1
|
Wat LW, Svensson KJ. Novel secreted regulators of glucose and lipid metabolism in the development of metabolic diseases. Diabetologia 2024:10.1007/s00125-024-06253-x. [PMID: 39180580 DOI: 10.1007/s00125-024-06253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/01/2024] [Indexed: 08/26/2024]
Abstract
The tight regulation of glucose and lipid metabolism is crucial for maintaining metabolic health. Dysregulation of these processes can lead to the development of metabolic diseases. Secreted factors, or hormones, play an essential role in the regulation of glucose and lipid metabolism, thus also playing an important role in the development of metabolic diseases such as type 2 diabetes and obesity. Given the important roles of secreted factors, there has been significant interest in identifying new secreted factors and new functions for existing secreted factors that control glucose and lipid metabolism. In this review, we evaluate novel secreted factors or novel functions of existing factors that regulate glucose and lipid metabolism discovered in the last decade, including secreted isoform of endoplasmic reticulum membrane complex subunit 10, vimentin, cartilage intermediate layer protein 2, isthmin-1, lipocalin-2, neuregulin-1 and neuregulin-4. We discuss their discovery, tissues of origin, mechanisms of action and sex differences, emphasising their potential to regulate metabolic processes central to diabetes. Additionally, we discuss the translational barriers, particularly the absence of identified receptors, that hamper their functional characterisation and further therapeutic development. Ultimately, the identification of new secreted factors may give insights into previously unidentified pathways of disease progression and mechanisms of glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Lianna W Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
3
|
Coskun M, Altinova AE, Babayeva A, Sel AT, Yapar D, Karaca M, Yalcin MM, Akturk M, Toruner FB, Karakoc MA, Yetkin I. Leukocyte Telomere Length and Neuregulin-4 Levels in Female Patients with Acromegaly: The Relationship between Disease Activity and Body Fat Distribution. J Clin Med 2023; 12:4108. [PMID: 37373801 DOI: 10.3390/jcm12124108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The study aimed to examine leukocyte telomere length (LTL) and serum neuregulin-4 levels and their relationship with disease activity, co-morbidities and body fat distribution in female acromegaly patients. Forty female patients with acromegaly and thirty-nine age and body mass index (BMI) similar healthy female volunteers were included in the study. Patients were classified into two groups: active acromegaly (AA) and controlled acromegaly (CA). The quantitative polymerase chain reaction (PCR) method was used to study LTL, and T/S ratio < 1 was accepted as shortened telomere length. Neuregulin-4 was studied by ELISA. There was no difference in median LTL between acromegaly and the control group (p = 0.530). The percentage of T/S < 1 in patients with acromegaly (60.0%) was similar to that of the control group (43.6%) (p = 0.144). However, serum neuregulin-4 was significantly higher in patients with acromegaly than those in the control group (p = 0.037). There were no significant differences concerning LTL, percentage of T/S < 1 and neuregulin-4 levels between active and controlled acromegaly groups (p > 0.05). Neuregulin-4 correlated positively with fasting glucose, triglyceride (TG), triglyceride/glucose (TyG) index, and lean body mass in the acromegaly group. A negative correlation was observed between LTL and neuregulin-4 in the control group (p = 0.039). When the factors affecting neuregulin-4 were evaluated by multivariate linear regression analysis with an enter method, TG (β: 0.316, p = 0.025) was independently and positively associated with neuregulin-4. Our findings indicate that acromegaly is associated with unchanged LTL and high neuregulin-4 levels in female patients. However, the relationship between acromegaly, the aging process, and neuregulin-4 involves complex mechanisms, and further studies are needed.
