1
|
Emrich F, Gomes BH, Selvatici-Tolentino L, Lopes RA, Secio-Silva A, Carvalho-Moreira JP, Bittencourt-Silva PG, Guarnieri LDO, Silva ABDP, Drummond LR, da Silva GSF, Szawka RE, Moraes MFD, Coimbra CC, Peliciari-Garcia RA, Bargi-Souza P. Hypothyroidism alters the rhythmicity of the central clock, body temperature and metabolism: evidence of Bmal1 transcriptional regulation by T3. J Physiol 2024; 602:4865-4887. [PMID: 39277824 DOI: 10.1113/jp286449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
In mammals, the central circadian oscillator is located in the suprachiasmatic nucleus (SCN). Hypothalamus-pituitary-thyroid axis components exhibit circadian oscillation, regulated by both central clock innervation and intrinsic circadian clocks in the anterior pituitary and thyroid glands. Thyroid disorders alter the rhythmicity of peripheral clocks in a tissue-dependent response; however, whether these effects are influenced by alterations in the master clock remains unknown. This study aimed to characterize the effects of hypothyroidism on the rhythmicity of SCN, body temperature (BT) and metabolism, and the possible mechanisms involved in this signalling. C57BL/6J adult male mice were divided into Control and Hypothyroid groups. Profiles of spontaneous locomotor activity (SLA), BT, oxygen consumption (V ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) and respiratory quotient (RQ) were determined under free-running conditions. Clock gene expression, and neuronal activity of the SCN and medial preoptic nucleus (MPOM) area were investigated in light-dark (LD) conditions. Triiodothyronine (T3) transcriptional regulation of Bmal1 promoter activity was evaluated in GH3-transfected cells. Hypothyroidism delayed the rhythmicity of SLA and BT, and altered the expression of core clock components in the SCN. The activity of SCN neurons and their outputs were also affected, as evidenced by the loss of circadian rhythmicity inV ̇ O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and RQ and alterations in the neuronal activity pattern of MPOM. In GH3 cells, T3 increased Bmal1 promoter activity in a time-dependent manner. Thyroid hormone may act as a temporal cue for the central circadian clock, and the uncoupling of central and peripheral clocks might contribute to a wide range of metabolic and thermoregulatory impairments observed in hypothyroidism. KEY POINTS: Hypothyroidism alters clock gene expression in the suprachiasmatic nucleus (SCN). Thyroid hypofunction alters the phase of spontaneous locomotor activity and body temperature rhythms. Thyroid hormone deficiency alters the daily pattern of SCN and medial preoptic nucleus neuronal activities. Hypothyroidism alterations are extended to daily oscillations of oxygen consumption and metabolism, which might contribute to the development of metabolic syndrome. Triiodothyronine increases Bmal1 promoter activity acting as temporal cue for the central circadian clock.
Collapse
Affiliation(s)
- Felipe Emrich
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Henrique Gomes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Letícia Selvatici-Tolentino
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roberta Araújo Lopes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Pedro Carvalho-Moreira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paloma Graziele Bittencourt-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo de Oliveira Guarnieri
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Electrical Engineering, Engineering School, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Bárbara de Paula Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lucas Rios Drummond
- Department of Sciences and Motion, State University of Minas Gerais (UEMG), Divinópolis, MG, Brazil
| | - Glauber Santos Ferreira da Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Raphael Escorsim Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Márcio Flávio Dutra Moraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cândido Celso Coimbra
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
