1
|
Jang H, Sharma AB, Dan U, Wong JH, Knight ZA, Garrison JL. Dysregulation of the fluid homeostasis system by aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615271. [PMID: 39386575 PMCID: PMC11463352 DOI: 10.1101/2024.09.26.615271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chronic dehydration is a leading cause of morbidity for the elderly, but how aging alters the fluid homeostasis system is not well understood. Here, we used a combination of physiologic, behavioral and circuit analyses to characterize how fluid balance is affected by aging in mice. We found that old mice have a primary defect in sensing and producing the anti-diuretic hormone vasopressin, which results in chronic dehydration. Recordings and manipulations of the thirst circuitry revealed that old mice retain the ability to sense systemic cues of dehydration but are impaired in detecting presystemic, likely oropharyngeal, cues generated during eating and drinking, resulting in disorganized drinking behavior on short timescales. Surprisingly, old mice had increased drinking and motivation after 24-hour water deprivation, indicating that aging does not result in a general impairment in the thirst circuit. These findings reveal how a homeostatic system undergoes coordinated changes during aging.
Collapse
Affiliation(s)
- Heeun Jang
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Alexis B. Sharma
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
| | - Usan Dan
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
| | - Jasmine H. Wong
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
| | - Zachary A. Knight
- Department of Physiology; University of California San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience; University of California San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute; University of California San Francisco, San Francisco, CA 94158, USA
| | - Jennifer L. Garrison
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Center for Healthy Aging in Women, Novato, CA 94945, USA
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Leonard Davis School of Gerontology, University of Southern California; Los Angeles, CA 90089, USA
| |
Collapse
|
2
|
Misiakiewicz-Has K, Maciejewska-Markiewicz D, Szypulska-Koziarska D, Kolasa A, Wiszniewska B. The Influence of Soy Isoflavones and Soy Isoflavones with Inulin on Kidney Morphology, Fatty Acids, and Associated Parameters in Rats with and without Induced Diabetes Type 2. Int J Mol Sci 2024; 25:5418. [PMID: 38791455 PMCID: PMC11121859 DOI: 10.3390/ijms25105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Diabetes mellitus resulting from hyperglycemia stands as the primary cause of diabetic kidney disease. Emerging evidence suggests that plasma concentrations of soy isoflavones, substances with well-established antidiabetic properties, rise following supplemental inulin administration. The investigation encompassed 36 male Sprague-Dawley (SD) rats segregated into two cohorts: non-diabetic and diabetic, induced with type 2 diabetes (high-fat diet + two intraperitoneal streptozotocin injections). Each cohort was further divided into three subgroups (n = 6): control, isoflavone-treated, and isoflavone plus inulin-treated rats. Tail blood glucose and ketone levels were gauged. Upon termination, blood samples were drawn directly from the heart for urea, creatinine, and HbA1c/HbF analyses. One kidney per rat underwent histological (H-E) and immunohistochemical assessments (anti-AQP1, anti-AQP2, anti-AVPR2, anti-SLC22A2, anti-ACC-alpha, anti-SREBP-1). The remaining kidney underwent fatty acid methyl ester analysis. Results unveiled notable alterations in water intake, body and kidney mass, kidney morphology, fatty acids, AQP2, AVPR2, AcetylCoA, SREBP-1, blood urea, creatinine, and glucose levels in control rats with induced type 2 diabetes. Isoflavone supplementation exhibited favorable effects on plasma urea, plasma urea/creatinine ratio, glycemia, water intake, and kidney mass, morphology, and function in type 2 diabetic rats. Additional inulin supplementation frequently modulated the action of soy isoflavones.
Collapse
Affiliation(s)
- Kamila Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | | | - Dagmara Szypulska-Koziarska
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | - Agnieszka Kolasa
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (D.S.-K.); (A.K.); (B.W.)
| |
Collapse
|
3
|
Courses of Arginine-Vasopressin in the Systemic and Cavernous Blood through Different Stages of Sexual Arousal in Healthy Males and Patients with Erectile Dysfunction. Andrologia 2023. [DOI: 10.1155/2023/7978734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
To investigate the role of the peptide arginine-vasopressin (AVP) in controlling the function of penile erectile tissue, we determined the course of AVP through different stages of sexual arousal in both the systemic and cavernous blood of healthy males and patients presenting with ED. Twenty-five healthy males and 45 patients with ED were exposed to erotic stimulation to induce sexual arousal. Blood was withdrawn from the corpus cavernosum and a cubital vein during penile flaccidity, tumescence, rigid erection (attained only by the healthy individuals), and detumescence. AVP (ng/l plasma) was determined by means of a radioimmunoassay. Effects of AVP (0.1 to 100 nM) on isolated human CC were examined using a tissue bath system. AVP elicited contraction of isolated CC. In the healthy subjects, a decline in AVP levels (5.4 to 3 ng/l) was seen in the systemic blood when the flaccid penis became rigid. In the cavernous blood, no alterations were registered. In the group of ED patients, AVP in the systemic circulation did not display a transient decline. The drop in systemic AVP in healthy males during sexual stimulation might be a prerequisite to enable penile erection.