Collapse
Affiliation(s)
- Meric Coskun
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Alev Eroglu Altinova
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Afruz Babayeva
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Aydin Tuncer Sel
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Dilek Yapar
- Department of Public Health, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mine Karaca
- Department of Internal Medicine, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mehmet Muhittin Yalcin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mujde Akturk
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Fusun Balos Toruner
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Mehmet Ayhan Karakoc
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| | - Ilhan Yetkin
- Department of Endocrinology and Metabolism, Faculty of Medicine, Gazi University, Ankara 06100, Turkey
| |
Collapse
|
4
|
Zhong M, Tian X, Sun Q, Li L, Lu Y, Feng Z, Gao Y, Li S. Correlation of asprosin and Nrg-4 with type 2 diabetes Mellitus Complicated with Coronary Heart Disease and the Diagnostic Value. BMC Endocr Disord 2023; 23:61. [PMID: 36915073 PMCID: PMC10009920 DOI: 10.1186/s12902-023-01311-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
PURPOSE Asprosin is a newly discovered adipose factor secreted by white fat, which is involved in glucose metabolism and inflammation. Neuregulin-4 (Nrg-4) is a new adipose factor released from brown adipose tissue and is considered to play an important role in metabolism. This study aims to explore the association between serum Asprosin, Nrg-4 level and coronary heart disease(CHD) in patients with type 2 diabetes mellitus(T2DM) and the diagnostic value. PATIENTS AND METHODS 157 patients with T2DM were enrolled from Affiliated Hospital of Chengde Medical University between December 2020 to July 2021. These patients were divided into T2DM without CHD group (T2DM-0, n = 80) and T2DM with CHD (T2DM-CHD, n = 77). Serum Asprosin and Nrg-4 expression was detected by enzyme-linked immunosorbent assay, and the correlations between Asprosin or Nrg-4 and clinical and biochemical indicators were analyzed. A receiver operating characteristics curve analysis and area under the curve (AUC) were used to evaluate diagnostic accuracy. RESULTS Serum Asprosin level of the T2DM-CHD group were significantly higher and Nrg-4 level significantly lower than those of the T2DM-0 group.Spearman correlation analysis showed that serum Asprosin levels were significantly positively correlated with diabetes course,history of hypertension, fasting plasma glucose(FPG), glycosylated hemoglobin A1c(HbA1C), triglycerides(TG),triglyceride glucose index(TyG index) and urea, and negatively correlated with ALT (all p < 0.05). Nrg-4 was negatively correlated with history of hypertension, body mass index(BMI), FPG, HbA1C, TG, and TyG indexes (all p < 0.05), and positively correlated with high-density lipoprotein cholesterol(HDL-C)(p < 0.05).Logistic regression analysis showed that after adjusting potential confounders, Asprosin was a risk factor for diabetes mellitus, Nrg-4 was a protective factor.The AUC of Asprosin for diagnosing T2DM-CHD was 0.671 (95% confidence interval [CI] 0.584-0.759), and the AUC of the Nrg4 index for diagnosing T2DM-CHD was 0.772 (95% CI 0.700-0.844). The AUC of Asprosin and Nrg-4 for the combined diagnosis of T2DM-CHD was 0.796 (95% CI 0.726-0.864). CONCLUSION Asprosin and Nrg-4 may be novel diagnostic biomarkers for T2DM with CHD, as they effectively improved the diagnostic accuracy for T2DM-CHD.
Collapse
Affiliation(s)
- Min Zhong
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xue Tian
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Qitian Sun
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Lihui Li
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanan Lu
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zengbin Feng
- Department of Cardiac surgery, Affiliated Hospital of Chengde Medical University, Chengde, China.
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, China.
| | - Shuying Li
- Department of Nursing , Affiliated Hospital of Chengde Medical University, Chengde, China.
| |
Collapse
|
5
|
Liu Y, Chen M. Neuregulin 4 as a novel adipokine in energy metabolism. Front Physiol 2023; 13:1106380. [PMID: 36703934 PMCID: PMC9873244 DOI: 10.3389/fphys.2022.1106380] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Adipose tissue has been shown to play a key role in energy metabolism and it has been shown to regulate metabolic homeostasis through the secretion of adipokines. Neuregulin 4 (Nrg4), a novel adipokine secreted mainly by brown adipose tissue (BAT), has recently been characterized as having an important effect on the regulation of energy homeostasis and glucolipid metabolism. Nrg4 can modulate BAT-related thermogenesis by increasing sympathetic innervation of adipose tissue and therefore has potential metabolic benefits. Nrg4 improves metabolic dysregulation in various metabolic diseases such as insulin resistance, obesity, non-alcoholic fatty liver disease, and diabetes through several mechanisms such as anti-inflammation, autophagy regulation, pro-angiogenesis, and lipid metabolism normalization. However, inconsistent findings are found regarding the effects of Nrg4 on metabolic diseases in clinical settings, and this heterogeneity needs to be further clarified by future studies. The potential metabolic protective effect of Nrg4 suggests that it may be a promising endocrine therapeutic target.