de Lima Cavalcanti TYV, Lima MC, Bargi-Souza P, Franca RFO, Peliciari-Garcia RA. Zika Virus Infection Alters the Circadian Clock Expression in Human Neuronal Monolayer and Neurosphere Cultures. Cell Mol Neurobiol 2023; 44:10. [PMID: 38141078 DOI: 10.1007/s10571-023-01445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Rhythmic regulations are virtually described in all physiological processes, including central nervous system development and immunologic responses. Zika virus (ZIKV), a neurotropic arbovirus, has been recently linked to a series of birth defects and neurodevelopmental disorders. Given the well-characterized role of the intrinsic cellular circadian clock within neurogenesis, cellular metabolism, migration, and differentiation among other processes, this study aimed to characterize the influence of ZIKV infection in the circadian clock expression in human neuronal cells. For this, in vitro models of human-induced neuroprogenitor cells (hiNPCs) and neuroblastoma cell line SH-SY5Y, cultured as monolayer and neurospheres, were infected by ZIKV, followed by RNA-Seq and RT-qPCR investigation, respectively. Targeted circadian clock components presented mRNA oscillations only after exogenous synchronizing stimuli (Forskolin) in SH-SY5Y monolayer culture. Interestingly, when these cells were grown as 3D-arranged neurospheres, an intrinsic oscillatory expression pattern was observed for some core clock components without any exogenous stimulation. The ZIKV infection significantly disturbed the mRNA expression pattern of core clock components in both neuroblastoma cell culture models, which was also observed in hiNPCs infected with different strains of ZIKV. The ZIKV-mediated desynchronization of the circadian clock expression in human cells might further contribute to the virus impairment of neuronal metabolism and function observed in adults and ZIKV-induced congenital syndrome. In vitro models of Zika virus (ZIKV) neuronal infection. Human neuroprogenitor cells were cultured as monolayer and neurospheres and infected by ZIKV. Monolayer-cultured cells received forskolin (FSK) as a coupling factor for the circadian clock rhythmicity, while 3D-arranged neurospheres showed an intrinsic oscillatory pattern in the circadian clock expression. The ZIKV infection affected the mRNA expression pattern of core clock components in both cell culture models. The ZIKV-mediated desynchronization of the circadian clock machinery might contribute to the impairment of neuronal metabolism and function observed in both adults (e.g., Guillain-Barré syndrome) and ZIKV-induced congenital syndrome (microcephaly). The graphical abstract has been created with Canva at the canva.com website.
Collapse
Affiliation(s)
- Thaíse Yasmine Vasconcelos de Lima Cavalcanti
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Morganna Costa Lima
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael Freitas Oliveira Franca
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, CEP 09913-030, Brazil.
| |
Collapse
|
3
|
Stojilkovic SS, Balla T. PI(4,5)P2-dependent and -independent roles of PI4P in the control of hormone secretion by pituitary cells. Front Endocrinol (Lausanne) 2023; 14:1118744. [PMID: 36777340 PMCID: PMC9911653 DOI: 10.3389/fendo.2023.1118744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/28/2023] Open
Abstract
Plasma membrane and organelle membranes are home to seven phosphoinositides, an important class of low-abundance anionic signaling lipids that contribute to cellular functions by recruiting cytoplasmic proteins or interacting with the cytoplasmic domains of membrane proteins. Here, we briefly review the functions of three phosphoinositides, PI4P, PI(4,5)P2, and PI(3,4,5)P3, in cellular signaling and exocytosis, focusing on hormone-producing pituitary cells. PI(4,5)P2, acting as a substrate for phospholipase C, plays a key role in the control of pituitary cell functions, including hormone synthesis and secretion. PI(4,5)P2 also acts as a substrate for class I PI3-kinases, leading to the generation of two intracellular messengers, PI(3,4,5)P3 and PI(3,4)P2, which act through their intracellular effectors, including Akt. PI(4,5)P2 can also influence the release of pituitary hormones acting as an intact lipid to regulate ion channel gating and concomitant calcium signaling, as well as the exocytic pathway. Recent findings also show that PI4P is not only a precursor of PI(4,5)P2, but also a key signaling molecule in many cell types, including pituitary cells, where it controls hormone secretion in a PI(4,5)P2-independent manner.
