1
|
Yang Y, Wang B, Dong H, Lin H, Yuen-Man Ho M, Hu K, Zhang N, Ma J, Xie R, Cheng KKY, Li X. The mitochondrial enzyme pyruvate carboxylase restricts pancreatic β-cell senescence by blocking p53 activation. Proc Natl Acad Sci U S A 2024; 121:e2401218121. [PMID: 39436667 PMCID: PMC11536080 DOI: 10.1073/pnas.2401218121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/07/2024] [Indexed: 10/23/2024] Open
Abstract
Defective glucose-stimulated insulin secretion (GSIS) and β-cell senescence are hallmarks in diabetes. The mitochondrial enzyme pyruvate carboxylase (PC) has been shown to promote GSIS and β-cell proliferation in the clonal β-cell lines, yet its physiological relevance remains unknown. Here, we provide animal and human data showing a role of PC in protecting β-cells against senescence and maintaining GSIS under different physiological and pathological conditions. β-cell-specific deletion of PC impaired GSIS and induced β-cell senescence in the mouse models under either a standard chow diet or prolonged high-fat diet feeding. Transcriptomic analysis indicated that p53-related senescence and cell cycle arrest are activated in PC-deficient islets. Overexpression of PC inhibited hyperglycemia- and aging-induced p53-related senescence in human and mouse islets as well as INS-1E β-cells, whereas knockdown of PC provoked senescence. Mechanistically, PC interacted with MDM2 to prevent its degradation via the MDM2 binding motif, which in turn restricts the p53-dependent senescent program in β-cells. On the contrary, the regulatory effects of PC on GSIS and the tricarboxylic acid (TCA) anaplerotic flux are p53-independent. We illuminate a function of PC in controlling β-cell senescence through the MDM2-p53 axis.
Collapse
Affiliation(s)
- Yumei Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Baomin Wang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Haoru Dong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Huige Lin
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Melody Yuen-Man Ho
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ke Hu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Na Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200030, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| |
Collapse
|
2
|
Aoyama M, Kishimoto Y, Saita E, Ohmori R, Nakamura M, Kondo K, Momiyama Y. High plasma levels of fortilin are associated with cardiovascular events in patients undergoing coronary angiography. Heart Vessels 2024:10.1007/s00380-024-02465-8. [PMID: 39342070 DOI: 10.1007/s00380-024-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Excessive apoptosis and its insufficient clearance is characteristic of atherosclerotic plaques. Fortilin has potent antiapoptotic property and is abundantly expressed in atherosclerotic plaques. Fortilin-deficient mice had less atherosclerosis with more macrophage apoptosis. Recently, we reported that plasma fortilin levels were high in patients with coronary artery disease (CAD). However, its prognostic value has not been elucidated. We investigated plasma fortilin levels and major adverse cardiovascular events (MACE) in 404 patients (mean age 68 ± 12 years; 276 males) undergoing coronary angiography for suspected CAD. MACE was defined as cardiovascular death, myocardial infarction, unstable angina, heart failure, stroke, or coronary revascularization. Of the 404 patients, 218 (54%) had CAD. Plasma fortilin levels were higher in patients with CAD than without CAD (median 74.9 vs. 70.9 pg/mL, p < 0.05). During a mean follow-up of 5.7 ± 4.2 years, MACE was observed in 59 (15%) patients. Notably, patients with MACE had higher fortilin levels (median 83.0 vs. 71.4 pg/mL) and more often had fortilin level > 80.0 pg/mL (54% vs. 36%) than those without MACE (p < 0.025). A Kaplan-Meier analysis showed lower event-free survival in patients with fortilin > 80.0 pg/mL than in those with ≤ 80.0 pg/mL (p < 0.001). In multivariate Cox proportional hazards analysis, fortilin level (> 80.0 pg/mL) was an independent predictor of MACE (hazard ratio: 2.29, 95%CI: 1.36-3.85, p < 0.002). Among the 218 patients with CAD, fortilin level was also a significant predictor of MACE (hazard ratio: 2.48; 95%CI: 1.34-4.61, p < 0.005). Thus, high plasma fortilin levels were found to be associated with cardiovascular events in patients with CAD as well as those undergoing coronary angiography.