Collapse
|
6
|
Cheng JX, Yu K. New Discovered Adipokines Associated with the Pathogenesis of Obesity and Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:2381-2389. [PMID: 35966830 PMCID: PMC9371465 DOI: 10.2147/dmso.s376163] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity is defined as abnormal or excessive accumulation of adipose tissue, closely associated with the increased risk of various comorbidities, especially type 2 diabetes mellitus (T2DM). Adipose tissue is a complex structure responsible for not only fat storage but also releasing adipokines which may play roles in the pathogenesis and could be developed into biomarkers for diagnosis, treatment and prognosis of obesity-related metabolic diseases. This review aims to summarize several adipokines discovered recently that have promising functions in obesity and T2DM. Among them, the levels of FSTL1, WISP1 and Asprosin in subjects with obesity or diabetes are commonly higher than in normal controls, suggesting that they may be pathogenic. Inversely, SFRP5, Metrnl, NRG4 and FAM19A5 may serve as the protective factors.
Collapse
Affiliation(s)
- Jia-Xue Cheng
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ke Yu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Ke Yu, Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, No. 82, Xinhua South Road, Tongzhou District, Beijing, People’s Republic of China, Tel +86 13811657618, Email
| |
Collapse
|
7
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
8
|
Tutunchi H, Ostadrahimi A, Hosseinzadeh-Attar MJ, Miryan M, Mobasseri M, Ebrahimi-Mameghani M. A systematic review of the association of neuregulin 4, a brown fat-enriched secreted factor, with obesity and related metabolic disturbances. Obes Rev 2020; 21:e12952. [PMID: 31782243 DOI: 10.1111/obr.12952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Neuregulin 4 (Nrg4), a novel brown fat-enriched hormone, plays a key role in the modulation of glucose and lipid metabolism and energy balance. Recent data have demonstrated that the expression of Nrg4 is substantially down-regulated in mouse and human obesity, making its regulatory aspect intriguing. Because of the close relationship between Nrg4, obesity, and associated metabolic diseases, this systematic review aimed to assess the association of Nrg4 with obesity and related metabolic disturbances, emphasizing its possible mechanisms of action in these disorders. We searched PubMed/Medline, ScienceDirect, Scopus, EMBASE, ProQuest, and Google Scholar up until June 2019. The evidence reviewed here indicates that Nrg4 may contribute to the prevention of obesity and related metabolic complications by elevating brown adipose tissue activity, increasing the expression of thermogenic markers, decreasing the expression of lipogenic/adipogenic genes, exacerbating white adipose tissue browning, increasing the number of brite/beige adipocytes, promoting hepatic fat oxidation and ketogenesis, inducing neurite outgrowth, enhancing blood vessels in adipose tissue, increasing the circulatory levels of healthy adipokines, and improving glucose homeostasis. Thus, Nrg4 appears to be a novel therapeutic strategy for the treatment of obesity and associated metabolic complications. However, prospective cohort studies are warranted to confirm these outcomes.
Collapse
Affiliation(s)
- Helda Tutunchi
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahsa Miryan
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Mobasseri
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrangiz Ebrahimi-Mameghani
- Social Determinants of Health Research Center, Department of Biochemistry and Diet Therapy, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Wang Y, Huang S, Yu P. Association between circulating neuregulin4 levels and diabetes mellitus: A meta-analysis of observational studies. PLoS One 2019; 14:e0225705. [PMID: 31815951 PMCID: PMC6901220 DOI: 10.1371/journal.pone.0225705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Neuregulin 4 (Nrg4) was proven as a brown fat-enriched secreted factor that can regulate glucose and lipid metabolism. However, the association between circulating Nrg4 levels and diabetes mellitus (DM) in human remains unclear. We conducted a meta-analysis to investigate association of circulating Nrg4 with DM. METHODS Observational studies comparing circulating Nrg4 levels in diabetes patients and health controls were included. Circulating Nrg4, correlation coefficients of clinical indices and circulating Nrg4 were pooled by meta-analysis. RESULTS Seven studies were included. The pooled results indicated there were no significant difference in the circulating Nrg4 between diabetes patients and controls (SMD = 0.18, 95%CI = -0.06 to 0.42, P = 0.143). However, diabetes patients had higher circulating Nrg4 than their controls in cross-sectional studies (SMD = 0.55, 95%CI = 0.36 to 0.73, P<0.001). None of the renal function and metabolic syndrome markers were correlated with circulating Nrg4, whereas the HbA1c and BMI were positively correlated (rs = 0.09, 95%CI = 0.03 to 0.16, P = 0.005; rs = 0.20, 95%CI = 0.07 to 0.34, P = 0.003; respectively). CONCLUSION Our findings suggested circulating Nrg4 may play a role in in the development of DM in cross-sectional studies and circulating Nrg4 might be associated with imbalance in glucose metabolism and obesity.