Collapse
Affiliation(s)
- Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic,
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Mondal A, Appu AP, Sadhukhan T, Bagh MB, Previde RM, Sadhukhan S, Stojilkovic S, Liu A, Mukherjee AB. Ppt1-deficiency dysregulates lysosomal Ca ++ homeostasis contributing to pathogenesis in a mouse model of CLN1 disease. J Inherit Metab Dis 2022; 45:635-656. [PMID: 35150145 PMCID: PMC9090967 DOI: 10.1002/jimd.12485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Inactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases. Thus, it has been proposed that Ppt1-deficiency leads to lysosomal accumulation of ceroid lipofuscin leading to CLN1 disease. While S-palmitoylation is catalyzed by palmitoyl acyltransferases (called ZDHHCs), palmitoyl-protein thioesterases (PPTs) depalmitoylate these proteins. We sought to determine the mechanism by which Ppt1-deficiency may impair lysosomal degradative function leading to infantile neuronal ceroid lipofuscinosis pathogenesis. Here, we report that in Ppt1-/- mice, which mimic CLN1 disease, low level of inositol 3-phosphate receptor-1 (IP3R1) that mediates Ca++ transport from the endoplasmic reticulum to the lysosome dysregulated lysosomal Ca++ homeostasis. Intriguingly, the transcription factor nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4), which regulates IP3R1-expression, required S-palmitoylation for trafficking from the cytoplasm to the nucleus. We identified two palmitoyl acyltransferases, ZDHHC4 and ZDHHC8, which catalyzed S-palmitoylation of NFATC4. Notably, in Ppt1-/- mice, reduced ZDHHC4 and ZDHHC8 levels markedly lowered S-palmitoylated NFATC4 (active) in the nucleus, which inhibited IP3R1-expression, thereby dysregulating lysosomal Ca++ homeostasis. Consequently, Ca++ -dependent lysosomal enzyme activities were markedly suppressed. Impaired lysosomal degradative function impaired autophagy, which caused lysosomal storage of undigested cargo. Importantly, IP3R1-overexpression in Ppt1-/- mouse fibroblasts ameliorated this defect. Our results reveal a previously unrecognized role of Ppt1 in regulating lysosomal Ca++ homeostasis and suggest that this defect contributes to pathogenesis of CLN1 disease.
Collapse
Affiliation(s)
- Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine
| | - Abhilash P. Appu
- Section on Developmental Genetics, Division of Translational Medicine
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine
| | - Maria B. Bagh
- Section on Developmental Genetics, Division of Translational Medicine
| | - Rafael M. Previde
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | | | - Stanko Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine
- Correspondence to AM () or ABM ()
| |
Collapse
|
5
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
6
|
Wang K, Kretschmannova K, Prévide RM, Smiljanic K, Chen Q, Fletcher PA, Sherman A, Stojilkovic SS. Cell-Type-Specific Expression Pattern of Proton-Sensing Receptors and Channels in Pituitary Gland. Biophys J 2020; 119:2335-2348. [PMID: 33098866 DOI: 10.1016/j.bpj.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
In mammalian cells, extracellular protons act as orthosteric and allosteric ligands for multiple receptors and channels. The aim of this study is to identify proton sensors in the rat pituitary gland. qRT-PCR analysis indicated the expression of G-protein-coupled receptor 68 gene (Gpr68) and acid-sensing ion channel (ASIC) genes Asic1, Asic2, and Asic4 in anterior pituitary cells and Asic1 and Asic2 in immortalized GH3 pituitary cells. Asic1a and Asic2b were the dominant splice isoforms. Single anterior pituitary cell RNA sequencing and immunocytochemical analysis showed that nonexcitable folliculostellate cells express GPR68 gene and protein, whereas excitable secretory cells express ASIC genes and proteins. Asic1 was detected in all secretory cell types, Asic2 in gonadotrophs, thyrotrophs, and somatotrophs, and Asic4 in lactotrophs. Extracellular acidification activated two types of currents in a concentration-dependent manner: a fast-developing, desensitizing current with an estimated EC50-value of pH 6.7 and a slow-developing, non-desensitizing current that required a higher proton concentration for activation. The desensitizing current was abolished by removal of bath sodium and application of amiloride, a blocker of ASIC channels, whereas the non-desensitizing current was amiloride insensitive and voltage dependent. Activation of both currents increased the excitability of secretory pituitary cells, consistent with their potential physiological relevance in control of voltage-gated calcium influx and calcium-dependent cellular functions.
Collapse
Affiliation(s)
- Kai Wang
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Karla Kretschmannova
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Rafael M Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Qing Chen
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland.