Collapse
Affiliation(s)
- Masayuki Aoyama
- Department of Cardiology, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Setsunan University, Osaka, Japan
| | - Emi Saita
- Department of Food Culture, BAIKA Women's University, Osaka, Japan
| | - Reiko Ohmori
- Faculty of Regional Design, Utsunomiya University, Tochigi, Japan
| | - Masato Nakamura
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | | | - Yukihiko Momiyama
- Department of Cardiology, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| |
Collapse
|
3
|
Fulcher JM, Swensen AC, Chen YC, Verchere CB, Petyuk VA, Qian WJ. Top-Down Proteomics of Mouse Islets With Beta Cell CPE Deletion Reveals Molecular Details in Prohormone Processing. Endocrinology 2023; 164:bqad160. [PMID: 37967211 PMCID: PMC10650973 DOI: 10.1210/endocr/bqad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Indexed: 11/17/2023]
Abstract
Altered prohormone processing, such as with proinsulin and pro-islet amyloid polypeptide (proIAPP), has been reported as an important feature of prediabetes and diabetes. Proinsulin processing includes removal of several C-terminal basic amino acids and is performed principally by the exopeptidase carboxypeptidase E (CPE), and mutations in CPE or other prohormone convertase enzymes (PC1/3 and PC2) result in hyperproinsulinemia. A comprehensive characterization of the forms and quantities of improperly processed insulin and other hormone products following Cpe deletion in pancreatic islets has yet to be attempted. In the present study we applied top-down proteomics to globally evaluate the numerous proteoforms of hormone processing intermediates in a β-cell-specific Cpe knockout mouse model. Increases in dibasic residue-containing proinsulin and other novel proteoforms of improperly processed proinsulin were found, and we could classify several processed proteoforms as novel substrates of CPE. Interestingly, some other known substrates of CPE remained unaffected despite its deletion, implying that paralogous processing enzymes such as carboxypeptidase D (CPD) can compensate for CPE loss and maintain near normal levels of hormone processing. In summary, our quantitative results from top-down proteomics of islets provide unique insights into the complexity of hormone processing products and the regulatory mechanisms.
Collapse
Affiliation(s)
- James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Adam C Swensen
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yi-Chun Chen
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - C Bruce Verchere
- Department of Surgery, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
- Department of Pathology and Laboratory Medicine, BC Children’s Hospital Research Institute and University of British Columbia, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Vladislav A Petyuk
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
4
|
Translationally controlled tumor protein restores impaired memory and altered synaptic protein expression in animal models of dementia. Biomed Pharmacother 2023; 160:114357. [PMID: 36738496 DOI: 10.1016/j.biopha.2023.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
This study describes the effects of translationally controlled tumor protein (TCTP) on mice with memory impairment caused by scopolamine (SCO) administration. Specifically, memory functions and expression levels of hippocampal synaptic proteins in 7- to 12-month-old SCO-treated wild-type (WT-SCO) mice were compared to those of TCTP-overexpressing (TG) and TCTP knocked-down (KD) mice similarly treated with SCO. Passive-avoidance tasks were performed with WT, TG, and KD mice for four weeks after intraperitoneal injection of SCO or saline followed by an acquisition test. After completing behavioral studies, hippocampi of all mice groups were collected and their synaptic protein contents were subjected to Western blotting or immunohistochemical analyses, and compared with those of 5x familial Alzheimer's disease (5xFAD) mice and postmortem AD patients. Results of passive avoidance tests revealed that SCO-induced memory impairment was repaired in TCTP-TG mice, but not in TCTP-KD mice. Hippocampal expression levels of synaptophysin, synapsin-1, and PSD-95 were increased in TCTP-TG mice treated with SCO (TG-SCO) but decreased in TCTP-KD mice treated with SCO (KD-SCO). Decreased levels of TCTP, synaptophysin, and PSD-95 were also found in hippocampi of 5xFAD mice and AD patients. Expression levels of p-CREB/CREB and brain-derived neurotrophic factor (BDNF) in TCTP-TG and TG-SCO mice were similar to or increased compared to those in WT mice, but decreased in TCTP-KD and KD-SCO mice. BDNF immunoreactivity was restored in CA1 regions of hippocampi of TG-SCO mice, but not in KD-SCO mice. These results suggest that TCTP can restore damaged memory in mice possibly through restored synaptic protein expression.
Collapse
|
5
|
Bommer UA, Kawakami T. Role of TCTP in Cell Biological and Disease Processes. Cells 2021; 10:cells10092290. [PMID: 34571939 PMCID: PMC8471051 DOI: 10.3390/cells10092290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also referred to as histamine-releasing factor (HRF) or fortilin, is a multifunctional protein, expressed in essentially all eukaryotic organisms [...].
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
- Correspondence: (U.-A.B.); (T.K.)
| | - Toshiaki Kawakami
- Laboratory of Allergic Diseases, Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Correspondence: (U.-A.B.); (T.K.)
| |
Collapse
|
6
|
Overexpression of translationally controlled tumor protein ameliorates metabolic imbalance and increases energy expenditure in mice. Int J Obes (Lond) 2021; 45:1576-1587. [PMID: 33931746 PMCID: PMC8236403 DOI: 10.1038/s41366-021-00821-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/07/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Background/Objectives Translationally controlled tumor protein (TCTP) exhibits numerous biological functions. It has been shown to be involved in the regulation of glucose. However, its specific role in metabolism has not yet been clearly elucidated. Here, we aimed to assess the effect of TCTP overexpression on metabolic tissues and systemic energy metabolism. Subjects/Methods We investigated whether TCTP can ameliorate the metabolic imbalance that causes obesity using TCTP-overexpressing transgenic (TCTP TG) mice. The mice were subjected to biochemical, morphological, physiological and protein expression studies to define the role of TCTP in metabolic regulation in response to normal chow diet (NCD) compared to high-fat diet (HFD) conditions, and cold environment. Results We found that TCTP TG mice show improved metabolic homeostasis under both of NCD and HFD conditions with simultaneous enhancements in glucose tolerance and insulin sensitivity. In particular, we found coincident increases in energy expenditure with significant upregulation of uncoupling protein 1 (UCP1) in the brown adipose tissue (BAT). Moreover, TCTP overexpressing mice exhibit significantly enhanced adaptive thermogenesis of BAT in response to cold exposure. Conclusions Overexpression of TCTP ameliorated systemic metabolic homeostasis by stimulating UCP1-mediated thermogenesis in the BAT. This suggests that TCTP may function as a modulator of energy expenditure. This study suggests TCTP may serve as a therapeutic target for obesity and obesity-associated metabolic disorders including type 2 diabetes.
