochem Biophys Res Commun 2015; 463:1278-83. [PMID: 26093292 DOI: 10.1016/j.bbrc.2015.06.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway in osteoblast-lineage cells inhibits osteoclastogenesis through the expression of osteoprotegerin (Opg), a decoy receptor of receptor activator of Nf-κb (Rank) ligands. Wnt5a, a typical non-canonical Wnt ligand, enhances the expression of Rank in osteoclast precursors, which, in turn, promotes the Rank ligand (Rankl)-induced formation of osteoclasts. In contrast, Wnt16 and Wnt4 have been shown to inhibit the Rankl-induced formation of osteoclasts through non-canonical Wnt signals. However, the relationships among these Wnt ligands in osteoclastogenesis remained to be elucidated. We herein showed that Wnt16, but not Wnt4, inhibited the Rankl-induced osteoclastogenesis in bone marrow-derived macrophage (BMM) cultures. Wnt3a and Wnt4 inhibited the 1α,25-dihydroxy vitamin D3 (1,25D3)-induced osteoclastogenesis in co-cultures prepared from wild-type mice, but not in those from Opg(-/-) nice. Wnt16 inhibited the 1,25D3-induced formation of osteoclasts in both wild-type and Opg(-/-) co-cultures. Wnt16, Wnt4, and Wnt3a failed to inhibit the pit-forming activity of osteoclasts. Wnt16 failed to inhibit the Wnt5a-induced expression of Rank in osteoclast precursors. In contrast, Wnt5a abrogated the inhibitory effects of Wnt16 on Rankl-induced osteoclastogenesis. These results suggested that Wnt16 inhibited osteoclastogenesis, but not the function of osteoclasts and that Wnt16, an inhibitory Wnt ligand for osteoclastogenesis, regulates bone resorption in conjunction with Wnt5a.
Collapse
Affiliation(s)
- Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan.
| | | | - Yukio Nakamura
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, Nagano 390-8621, Japan
| | - Masanori Koide
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Teruhito Yamashita
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, School of Medicine, Shinshu University, Nagano 390-8621, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Nagano 399-0781, Japan
| |
Collapse
|
43
|
Abstract
After it was proposed that the osteoblast lineage controlled the formation of osteoclasts, cell culture methods were developed that established this to be the case. Evidence was obtained that cytokines and hormones that promote osteoclast formation act first on osteoblast lineage cells to promote the production of a membrane-bound regulator of osteoclastogenesis. This proved to be receptor activator of NF-kB ligand (RANKL) a member of the tumor necrosis factor ligand family that acts upon its receptor RANK in the hematopoietic lineage, with interaction restricted by a decoy soluble receptor osteoprotegerin (OPG), also a product of the osteoblast lineage. The physiological roles of these factors were established through genetic and pharmacological studies, have led to a new physiology of bone, with complete revision of older ideas over the last 15 years, ultimately leading to the development of new pharmaceutical agents for bone disease.
Collapse
Affiliation(s)
- T John Martin
- Department of Medicine at St. Vincent's Hospital, St. Vincent's Institute of Medical Research and The University of Melbourne, 9 Princes St, Fitzroy, VIC, 3065, Australia,
| | | |
Collapse
|
44
|
Sundaram K, Sambandam Y, Balasubramanian S, Pillai B, Voelkel-Johnson C, Ries WL, Reddy SV. STAT-6 mediates TRAIL induced RANK ligand expression in stromal/preosteoblast cells. Bone 2015; 71:137-44. [PMID: 25445452 DOI: 10.1016/j.bone.2014.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/14/2014] [Accepted: 10/23/2014] [Indexed: 02/02/2023]
Abstract
Receptor activator of nuclear factor kappa-B ligand (RANKL) is a critical osteoclastogenic factor expressed in bone marrow stromal/osteoblast lineage cells. Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) levels are elevated in pathologic conditions such as multiple myeloma and inflammatory arthritis, and have been positively correlated with osteolytic markers. Osteoprotegerin (OPG) which inhibits osteoclastogenesis is a decoy receptor for RANKL and also known to interact with TRAIL. Herein, we show that TRAIL increases DR5 and DcR1 receptors but no change in the levels of DR4 and DcR2 expression in human bone marrow derived stromal/preosteoblast (SAKA-T) cell line. We further demonstrated that TRAIL treatment significantly decreased OPG mRNA expression. Interestingly, TRAIL treatment induced RANKL mRNA expression in these cells. In addition, TRAIL significantly increased NF-kB and c-Jun N-terminal kinase (JNK) activity. Human transcription factor array screening by real-time RT-PCR identified TRAIL up-regulation of the signal transducers and activators of the transcription (STAT)-6 expression in SAKA-T cells. TRAIL stimulation induced p-STAT-6 expression in human bone marrow derived primary stromal/preosteoblast cells. Confocal microscopy analysis further revealed p-STAT-6 nuclear localization in SAKA-T cells. Chromatin immunoprecipitation (ChIP) assay confirmed p-STAT-6 binding to the hRANKL gene distal promoter region. In addition, siRNA suppression of STAT-6 expression inhibits TRAIL increased hRANKL gene promoter activity. Thus, our results suggest that TRAIL induces RANKL expression through a STAT-6 dependent transcriptional regulatory mechanism in bone marrow stromal/preosteoblast cells.