| |
Collapse
|
7
|
Janjic MM, Prévide RM, Fletcher PA, Sherman A, Smiljanic K, Abebe D, Bjelobaba I, Stojilkovic SS. Divergent expression patterns of pituitary gonadotropin subunit and GnRH receptor genes to continuous GnRH in vitro and in vivo. Sci Rep 2019; 9:20098. [PMID: 31882740 PMCID: PMC6934515 DOI: 10.1038/s41598-019-56480-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022] Open
Abstract
Continuous, as opposed to pulsatile, delivery of hypothalamic gonadotropin-releasing hormone (GnRH) leads to a marked decrease in secretion of pituitary gonadotropins LH and FSH and impairment of reproductive function. Here we studied the expression profile of gonadotropin subunit and GnRH receptor genes in rat pituitary in vitro and in vivo to clarify their expression profiles in the absence and continuous presence of GnRH. Culturing of pituitary cells in GnRH-free conditions downregulated Fshb, Cga, and Gnrhr expression, whereas continuous treatment with GnRH agonists upregulated Cga expression progressively and Gnrhr and Fshb expression transiently, accompanied by a prolonged blockade of Fshb but not Gnrhr expression. In contrast, Lhb expression was relatively insensitive to loss of endogenous GnRH and continuous treatment with GnRH, probably reflecting the status of Egr1 and Nr5a1 expression. Similar patterns of responses were observed in vivo after administration of a GnRH agonist. However, continuous treatment with GnRH stimulated LH secretion in vitro and in vivo, leading to decrease in LH cell content despite high basal Lhb expression. These data suggest that blockade of Fshb expression and depletion of the LH secretory pool are two major factors accounting for weakening of the gonadotroph secretory function during continuous GnRH treatment.
Collapse
Affiliation(s)
- Marija M Janjic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biological Research Sinisa Stankovic - National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Rafael M Prévide
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kosara Smiljanic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ivana Bjelobaba
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biological Research Sinisa Stankovic - National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Stanko S Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
8
|
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Front Endocrinol (Lausanne) 2019; 10:623. [PMID: 31620083 PMCID: PMC6760010 DOI: 10.3389/fendo.2019.00623] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Milos B. Rokic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
9
|
Bjelobaba I, Janjic MM, Prévide RM, Abebe D, Kucka M, Stojilkovic SS. Distinct Expression Patterns of Osteopontin and Dentin Matrix Protein 1 Genes in Pituitary Gonadotrophs. Front Endocrinol (Lausanne) 2019; 10:248. [PMID: 31057484 PMCID: PMC6478748 DOI: 10.3389/fendo.2019.00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
Cell-matrix interactions play important roles in pituitary development, physiology, and pathogenesis. In other tissues, a family of non-collagenous proteins, termed SIBLINGs, are known to contribute to cell-matrix interactions. Anterior pituitary gland expresses two SIBLING genes, Dmp1 (dentin matrix protein-1) and Spp1 (secreted phosphoprotein-1) encoding DMP1 and osteopontin proteins, respectively, but their expression pattern and roles in pituitary functions have not been clarified. Here we provide novel evidence supporting the conclusion that Spp1/osteopontin, like Dmp1/DMP1, are expressed in gonadotrophs in a sex- and age-specific manner. Other anterior pituitary cell types do not express these genes. In contrast to Dmp1, Spp1 expression is higher in males; in females, the expression reaches the peak during the diestrus phase of estrous cycle. In further contrast to Dmp1 and marker genes for gonadotrophs, the expression of Spp1 is not regulated by gonadotropin-releasing hormone in vivo and in vitro. However, Spp1 expression increases progressively after pituitary cell dispersion in both female and male cultures. We may speculate that gonadotrophs signal to other pituitary cell types about changes in the structure of pituitary cell-matrix network by osteopontin, a function consistent with the role of this secretory protein in postnatal tissue remodeling, extracellular matrix reorganization after injury, and tumorigenesis.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Marija M. Janjic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Rafael Maso Prévide
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marek Kucka
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic
| |
Collapse
|
10
|
Le Tissier P, Fiordelisio Coll T, Mollard P. The Processes of Anterior Pituitary Hormone Pulse Generation. Endocrinology 2018; 159:3524-3535. [PMID: 30020429 DOI: 10.1210/en.2018-00508] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
More than 60 years ago, Geoffrey Harris described his "neurohumoral theory," in which the regulation of pituitary hormone secretion was a "simple" hierarchal relationship, with the hypothalamus as the controller. In models based on this theory, the electrical activity of hypothalamic neurons determines the release of hypophysiotropic hormones into the portal circulation, and the pituitary simply responds with secretion of a pulse of hormone into the bloodstream. The development of methodologies allowing the monitoring of the activities of members of the hypothalamic-vascular-pituitary unit is increasingly allowing dissection of the mechanisms generating hypothalamic and pituitary pulses. These have revealed that whereas hypothalamic input is required, its role as a driver of pulsatile pituitary hormone secretion varies between pituitary axes. The organization of pituitary cells has a key role in the modification of their response to hypophysiotropic factors that can lead to a memory of previous demand and enhanced function. Feedback can lead to oscillatory hormone output that is independent of pulses of hypophysiotropic factors and instead, results from the temporal relationship between pituitary output and target organ response. Thus, the mechanisms underlying the generation of pulses cannot be generalized, and the circularity of feedforward and feedback interactions must be considered to understand both normal physiological function and pathology. We describe some examples of the clinical implications of recognizing the importance of the pituitary and target organs in pulse generation and suggest avenues for future research in both the short and long term.