Collapse
|
7
|
Lau H, Corrales N, Rodriguez S, Park S, Mohammadi M, Li S, Alexander M, Lakey JRT. The effects of necrostatin-1 on the in vitro development and function of young porcine islets over 14-day prolonged tissue culture. Xenotransplantation 2021; 28:e12667. [PMID: 33438288 DOI: 10.1111/xen.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Necrostatin-1 (Nec-1) supplementation to tissue culture media on day 3 has recently been shown to augment the insulin content, endocrine cellular composition, and insulin release of pre-weaned porcine islets (PPIs); however, its effects were only examined for the first 7 days of tissue culture. The present study examined whether the addition of Nec-1 on day 3 could further enhance the in vitro development and function of PPIs after 14 days of tissue culture. METHODS PPIs were isolated from 8- to 15-day-old, pre-weaned Yorkshire piglets and cultured in an islet maturation media supplemented with Nec-1 on day 3. The recovery, viability, insulin content, endocrine cellular composition, GLUT2 expression in beta cells, differentiation and proliferation potential, and glucose-stimulated insulin secretion of PPIs were assessed on days 3, 7, and 14 of tissue culture (n = 5 on each day). RESULTS Compared with day 7 of tissue culture, islets on day 14 had a lower recovery, GLUT2 expression in beta cells, proliferation capacity of endocrine cells, and glucose-induced insulin stimulation index. Prolonging the culture time to 14 days did not affect islet viability, insulin content, proportion of endocrine cells, and differentiation potential. CONCLUSION The growth-inducing effects of Nec-1 on PPIs were most effective on day 7 of tissue culture when added on day 3. Our findings support existing evidence that the in vitro activities of Nec-1 are short-lived and encourage future studies to explore the use of other novel growth factors during prolonged islet tissue culture.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Samuel Rodriguez
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Soomin Park
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Mohammadreza Mohammadi
- Department of Materials Science and Engineering, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Shiri Li
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Dong K, Zhao Q, Xue Y, Wei Y, Zhang Y, Yang Y. TCTP participates in hepatic metabolism by regulating gene expression involved in insulin resistance. Gene 2020; 768:145263. [PMID: 33122078 DOI: 10.1016/j.gene.2020.145263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 09/04/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Translationally controlled tumor protein (TCTP) has various cellular functions and molecular interactions, many related to its growth-promoting and antiapoptotic properties. Recently, TCTP expression was reported to increases in insulin-resistant mice fed with high-fat diet. TCTP is a multifunctional protein, but its role in liver metabolism is unclear. Here, we investigated the function and mechanism of TCTP in HepG2 cells. Knock-down of TCTP led to 287 differentially expressed genes (DEGs) that were highly associated with cellular apoptosis and signal response, TNF and NF-κB signaling pathways, glycolysis/gluconeogenesis, insulin resistance, FoxO and insulin signaling pathways, adipocytokine and AMPK signaling pathways. shTCTP downregulated the expression of the key gluconeogenesis enzyme phosphoenolpyruvate carboxykinase (PCK1). Furthermore, TCTP regulated the alternative splicing of genes enriched in the phospholipid biosynthetic process and glycerophospholipid metabolism. We further showed that shTCTP down-regulated the intracellular levels of triglyceride and total cholesterol. Our results showed that TCTP regulates the liver cell transcriptome at both the transcriptional and alternative splicing levels. The TCTP regulatory network predicts the biological functions of TCTP in glucose and lipid metabolism, and also insulin resistance, which may be associated with liver metabolism and diseases such as nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Kun Dong
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, Hubei 430030, China.
| | - Qiuchen Zhao
- College of Life Sciences, Wuhan University, NO.299 Ba Yi Avenue, Wuchang, Wuhan 430072, China.
| | - Yaqiang Xue
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, Building 18-2, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China.
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China.
| | - Yi Zhang
- ABLife BioBigData Institute, Optics Valley International Biomedical Park, Building 18-1, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, Hubei 430075, China.