Collapse
Affiliation(s)
- Kumaran Sundaram
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | - Yuvaraj Sambandam
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | - Balakrishnan Pillai
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | - William L Ries
- College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sakamuri V Reddy
- Charles P. Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
45
|
|
46
|
Manilay JO, Zouali M. Tight relationships between B lymphocytes and the skeletal system. Trends Mol Med 2014; 20:405-12. [DOI: 10.1016/j.molmed.2014.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 02/06/2023]
|
47
|
Sokos D, Everts V, de Vries TJ. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J Periodontal Res 2014; 50:152-9. [PMID: 24862732 DOI: 10.1111/jre.12197] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2014] [Indexed: 01/11/2023]
Abstract
During the last decade it has become clear that periodontal ligament fibroblasts may contribute to the in vitro differentiation of osteoclasts. We surveyed the current findings regarding their osteoclastogenesis potential. Periodontal ligament fibroblasts have the capacity to select and attract osteoclast precursors and subsequently to retract and enable migration of osteoclast precursors to the bone surface. There, fusion of precursors takes place, giving rise to osteoclasts. The RANKL-RANK-osteoprotegerin (OPG) axis is considered crucial in this process. Periodontal ligament fibroblasts produce primarily OPG, an osteoclastogenesis-inhibitory molecule. However, they may be influenced in vivo by direct or indirect interactions with bacteria or by mechanical loading. Incubation of periodontal ligament fibroblasts with bacteria or bacterial components causes an increased expression of RANKL and other osteoclastogenesis-stimulating molecules, such as tumor necrosis factor-α and macrophage-colony stimulating factor. Similar results are observed after the application of mechanical loading to these fibroblasts. Periodontal ligament fibroblasts may be considered to play an important role in the remodelling of alveolar bone. In vitro experiments have demonstrated that periodontal ligament fibroblasts adapt to bacterial and mechanical stimuli by synthesizing higher levels of osteoclastogenesis-stimulating molecules. Therefore, they probably contribute to the enhanced osteoclast formation observed during periodontitis and to orthodontic tooth movement.
Collapse
Affiliation(s)
- D Sokos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Research Institute MOVE, University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
48
|
Amemiya T, Yamada H, Kawashima S, Sawada K, Ejima K, Matsumoto K, Arai Y, Honda K. Reduction of moving artifacts caused by breathing in rats for in vivo micro-computed tomography. Oral Radiol 2014. [DOI: 10.1007/s11282-014-0172-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Icariin Augments Bone Formation and Reverses the Phenotypes of Osteoprotegerin-Deficient Mice through the Activation of Wnt/ β -Catenin-BMP Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:652317. [PMID: 24348713 PMCID: PMC3835354 DOI: 10.1155/2013/652317] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
Icariin has been mostly reported to enhance bone fracture healing and treat postmenopausal osteoporosis in ovariectomized animal model. As another novel animal model of osteoporosis, there is few publication about the effect of Icariin on osteoprotegerin-deficient mice. Therefore, the goal of this study is to find the effect on bone formation and underlying mechanisms of Icariin in osteoprotegerin (OPG) knockout (KO) mice. We found that Icariin significantly stimulated new bone formation after local injection over the surface of calvaria at the dose of 5 mg/kg per day. With this dose, Icariin was also capable of significantly reversing OPG-deficient-induced bone loss and bone strength reduction. Real-time PCR analysis showed that Icariin significantly upregulated the expression of BMP2, BMP4, RUNX2, OC, Wnt1, and Wnt3a in OPG KO mice. Icariin also significantly increased the expression of AXIN2, DKK1, TCF1, and LEF1, which are the direct target genes of β -catenin signaling. The in vitro studies showed that Icariin induced osteoblast differentiation through the activation of Wnt/ β -catenin-BMP signaling by in vitro deletion of the β -catenin gene using β -catenin(fx/fx) mice. Together, our findings demonstrate that Icariin significantly reverses the phenotypes of OPG-deficient mice through the activation of Wnt/ β -catenin-BMP signaling.
Collapse
|