Collapse
Affiliation(s)
- Yao Wang
- NHC Key Laboratory of Hormones and Development (Tianjn Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjn Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Shuai Huang
- NHC Key Laboratory of Hormones and Development (Tianjn Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjn Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development (Tianjn Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjn Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin, China
- * E-mail:
| |
Collapse
|
10
|
Tian QP, Liu ML, Tang CS, Xue L, Pang YZ, Qi YF. Association of Circulating Neuregulin-4 with Presence and Severity of Coronary Artery Disease. Int Heart J 2018; 60:45-49. [PMID: 30393265 DOI: 10.1536/ihj.18-130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neuregulin-4 (Nrg4) is a newly discovered adipokine that is synthesized in many tissues and plays an important role in modulating systemic energy metabolism and in the development of metabolic disorders. However, little is known about the relationship between Nrg4 and coronary artery disease (CAD). In this study, we investigated the association between Nrg4 and the presence and severity of CAD.We enrolled 73 patients diagnosed by coronary angiography (CAG) as having CAD and 32 controls. The CAD group was divided into two subgroups according to their SYNTAX score. Plasma levels of Nrg4 were measured in all participants and compared among different groups. The relationship between Nrg4 and CAD was analyzed. Receiver operating characteristic (ROC) analysis was conducted to evaluate the usefulness Nrg4 in assessing the presence and severity of CAD.Nrg4 levels were negatively associated with the SYNTAX score (r = -0.401, P = 0.000). The patients with a higher SYNTAX score had significantly lower Nrg4 levels as compared with the low SYNTAX score subgroup and the controls (P < 0.05). The Nrg4 levels of the low SYNTAX score subgroup were much lower than controls (P < 0.05). Furthermore, an association between Nrg4 and CAD (odds ratio, 0.279; 95% confidence interval, 0.088-0.882) was observed. Nrg4 had 43.8% sensitivity and 96.9% specificity for identifying CAD, and 73.1% sensitivity and 87.3% specificity for identifying patients who had severe coronary artery lesions.Nrg4 levels were found to be inversely associated with the presence and severity of CAD.
Collapse
Affiliation(s)
- Qing-Ping Tian
- Department of Geriatrics, Peking University First Hospital
| | - Mei-Lin Liu
- Department of Geriatrics, Peking University First Hospital
| | - Chao-Shu Tang
- Institute of Cardiovascular Disease, Peking University First Hospital
| | - Lin Xue
- Department of Cardiology, Peking University First Hospital
| | - Yong-Zheng Pang
- Institute of Cardiovascular Disease, Peking University First Hospital
| | - Yong-Fen Qi
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, School of Basic Medical Sciences, Peking University Health Science Center
| |
Collapse
|
11
|
Plasma Neuregulin 4 Levels Are Associated with Metabolic Syndrome in Patients Newly Diagnosed with Type 2 Diabetes Mellitus. DISEASE MARKERS 2018; 2018:6974191. [PMID: 29721105 PMCID: PMC5867541 DOI: 10.1155/2018/6974191] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Abstract
Neuregulin 4 (Nrg4) has been proposed to play a role in the pathogeneses of obesity, insulin resistance, and dyslipidemia. However, information about the link between Nrg4 and metabolic syndrome (MetS) is scarce, especially in patients with newly diagnosed type 2 diabetes mellitus (nT2DM). This study aimed at investigating whether Nrg4 is associated with MetS in nT2DM patients. A total of 311 patients with nT2DM were recruited. Plasma Nrg4 concentration was determined by ELISA. Plasma Nrg4 concentration was lower in nT2DM patients with MetS than in nT2DM patients without MetS (P = 0.001). Nrg4 concentration showed negative correlations with most of the analyzed indicators of MetS. MetS was less prevalent among subjects in the highest quartile of plasma Nrg4 concentration than among those in the lowest quartile (P < 0.01). Age- and sex-adjusted plasma Nrg4 concentrations were positively correlated with concentrations of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A (both P < 0.05) and negatively correlated with triglyceride, high-sensitivity C-reactive protein (hs-CRP), and gamma-glutamyltransferase concentrations, neutrophil count, and white blood cell (WBC) count (all P < 0.05). In multivariate analysis, Nrg4 was independently associated with hs-CRP level, WBC count, and HDL-C level (P = 0.001 or P < 0.05). Multiple logistic regression analysis of MetS prediction by Nrg4 revealed an odds ratio of 0.560 (95% CI: 0.374-0.837; P < 0.01). Decreased plasma Nrg4 levels, which may be associated with augmented oxidative stress, inflammation, and dyslipidemia, might be involved in the development of MetS in nT2DM patients.