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, Hubei 430030, China.
| |
Collapse
|
9
|
Dysregulation of TCTP in Biological Processes and Diseases. Cells 2020; 9:cells9071632. [PMID: 32645936 PMCID: PMC7407922 DOI: 10.3390/cells9071632] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Translationally controlled tumor protein (TCTP), also called histamine releasing factor (HRF) or fortilin, is a multifunctional protein present in almost all eukaryotic organisms. TCTP is involved in a range of basic cell biological processes, such as promotion of growth and development, or cellular defense in response to biological stresses. Cellular TCTP levels are highly regulated in response to a variety of physiological signals, and regulatory mechanism at various levels have been elucidated. Given the importance of TCTP in maintaining cellular homeostasis, it is not surprising that dysregulation of this protein is associated with a range of disease processes. Here, we review recent progress that has been made in the characterisation of the basic biological functions of TCTP, in the description of mechanisms involved in regulating its cellular levels and in the understanding of dysregulation of TCTP, as it occurs in disease processes such as cancer.
Collapse
|
10
|
Jasinska AJ, Rostamian D, Davis AT, Kavanagh K. Transcriptomic Analysis of Cell-free Fetal RNA in the Amniotic Fluid of Vervet Monkeys ( Chlorocebus sabaeus). Comp Med 2020; 70:67-74. [PMID: 31969210 PMCID: PMC7024774 DOI: 10.30802/aalas-cm-19-000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022]
Abstract
NHP are important translational models for understanding the genomic underpinnings of growth, development, fetal programming, and predisposition to disease, with potential for the development of early health biomarkers. Understanding how prenatal gene expression is linked to pre- and postnatal health and development requires methods for assessing the fetal transcriptome. Here we used RNAseq methodology to analyze the expression of cell-free fetal RNA in the amniotic fluid supernatant (AFS) of vervet monkeys. Despite the naturally high level of degradation of free-floating RNA, we detected more than 10,000 gene transcripts in vervet AFS. The most highly expressed genes were H19, IGF2, and TPT1, which are involved in embryonic growth and glycemic health. We noted global similarities in expression profiles between vervets and humans, with genes involved in embryonic growth and glycemic health among the genes most highly expressed in AFS. Our study demonstrates both the feasibility and usefulness of prenatal transcriptomic profiles, by using amniocentesis procedures to obtain AFS and cell-free fetal RNA from pregnant vervets.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California; Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland;,
| | - Dalar Rostamian
- Center for Neurobehavioral Genetics, University of California-Los Angeles, Los Angeles, California
| | - Ashley T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina; Department of Biomedicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
11
|
Chen SH, Lu CH, Tsai MJ. TCTP is Essential for Cell Proliferation and Survival during CNS Development. Cells 2020; 9:cells9010133. [PMID: 31935927 PMCID: PMC7017002 DOI: 10.3390/cells9010133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Translationally controlled tumor-associated protein (TCTP) has been implicated in cell growth, proliferation, and apoptosis through interacting proteins. Although TCTP is expressed abundantly in the mouse brain, little is known regarding its role in the neurogenesis of the nervous system. We used Nestin-cre-driven gene-mutated mice to investigate the function of TCTP in the nervous system. The mice carrying disrupted TCTP in neuronal and glial progenitor cells died at the perinatal stage. The NestinCre/+; TCTPf/f pups displayed reduced body size at postnatal day 0.5 (P0.5) and a lack of milk in the stomach compared with littermate controls. In addition to decreased cell proliferation, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) and caspase assay revealed that apoptosis was increased in newly committed TCTP-disrupted cells as they migrated away from the ventricular zone. The mechanism may be that the phenotype from specific deletion of TCTP in neural progenitor cells is correlated with the decreased expression of cyclins D2, E2, Mcl-1, Bcl-xL, hax-1, and Octamer-binding transcription factor 4 (Oct4) in conditional knockout mice. Our results demonstrate that TCTP is a critical protein for cell survival during early neuronal and glial differentiation. Thus, enhanced neuronal loss and functional defect in Tuj1 and doublecortin-positive neurons mediated through increased apoptosis and decreased proliferation during central nervous system (CNS) development may contribute to the perinatal death of TCTP mutant mice.
Collapse
Affiliation(s)
- Sung-Ho Chen
- Department of Pharmacology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Master Program in Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Correspondence: ; Tel.: +886-3-8565301 (ext. 2452); Fax: +886-3-8561465
| | - Chin-Hung Lu
- Master Program in Pharmacology and Toxicology, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Ming-Jen Tsai
- Department of Emergency Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 600, Taiwan;
| |
Collapse
|
12
|
Harrington EO, Vang A, Braza J, Shil A, Chichger H. Activation of the sweet taste receptor, T1R3, by the artificial sweetener sucralose regulates the pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2017; 314:L165-L176. [PMID: 28971978 PMCID: PMC5866431 DOI: 10.1152/ajplung.00490.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A hallmark of acute respiratory distress syndrome (ARDS) is pulmonary vascular permeability. In these settings, loss of barrier integrity is mediated by cell-contact disassembly and actin remodeling. Studies into molecular mechanisms responsible for improving microvascular barrier function are therefore vital in the development of therapeutic targets for reducing vascular permeability in ARDS. The sweet taste receptor T1R3 is a G protein-coupled receptor, activated following exposure to sweet molecules, to trigger a gustducin-dependent signal cascade. In recent years, extraoral locations for T1R3 have been identified; however, no studies have focused on T1R3 within the vasculature. We hypothesize that activation of T1R3, in the pulmonary vasculature, plays a role in regulating endothelial barrier function in settings of ARDS. Our study demonstrated expression of T1R3 within the pulmonary vasculature, with a drop in expression levels following exposure to barrier-disruptive agents. Exposure of lung microvascular endothelial cells to the intensely sweet molecule sucralose attenuated LPS- and thrombin-induced endothelial barrier dysfunction. Likewise, sucralose exposure attenuated bacteria-induced lung edema formation in vivo. Inhibition of sweet taste signaling, through zinc sulfate, T1R3, or G-protein siRNA, blunted the protective effects of sucralose on the endothelium. Sucralose significantly reduced LPS-induced increased expression or phosphorylation of the key signaling molecules Src, p21-activated kinase (PAK), myosin light chain-2 (MLC2), heat shock protein 27 (HSP27), and p110α phosphatidylinositol 3-kinase (p110αPI3K). Activation of T1R3 by sucralose protects the pulmonary endothelium from edemagenic agent-induced barrier disruption, potentially through abrogation of Src/PAK/p110αPI3K-mediated cell-contact disassembly and Src/MLC2/HSP27-mediated actin remodeling. Identification of sweet taste sensing in the pulmonary vasculature may represent a novel therapeutic target to protect the endothelium in settings of ARDS.