Collapse
Affiliation(s)
- Paul Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - Patrice Mollard
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France
| |
Collapse
|
11
|
Abstract
Thyroid hormones (TH) are endocrine messengers essential for normal development and function of virtually every vertebrate. The hypothalamic-pituitary-thyroid axis is exquisitely modulated to maintain nearly constant TH (T4 and T3) levels in circulation. However peripheral tissues and the CNS control the intracellular availability of TH, suggesting that circulating concentrations of TH are not fully representative of what each cell type sees. Indeed, recent work in the field has identified that TH transporters, deiodinases and thyroid hormone receptor coregulators can strongly control tissue-specific sensitivity to a set amount of TH. Furthermore, the mechanism by which the thyroid hormone receptors regulate target gene expression can vary by gene, tissue and cellular context. This review will highlight novel insights into the machinery that controls the cellular response to TH, which include unique signaling cascades. These findings shed new light into the pathophysiology of human diseases caused by abnormal TH signaling.
Collapse
Affiliation(s)
- Arturo Mendoza
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Anthony N Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Santiago LA, Faustino LC, Pereira GF, Imperio GE, Pazos-Moura CC, Wondisford FE, Bloise FF, Ortiga-Carvalho TM. Gene expression of T3-regulated genes in a mouse model of the human thyroid hormone resistance. Life Sci 2017; 170:93-99. [PMID: 27919825 DOI: 10.1016/j.lfs.2016.11.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022]
Abstract
AIMS To understand how thyroid hormone (TH) regulates tissue-specific gene expression in patients with the syndrome of resistance to TH (RTHβ), we used a mouse model that replicates the human RTHβ, specifically the ∆337T mutation in the thyroid hormone receptor β (THRβ). MAIN METHODS We investigated the expression of key TH target genes in the pituitary and liver of TRβ∆337T and wild type THRβ mice by qPCR before and after a T3 suppression test consisting of the administration of increasing concentrations of T3 to hypothyroid mice. KEY FINDINGS Pituitary Tshb and Cga expression decreased and Gh expression increased in TRβ∆337T mice after T3 suppression. The stimulation of positively regulated TH genes was heterogeneous in the liver. Levels of liver Me1 and Thsrp were elevated in TRβ∆337T mice after T3 administration. Slc16a2 and Gpd2 did not respond to T3 stimulation in the liver of TRβ∆337T mice whereas Dio1 response was lower than that observed in WT mice. Moreover, although Chdh and Upd1 genes were negatively regulated in the liver, the expression of these genes was elevated after T3 suppression. We did not observe significant changes in THRα expression in the liver and pituitary, while THRβ levels were diminished in the pituitary and increased in the liver. SIGNIFICANCE Using a model expressing a THRβ unable to bind T3, we showed the expression pattern of liver negative and positive regulated genes by T3.