Collapse
|
12
|
Sookoian S, Pirola CJ. Nonalcoholic Fatty Liver Disease Progresses into Severe NASH when Physiological Mechanisms of Tissue Homeostasis Collapse. Ann Hepatol 2018; 17:182-186. [PMID: 29469051 DOI: 10.5604/01.3001.0010.8631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phenotypic modulation of NAFLD-severity by molecules derived from white (adipokines) and brown (batokines) adipose tissue may be important in inducing or protecting against the progression of the disease. Adipose tissue-derived factors can promote the progression of NAFLD towards severe histological stages (NASH-fibrosis and NASHcirrhosis). This effect can be modulated by the release of adipokines or batokines that directly trigger an inflammatory response in the liver tissue or indirectly modulate related phenotypes, such as insulin resistance. Metabolically dysfunctional adipose tissue, which is often infiltrated by macrophages and crown-like histological structures, may also show impaired production of anti-inflammatory cytokines, which may favor NAFLD progression into aggressive phenotypes by preventing its protective effects on the liver tissue.
Collapse
Affiliation(s)
- Silvia Sookoian
- University of Buenos Aires Institute of Medical Research A Lanari, Buenos Aires, Argentina
| | - Carlos J Pirola
- University of Buenos Aires Institute of Medical Research A Lanari, Buenos Aires, Argentina
| |
Collapse
|
13
|
Yan PJ, Xu Y, Wan Q, Feng J, Li H, Gao CL, Yang J, Zhong HH, Zhang ZH. Decreased plasma neuregulin 4 concentration is associated with increased high-sensitivity C-reactive protein in newly diagnosed type 2 diabetes mellitus patients: a cross-sectional study. Acta Diabetol 2017; 54:1091-1099. [PMID: 28918492 DOI: 10.1007/s00592-017-1044-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022]
Abstract
AIMS Inflammation has been reported to be involved in the pathogenesis of atherosclerosis. This principal objective of this study was to investigate if the secretion of neuregulin 4 (Nrg4), a soluble protein associated with metabolic syndrome and subclinical cardiovascular disease, is correlated with the inflammation marker high-sensitivity C-reactive protein (hs-CRP) in patients with newly diagnosed type 2 diabetes mellitus (nT2DM). METHODS A study group of 311 nT2DM patients was divided into three subgroups based on hs-CRP tertiles. Multiple linear regression was conducted to explore the association between plasma Nrg4 and hs-CRP levels. RESULTS The nT2DM patients with the highest hs-CRP levels (>2.46 mg/L) exhibited higher atherogenic coefficients and atherogenic index of plasma (AIP) levels, but lower levels of plasma Nrg4, as compared to those with the lowest hs-CRP levels (<0.63 mg/L). Plasma Nrg4 levels were inversely associated with white blood cell count, hs-CRP, and AIP and positively associated with high-density lipoprotein cholesterol (HDL-C), before and after adjustment for age, gender, body mass index (BMI), and body fat percentage (P < 0.01 or P < 0.05). hs-CRP was the factor most strongly associated with plasma Nrg4 levels. CONCLUSIONS These results indicate that lower plasma Nrg4 levels may be associated with elevated hs-CRP in nT2DM patients. It generates the hypothesis that decreased levels of Nrg4 may trigger the development of atherosclerosis through its proinflammatory effects. These findings need to be confirmed by further prospective studies.