Collapse
Affiliation(s)
- Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center , Providence, Rhode Island.,Department of Medicine, Alpert Medical School of Brown University , Providence, Rhode Island
| | - Aparna Shil
- Biomedical Research Group, Anglia Ruskin University , Cambridge , United Kingdom
| | - Havovi Chichger
- Biomedical Research Group, Anglia Ruskin University , Cambridge , United Kingdom
| |
Collapse
|
13
|
Pinkaew D, Fujise K. Fortilin: A Potential Target for the Prevention and Treatment of Human Diseases. Adv Clin Chem 2017; 82:265-300. [PMID: 28939212 DOI: 10.1016/bs.acc.2017.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fortilin is a highly conserved 172-amino-acid polypeptide found in the cytosol, nucleus, mitochondria, extracellular space, and circulating blood. It is a multifunctional protein that protects cells against apoptosis, promotes cell growth and cell cycle progression, binds calcium (Ca2+) and has antipathogen activities. Its role in the pathogenesis of human and animal diseases is also diverse. Fortilin facilitates the development of atherosclerosis, contributes to both systemic and pulmonary arterial hypertension, participates in the development of cancers, and worsens diabetic nephropathy. It is important for the adaptive expansion of pancreatic β-cells in response to obesity and increased insulin requirement, for the regeneration of liver after hepatectomy, and for protection of the liver against alcohol- and ER stress-induced injury. Fortilin is a viable surrogate marker for in vivo apoptosis, and it plays a key role in embryo and organ development in vertebrates. In fish and shrimp, fortilin participates in host defense against bacterial and viral pathogens. Further translational research could prove fortilin to be a viable molecular target for treatment of various human diseases including and not limited to atherosclerosis, hypertension, certain tumors, diabetes mellitus, diabetic nephropathy, hepatic injury, and aberrant immunity and host defense.
Collapse
Affiliation(s)
- Decha Pinkaew
- University of Texas Medical Branch at Galveston, Galveston, TX, United States
| | - Ken Fujise
- University of Texas Medical Branch at Galveston, Galveston, TX, United States; The Institute of Translational Sciences, University of Texas Medical Branch at Galveston, Galveston, TX, United States.
| |
Collapse
|
14
|
Bommer UA. The Translational Controlled Tumour Protein TCTP: Biological Functions and Regulation. Results Probl Cell Differ 2017; 64:69-126. [PMID: 29149404 DOI: 10.1007/978-3-319-67591-6_4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Translational Controlled Tumour Protein TCTP (gene symbol TPT1, also called P21, P23, Q23, fortilin or histamine-releasing factor, HRF) is a highly conserved protein present in essentially all eukaryotic organisms and involved in many fundamental cell biological and disease processes. It was first discovered about 35 years ago, and it took an extended period of time for its multiple functions to be revealed, and even today we do not yet fully understand all the details. Having witnessed most of this history, in this chapter, I give a brief overview and review the current knowledge on the structure, biological functions, disease involvements and cellular regulation of this protein.TCTP is able to interact with a large number of other proteins and is therefore involved in many core cell biological processes, predominantly in the response to cellular stresses, such as oxidative stress, heat shock, genotoxic stress, imbalance of ion metabolism as well as other conditions. Mechanistically, TCTP acts as an anti-apoptotic protein, and it is involved in DNA-damage repair and in cellular autophagy. Thus, broadly speaking, TCTP can be considered a cytoprotective protein. In addition, TCTP facilitates cell division through stabilising the mitotic spindle and cell growth through modulating growth signalling pathways and through its interaction with the proteosynthetic machinery of the cell. Due to its activities, both as an anti-apoptotic protein and in promoting cell growth and division, TCTP is also essential in the early development of both animals and plants.Apart from its involvement in various biological processes at the cellular level, TCTP can also act as an extracellular protein and as such has been involved in modulating whole-body defence processes, namely in the mammalian immune system. Extracellular TCTP, typically in its dimerised form, is able to induce the release of cytokines and other signalling molecules from various types of immune cells. There are also several examples, where TCTP was shown to be involved in antiviral/antibacterial defence in lower animals. In plants, the protein appears to have a protective effect against phytotoxic stresses, such as flooding, draught, too high or low temperature, salt stress or exposure to heavy metals. The finding for the latter stress condition is corroborated by earlier reports that TCTP levels are considerably up-regulated upon exposure of earthworms to high levels of heavy metals.Given the involvement of TCTP in many biological processes aimed at maintaining cellular or whole-body homeostasis, it is not surprising that