Collapse
Affiliation(s)
- L A Santiago
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - L C Faustino
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - G F Pereira
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - G E Imperio
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - C C Pazos-Moura
- Laboratório de Endocrinologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - F E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - F F Bloise
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - T M Ortiga-Carvalho
- Laboratório de Endocrinologia Translacional, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Bjelobaba I, Janjic MM, Tavcar JS, Kucka M, Tomić M, Stojilkovic SS. The relationship between basal and regulated Gnrhr expression in rodent pituitary gonadotrophs. Mol Cell Endocrinol 2016; 437:302-311. [PMID: 27569529 PMCID: PMC6364298 DOI: 10.1016/j.mce.2016.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/01/2022]
Abstract
Hypothalamic GnRH together with gonadal steroids and activins/inhibin regulate its receptor gene (Gnrhr) expression in vivo, which leads to crucial changes in GnRHR numbers on the plasma membrane. This is accompanied by alterations in the gonadotroph sensitivity and responsiveness during physiologically relevant situations. Here we investigated basal and GnRH-regulated Gnrhr expression in rodent pituitary gonadotrophs in vitro. In pituitary cells from adult animals cultured in the absence of GnRH and steroid hormones, the Gnrhr expression was progressively reduced but not completely abolished. The basal Gnrhr expression was also operative in LβT2 immortalized gonadotrophs never exposed to GnRH. In both cell types, basal transcription was sufficient for the expression of functional GnRHRs. Continuous application of GnRH transiently elevated the Gnrhr expression in cultured pituitary cells followed by a sustained fall without affecting basal transcription. Both basal and regulated Gnrhr transcriptions were dependent on the protein kinase C signaling pathway. The GnRH-regulated Gnrhr expression was not operative in embryonal pituitary and LβT2 cells and was established neonatally, the sex-specific response patterns were formed at the juvenile-peripubertal stage and there was a strong correlation between basal and regulated gene expression during development. Thus, the age-dependent basal and regulated Gnrhr transcription could account for the initial blockade and subsequent activation of the reproductive system during development.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Marija M Janjic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Jovana S Tavcar
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Marek Kucka
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Melanija Tomić
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892-4510, United States.
| |
Collapse
|
14
|
Abstract
The activity of the hypothalamus-pituitary-thyroid axis (HPT) is coordinated by hypophysiotropic thyrotropin releasing hormone (TRH) neurons present in the paraventricular nucleus of the hypothalamus. Hypophysiotropic TRH neurons act as energy sensors. TRH controls the synthesis and release of thyrotropin, which activates the synthesis and secretion of thyroid hormones; in target tissues, transporters and deiodinases control their local availability. Thyroid hormones regulate many functions, including energy homeostasis. This review discusses recent evidence that covers several aspects of TRH role in HPT axis regulation. Knowledge about the mechanisms of TRH signaling has steadily increased. New transcription factors engaged in TRH gene expression have been identified, and advances made on how they interact with signaling pathways and define the dynamics of TRH neurons response to acute and/or long-term influences. Albeit yet incomplete, the relationship of TRH neurons activity with positive energy balance has emerged. The importance of tanycytes as a central relay for the feedback control of the axis, as well as for HPT responses to alterations in energy balance, and other stimuli has been reinforced. Finally, some studies have started to shed light on the interference of prenatal and postnatal stress and nutrition on HPT axis programing, which have confirmed the axis susceptibility to early insults.
Collapse
Affiliation(s)
- Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México.
| | - Lorraine Jaimes-Hoy
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, 62250, Cuernavaca MOR, Morelos, México
| |
Collapse
|
15
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
16
|
Tomić M, Bargi-Souza P, Leiva-Salcedo E, Nunes MT, Stojilkovic SS. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells. Cell Calcium 2015; 58:598-605. [PMID: 26453278 DOI: 10.1016/j.ceca.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/14/2015] [Accepted: 09/20/2015] [Indexed: 01/14/2023]
Abstract
TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner.
Collapse
Affiliation(s)
- Melanija Tomić
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States
| | - Paula Bargi-Souza
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States; Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Elias Leiva-Salcedo
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, United States.
| |
Collapse
|
17
|
Bargi-Souza P, Romano RM, Goulart-Silva F, Brunetto EL, Nunes MT. T(3) rapidly regulates several steps of alpha subunit glycoprotein (CGA) synthesis and secretion in the pituitary of male rats: Potential repercussions on TSH, FSH and LH secretion. Mol Cell Endocrinol 2015; 409:73-81. [PMID: 25869399 DOI: 10.1016/j.mce.2015.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 11/22/2022]
Abstract
TSH, FSH and LH share the same glycoprotein alpha chain (CGA) as part of their protein structure. Therefore, it is possible that thyroid and gonadal dysfunction may affect the CGA expression. This study evaluated several steps of CGA synthesis and secretion in thyrotrophs and gonadotrophs of control and hypothyroid rats, acutely or chronically-treated with T3. Hypothyroidism increased the Cga mRNA expression and its association to ribosome, but decreased intracellular CGA content. These parameters were reversed after acute or chronic T3 treatment. We conclude that T3 not only down-regulates Cga mRNA expression, as expected, but also inhibits the association of Cga mRNA to ribosome, as well as the CGA secretion. These findings add novel insights into our understanding of the role of T3 on the regulation of the Cga gene expression and CGA secretion, which might have a potential repercussion in all pituitary glycoprotein hormone synthesis and secretion.