Collapse
Affiliation(s)
- Pi-Jun Yan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qin Wan
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Feng
- Department of Cardiovascular Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua Li
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen-Lin Gao
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Yang
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hai-Hua Zhong
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhi-Hong Zhang
- Department of General Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
14
|
Caillaud K, Boisseau N, Ennequin G, Chavanelle V, Etienne M, Li X, Denis P, Dardevet D, Lacampagne A, Sirvent P. Neuregulin 1 improves glucose tolerance in adult and old rats. DIABETES & METABOLISM 2016; 42:96-104. [DOI: 10.1016/j.diabet.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
|
15
|
Ennequin G, Boisseau N, Caillaud K, Chavanelle V, Etienne M, Li X, Sirvent P. Neuregulin 1 Improves Glucose Tolerance in db/db Mice. PLoS One 2015; 10:e0130568. [PMID: 26230680 PMCID: PMC4521942 DOI: 10.1371/journal.pone.0130568] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/21/2015] [Indexed: 01/14/2023] Open
Abstract
In vitro experiments using rodent skeletal muscle cells suggest that neuregulin 1 (NRG1) is involved in glucose metabolism regulation, although no study has evaluated the role of NRG1 in systemic glucose homeostasis. The purpose of this study was to investigate the effect of chronic and acute NRG1 treatment on glucose homeostasis in db/db mice. To this aim, glucose tolerance tests were performed in 8-week-old male db/db mice after treatment with NRG1 (50μg.kg-1) or saline 3 times per week for 8 weeks. In other experiments, glucose tolerance and pyruvate tolerance tests were performed in db/db mice 15 minutes after a single NRG1 (50μg.kg-1) or saline injection. Liver, adipose tissue, hypothalamus and skeletal muscle were also collected 30 minutes after acute NRG1 (50μg.kg-1) or saline treatment, and the phosphorylation status of the ERBB receptors, AKT (on Ser473) and FOXO1 (on Ser256) was assessed by western blotting. Chronic treatment (8 weeks) with NRG1 improved glucose tolerance in db/db mice. Acute treatment also lowered glycemia and insulinemia during glucose or pyruvate tolerance tests. NRG1 acute injection induced activation of ERBB3 receptors and phosphorylation of AKT and FOXO1 only in liver. Altogether, this study shows that acute and chronic NRG1 treatments improve glucose tolerance in db/db mice. This effect could be mediated through inhibition of hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Gaël Ennequin
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Nathalie Boisseau
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Kevin Caillaud
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Vivien Chavanelle
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Monique Etienne
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Xinyan Li
- Zensun Sci & Tech Ltd., Shanghai, China
| | - Pascal Sirvent
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
- * E-mail:
| |
Collapse
|
16
|
Schneider MR, Yarden Y. Structure and function of epigen, the last EGFR ligand. Semin Cell Dev Biol 2013; 28:57-61. [PMID: 24374012 DOI: 10.1016/j.semcdb.2013.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/29/2023]
Abstract
Epigen is the latest addition to the mammalian family of EGFR ligands. Epigen was initially identified as a novel expressed sequence tag with homology to the EGF family by high throughput sequencing of a mouse keratinocyte complementary DNA library, and received its name for its ability to act as an epithelial mitogen. In vitro studies attributed to epigen several unique features, such as persistent and potent biological actions involving low affinity receptor binding, as well as sub-maximal receptor activation and inactivation. Similarly to the other EGFR ligands, the expression of epigen is up-regulated by hormones and in certain cancer types. While the biological functions of epigen remain to be uncovered, it appears to play a role in epidermal structures, such as the mammary gland and the sebaceous gland. The latter organ, in particular, was greatly enlarged in transgenic mice overexpressing epigen. Interestingly, mice lacking epigen develop and grow normally, probably due to functional compensation by other EGFR ligands. Future studies are likely to reveal the biological roles of the unique receptor binding properties of epigen, as well as its potential harnessing during disease.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|