dysregulation of TCTP levels may promote a range of disease processes, foremost cancer. Indeed a large body of evidence now supports a role of TCTP in at least the most predominant types of human cancers. Typically, this can be ascribed to both the anti-apoptotic activity of the protein and to its function in promoting cell growth and division. However, TCTP also appears to be involved in the later stages of cancer progression, such as invasion and metastasis. Hence, high TCTP levels in tumour tissues are often associated with a poor patient outcome. Due to its multiple roles in cancer progression, TCTP has been proposed as a potential target for the development of new anti-cancer strategies in recent pilot studies. Apart from its role in cancer, TCTP dysregulation has been reported to contribute to certain processes in the development of diabetes, as well as in diseases associated with the cardiovascular system.Since cellular TCTP levels are highly regulated, e.g. in response to cell stress or to growth signalling, and because deregulation of this protein contributes to many disease processes, a detailed understanding of regulatory processes that impinge on TCTP levels is required. The last section of this chapter summarises our current knowledge on the mechanisms that may be involved in the regulation of TCTP levels. Essentially, expression of the TPT1 gene is regulated at both the transcriptional and the translational level, the latter being particularly advantageous when a rapid adjustment of cellular TCTP levels is required, for example in cell stress responses. Other regulatory mechanisms, such as protein stability regulation, may also contribute to the regulation of overall TCTP levels.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- School of Medicine, Graduate Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
15
|
Abstract
The translationally controlled tumor protein (TCTP) is a small, multifunctional protein found in most, if not all, eukaryotic lineages, involved in a myriad of key regulatory processes. Among these, the control of proliferation and inhibition of cell death, as well as differentiation, are the most important, and it is probable that other responses are derived from the ability of TCTP to influence them in both unicellular and multicellular organisms. In the latter, an additional function for TCTP stems from its capacity to be secreted via a nonclassical pathway and function in a non-cell autonomous (paracrine) manner, thus affecting the responses of neighboring or distant cells to developmental or environmental stimuli (as in the case of serum TCTP/histamine-releasing factor in mammals and phloem TCTP in Arabidopsis). The additional ability to traverse membranes without a requirement for transmembrane receptors adds to its functional flexibility. The long-distance transport of TCTP mRNA and protein in plants via the vascular system supports the notion that an important aspect of TCTP function is its ability to influence the response of neighboring and distant cells to endogenous and exogenous signals in a supracellular manner. The predicted tridimensional structure of TCTPs indicates a high degree of conservation, more than its amino acid sequence similarity could suggest. However, subtle differences in structure could lead to different activities, as evidenced by TCTPs secreted by Plasmodium spp. Similar structural variations in animal and plant TCTPs, likely the result of convergent evolution, could lead to deviations from the canonical function of this group of proteins, which could have an impact from a biomedical and agricultural perspectives.
Collapse
Affiliation(s)
| | - Roberto Ruiz-Medrano
- Department of Biotechnology and Bioengineering, Center for Research and Advanced Studies of the National Polytechnic Institute, Avenida IPN 2508, Colonia San Pedro Zacatenco, México City, 07360, México.
| |
Collapse
|
16
|
Abstract
Evolutionarily conserved and pleiotropic, the translationally controlled tumor protein (TCTP) is a housekeeping protein present in eukaryotic organisms. It plays an important role in regulating many fundamental processes, such as cell proliferation, cell death, immune responses, and apoptosis. As a result of the pioneer work by Adam Telerman and Robert Amson, the critical role of TCTP in tumor reversion was revealed. Moreover, TCTP has emerged as a regulator of cell fate determination and a promising therapeutic target for cancers. The multifaceted action of TCTP depends on its ability to interact with different proteins. Through this interaction network, TCTP regulates diverse physiological and pathological processes in a context-dependent manner. Complete mapping of the entire sets of TCTP protein interactions (interactome) is essential to understand its various cellular functions and to lay the foundation for the rational design of TCTP-based therapeutic approaches. So far, the global profiling of the interacting partners of TCTP has rarely been performed, but many interactions have been identified in small-scale studies in a specific biological system. This chapter, based on information from protein interaction databases and the literature, illustrates current knowledge of the TCTP interactome.