Collapse
Affiliation(s)
- Paula Bargi-Souza
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Renata Marino Romano
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Francemilson Goulart-Silva
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Erika Lia Brunetto
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Tereza Nunes
- Department of Physiology and Biophysics of the Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Bjelobaba I, Janjic MM, Kucka M, Stojilkovic SS. Cell Type-Specific Sexual Dimorphism in Rat Pituitary Gene Expression During Maturation. Biol Reprod 2015; 93:21. [PMID: 26063874 DOI: 10.1095/biolreprod.115.129320] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/03/2015] [Indexed: 12/24/2022] Open
Abstract
The most obvious functional differences between mammalian males and females are related to the control of reproductive physiology and include patterns of GnRH and gonadotropin release, the timing of puberty, sexual and social behavior, and the regulation of food intake and body weight. Using the rat as the best-studied mammalian model for maturation, we examined the expression of major anterior pituitary genes in five secretory cell types of developing males and females. Corticotrophs show comparable Pomc profiles in both sexes, with the highest expression occurring during the infantile period. Somatotrophs and lactotrophs also exhibit no difference in Gh1 and Prl profiles during embryonic to juvenile age but show the amplification of Prl expression in females and Gh1 expression in males during peripubertal and postpubertal ages. Gonadotrophs exhibit highly synchronized Lhb, Fshb, Cga, and Gnrhr expression in both sexes, but the peak of expression occurs during the infantile period in females and at the end of the juvenile period in males. Thyrotrophs also show different developmental Tshb profiles, which are synchronized with the expression of gonadotroph genes in males but not in females. These results indicate the lack of influence of sex on Pomc expression and the presence of two patterns of sexual dimorphism in the expression of other pituitary genes: a time shift in the peak expression during postnatal development, most likely reflecting the perinatal sex-specific brain differentiation, and modulation of the amplitude of expression during late development, which is secondary to the establishment of the hypothalamic-pituitary-gonadal and -thyroid axes.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Marija M Janjic
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Marek Kucka
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Program in Developmental Neuroscience, The Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Kucka M, Tomić M, Bjelobaba I, Stojilkovic SS, Budimirovic DB. Paliperidone and aripiprazole differentially affect the strength of calcium-secretion coupling in female pituitary lactotrophs. Sci Rep 2015; 5:8902. [PMID: 25754735 PMCID: PMC4894395 DOI: 10.1038/srep08902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/02/2015] [Indexed: 12/27/2022] Open
Abstract
Hyperprolactinemia is a common adverse in vivo effect of antipsychotic medications that are used in the treatment of patients with schizophrenia. Here, we compared the effects of two atypical antipsychotics, paliperidone and aripiprazole, on cAMP/calcium signaling and prolactin release in female rat pituitary lactotrophs in vitro. Dopamine inhibited spontaneous cAMP/calcium signaling and prolactin release. In the presence of dopamine, paliperidone rescued cAMP/calcium signaling and prolactin release in a concentration-dependent manner, whereas aripiprazole was only partially effective. In the absence of dopamine, paliperidone stimulated cAMP/calcium signaling and prolactin release, whereas aripiprazole inhibited signaling and secretion more potently but less effectively than dopamine. Forskolin-stimulated cAMP production was facilitated by paliperidone and inhibited by aripiprazole, although the latter was not as effective as dopamine. None of the compounds affected prolactin transcript activity, intracellular prolactin accumulation, or growth hormone secretion. These data indicate that paliperidone has dual hyperprolactinemic actions in lactotrophs i) by preserving the coupling of spontaneous electrical activity and prolactin secretion in the presence of dopamine and ii) by inhibiting intrinsic dopamine receptor activity in the absence of dopamine, leading to enhanced calcium signaling and secretion. In contrast, aripiprazole acts on prolactin secretion by attenuating, but not abolishing, calcium-secretion coupling.
Collapse
Affiliation(s)
- Marek Kucka
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Melanija Tomić
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Ivana Bjelobaba
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, National Institutes of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Dejan B Budimirovic
- Clinical Trials Unit, Kennedy Krieger Institute/Johns Hopkins School of Medicine, Baltimore, MD 21205
| |
Collapse
|