Collapse
Affiliation(s)
- Siting Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
17
|
Villafuerte BC, Barati MT, Rane MJ, Isaacs S, Li M, Wilkey DW, Merchant ML. Over-expression of insulin-response element binding protein-1 (IRE-BP1) in mouse pancreatic islets increases expression of RACK1 and TCTP: Beta cell markers of high glucose sensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:186-194. [PMID: 27816562 DOI: 10.1016/j.bbapap.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND A targeted analysis of the 50kDa C-terminal fragment of insulin-response element binding protein-1 (IRE-BP1) activation of target genes through the insulin receptor substrate receptor/PI-3 kinase/Akt pathway has been demonstrated for the insulin growth factor-1 receptor. The broader effects of 50kDa C-terminal IRE-BP1 fragment over-expression on protein abundance in pancreatic islet beta cells have not been determined. RESULTS Liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses of replicate lysates of pancreatic islets isolated from background strain animals and transgenic animals, overexpressing IRE-BP1 in pancreatic islet beta cells, demonstrated statistically significant increases in the expression of proteins involved in protein synthesis, endoplasmic reticulum (ER) stress and scaffolding proteins important for protein kinase C signaling; some of which were confirmed by immunoblot analyses. Bioinformatic analysis of protein expression network patterns suggested IRE-BP1 over-expression leads to protein expression patterns indicative of activation of functional protein networks utilized for protein post-translational modification, protein folding, and protein synthesis. Co-immunoprecipitation experiments demonstrate a novel interaction between two differentially regulated proteins receptor for activated protein kinase C (RACK1) and translationally controlled tumor protein (TCTP). CONCLUSIONS Proteomic analysis of IRE-BP1 over-expression in pancreatic islet beta cells suggest IRE-BP1 (a) directly or indirectly through establishing hyperglycemia results in increased expression of ribosomal proteins and markers of ER stress and (b) leads to the enhanced and previously un-described interaction of RACK1 and TCTP. SIGNIFICANCE This study identified C-terminal 50kDa domain of IRE-BP1 over-expression results in increased markers of ER-stress and a novel interaction between the scaffolding proteins RACK1 and TCTP.
Collapse
Affiliation(s)
- Betty C Villafuerte
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Michelle T Barati
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Madhavi J Rane
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Susan Isaacs
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Ming Li
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Michael L Merchant
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
18
|
Li S, Chen M, Xiong Q, Zhang J, Cui Z, Ge F. Characterization of the Translationally Controlled Tumor Protein (TCTP) Interactome Reveals Novel Binding Partners in Human Cancer Cells. J Proteome Res 2016; 15:3741-3751. [PMID: 27607350 DOI: 10.1021/acs.jproteome.6b00556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Translationally controlled tumor protein (TCTP) is a highly conserved housekeeping protein present in eukaryotic organisms. It is involved in regulating many fundamental processes and plays a critical role in tumor reversion and tumorigenesis. Increasing evidence suggests that TCTP plays a role in the regulation of cell fate determination and is a promising therapeutic target for cancer. To decipher the exact mechanisms by which TCTP functions and how all these functions are integrated, we analyzed the interactome of TCTP in HeLa cells by coimmunoprecipitation (IP) and mass spectrometry (MS). A total of 98 proteins were identified. We confirmed the in vitro and in vivo association of TCTP with six of the identified binding proteins using reciprocal IP and bimolecular fluorescence complementation (BiFC) analysis, respectively. Moreover, TCTP interacted with Y-box-binding protein 1 (YBX1), and their interaction was localized to the N-terminal region of TCTP and the 1-129 amino acid (aa) residues of YBX1. The YBX1 protein plays an important role in cell proliferation, RNA splicing, DNA repair, drug resistance, and stress response to extracellular signals. These data suggest that the interaction of TCTP with YBX1 might cooperate or coordinate their functions in the control of diverse regulatory pathways in cancer cells. Taken together, our results not only reveal a large number of TCTP-associated proteins that possess pleiotropic functions, but also provide novel insights into the molecular mechanisms of TCTP in tumorigenesis.
Collapse
Affiliation(s)
- Siting Li
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | - Minghai Chen
- Graduate University, Chinese Academy of Sciences , Beijing 100049, China
| | | | | | | | | |
Collapse
|
19
|
Han S, Englander EW, Gomez GA, Rastellini C, Quertermous T, Kundu RK, Greeley GH. Pancreatic Islet APJ Deletion Reduces Islet Density and Glucose Tolerance in Mice. Endocrinology 2015; 156:2451-60. [PMID: 25965959 DOI: 10.1210/en.2014-1631] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protection and replenishment of a functional pancreatic β-cell mass (BCM) are key goals of all diabetes therapies. Apelin, a small regulatory peptide, is the endogenous ligand for the apelin receptor (APJ) receptor. The apelin-APJ signaling system is expressed in rodent and human islet cells. Apelin exposure has been shown to inhibit and to stimulate insulin secretion. Our aim was to assess the influence of a selective APJ deletion in pancreatic islet cells on islet homeostasis and glucose tolerance in mice. Cre-LoxP strategy was utilized to mediate islet APJ deletion. APJ deletion in islet cells (APJ(Δislet)) resulted in a significantly reduced islet size, density and BCM. An ip glucose tolerance test showed significantly impaired glucose clearance in APJ(Δislet) mice. APJ(Δislet) mice were not insulin resistant and in vivo glucose-stimulated insulin secretion was reduced modestly. In vitro glucose-stimulated insulin secretion showed a significantly reduced insulin secretion by islets from APJ(Δislet) mice. Glucose clearance in response to ip glucose tolerance test in obese APJ(Δislet) mice fed a chronic high-fat (HF) diet, but not pregnant APJ(Δislet) mice, was impaired significantly. In addition, the obesity-induced adaptive elevations in mean islet size and fractional islet area were reduced significantly in obese APJ(Δislet) mice when compared with wild-type mice. Together, these findings demonstrate a stimulatory role for the islet cell apelin-APJ signaling axis in regulation of pancreatic islet homeostasis and in metabolic induced β-cell hyperplasia. The results indicate the apelin-APJ system can be exploited for replenishment of BCM.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery (S.H., E.W.E., G.A.G., C.R., G.H.G.), University of Texas Medical Branch, Galveston, Texas 77555; and School of Medicine (T.Q., R.K.K.), Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305
| | - Ella W Englander
- Department of Surgery (S.H., E.W.E., G.A.G., C.R., G.H.G.), University of Texas Medical Branch, Galveston, Texas 77555; and School of Medicine (T.Q., R.K.K.), Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305
| | - Guillermo A Gomez
- Department of Surgery (S.H., E.W.E., G.A.G., C.R., G.H.G.), University of Texas Medical Branch, Galveston, Texas 77555; and School of Medicine (T.Q., R.K.K.), Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305
| | - Cristiana Rastellini
- Department of Surgery (S.H., E.W.E., G.A.G., C.R., G.H.G.), University of Texas Medical Branch, Galveston, Texas 77555; and School of Medicine (T.Q., R.K.K.), Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305
| | - Thomas Quertermous
- Department of Surgery (S.H., E.W.E., G.A.G., C.R., G.H.G.), University of Texas Medical Branch, Galveston, Texas 77555; and School of Medicine (T.Q., R.K.K.), Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305
| | - Ramendra K Kundu
- Department of Surgery (S.H., E.W.E., G.A.G., C.R., G.H.G.), University of Texas Medical Branch, Galveston, Texas 77555; and School of Medicine (T.Q., R.K.K.), Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305
| | - George H Greeley
- Department of Surgery (S.H., E.W.E., G.A.G., C.R., G.H.G.), University of Texas Medical Branch, Galveston, Texas 77555; and School of Medicine (T.Q., R.K.K.), Division of Cardiovascular Medicine, Stanford University, Stanford, California 94305
| |
Collapse
|
20
|
Kobayashi D, Hirayama M, Komohara Y, Mizuguchi S, Wilson Morifuji M, Ihn H, Takeya M, Kuramochi A, Araki N. Translationally controlled tumor protein is a novel biological target for neurofibromatosis type 1-associated tumors. J Biol Chem 2014; 289:26314-26326. [PMID: 25092287 DOI: 10.1074/jbc.m114.568253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disease that predisposes individuals to develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNSTs). Due to the lack of information on the molecular mechanism of NF1-associated tumor pathogenesis or biomarkers/therapeutic targets, an effective treatment for NF1 tumors has not been established. In this study, the novel NF1-associated protein, translationally controlled tumor protein (TCTP), was identified by integrated proteomics and found to be up-regulated via activated MAPK/PI3K-AKT signaling in response to growth factors in NF1-deficient Schwann cells. Immunohistochemical analysis of NF1-associated tumors revealed that the TCTP expression level correlated with tumorigenicity. In NF1-deficient MPNST cells, TCTP protein but not mRNA was down-regulated by NF1 GTPase-activating protein-related domain or MAPK/PI3K inhibitors, and this correlated with suppression of mammalian target of rapamycin (mTOR) signaling. mTOR inhibition by rapamycin also down-regulated TCTP protein expression, whereas knockdown or overexpression of TCTP suppressed or activated mTOR signaling, respectively, and affected cell viability. These results suggest that a positive feedback loop between TCTP and mTOR contributes to NF1-associated tumor formation. Last, the anti-tumor effect of artesunate, which binds to and degrades TCTP, was evaluated. Artesunate significantly suppressed the viability of MPNST cells but not normal Schwann cells, and the TCTP level inversely correlated with artesunate sensitivity. Moreover, combinational use of artesunate and rapamycin enhanced the cytotoxic effect on MPNST cells. These findings suggest that TCTP is functionally implicated in the progression of NF1-associated tumors and could serve as a biological target for their therapy.
Collapse
Affiliation(s)
- Daiki Kobayashi
- Department of Tumor Genetics and Biology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mio Hirayama
- Department of Tumor Genetics and Biology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, and Kumamoto University, Kumamoto 860-8556, Japan
| | - Souhei Mizuguchi
- Department of Tumor Genetics and Biology, Kumamoto University, Kumamoto 860-8556, Japan
| | | | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan and
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, and Kumamoto University, Kumamoto 860-8556, Japan
| | - Akira Kuramochi
- Department of Dermatology, Saitama Medical University, Saitama 350-0495, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|