Collapse
|
4
|
Treadmill Exercise Training Ameliorates Functional and Structural Age-Associated Kidney Changes in Male Albino Rats. ScientificWorldJournal 2021; 2021:1393372. [PMID: 34887703 PMCID: PMC8651424 DOI: 10.1155/2021/1393372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Aging is a biological process that impacts multiple organs. Unfortunately, kidney aging affects the quality of life with high mortality rate. So, searching for innovative nonpharmacological modality improving age-associated kidney deterioration is important. This study aimed to throw more light on the beneficial effect of treadmill exercise on the aged kidney. Thirty male albino rats were divided into three groups: young (3-4 months old), sedentary aged (23-24 months old), and exercised aged (23-24 months old, practiced moderate-intensity treadmill exercise 5 days/week for 8 weeks). The results showed marked structural alterations in the aged kidney with concomitant impairment of kidney functions and increase in arterial blood pressure with no significant difference in kidney weight. Also, it revealed that treadmill exercise alleviated theses effects in exercised aged group with reduction of urea and cystatin C. Exercise training significantly decreased glomerulosclerosis index, tubular injury score, and % area of collagen deposition. Treadmill exercise exerted its beneficial role via a significant reduction of C-reactive protein and malondialdehyde and increase in total antioxidant capacity. In addition, exercise training significantly decreased desmin immunoreaction and increased aquaporin-3, vascular endothelial growth factor, and beclin-1 in the aged kidney. This study clarified that treadmill exercise exerted its effects via antioxidant and anti-inflammatory mechanisms, podocyte protection, improving aquaporin-3 and vascular endothelial growth factor expression, and inducing autophagy in the aged kidney. This work provided a new insight into the promising role of aerobic exercise to ameliorate age-associated kidney damage.
Collapse
|
5
|
Koç Ş. A possible follow-up method for diabetic heart failure patients. Int J Clin Pract 2021; 75:e14794. [PMID: 34482595 DOI: 10.1111/ijcp.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Plasma osmolarity is maintained through various mechanisms. The osmolarity of the aqueous humor around the crystalline lens is correlated with plasma osmolarity. A vacuole can be formed in the lens upon changes in osmolarity. The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new in the treatment of heart failure. They can cause osmotic diuresis but do not affect plasma osmolarity. OBJECTIVE It is unclear if the presence or absence of lens vacuole changes can monitor diabetic heart failure and SGLT2i treatment efficacy. METHODS Web of Science, PubMed and Scopus databases were searched for relevant articles about osmolarity, diabetes, transient receptor potential vanilloid channel, diabetic heart failure, lens vacuoles up to May 2021. MAIN MESSAGE The effect of SGLT2i on osmosis underlies its benefit to heart failure, but this in turn affects many other mechanisms. Failure to experience osmolarity changes will reduce the negative changes in terms of heart failure affected by osmolarity. A practical observable method is needed. CONCLUSIONS There is a possibility of using lens vacuoles in the follow-up of diabetic heart failure patients.
Collapse
Affiliation(s)
- Şahbender Koç
- University of Health Sciences, Keçiören Education and Training Hospital, Ankara, Turkey
| |
Collapse
|
6
|
Chang-Panesso M. Acute kidney injury and aging. Pediatr Nephrol 2021; 36:2997-3006. [PMID: 33411069 PMCID: PMC8260619 DOI: 10.1007/s00467-020-04849-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 01/29/2023]
Abstract
Our aging population is growing and developing treatments for age-related diseases such as Alzheimer's and Parkinson's disease has taken on an increasing urgency and is accompanied by high public awareness. The already high and rising incidence of acute kidney injury (AKI) in the elderly, however, has received relatively little attention despite the potentially fatal outcomes associated with an episode of AKI in this age group. When discussing AKI and aging, one should consider two aspects: first, elderly patients have an increased susceptibility to an AKI episode, and second, they have decreased kidney repair after AKI given the high incidence of progression to chronic kidney disease (CKD). It is unclear if the same factors that drive the increased susceptibility to AKI could be playing a role in the decreased repair capacity or if they are totally different and unrelated. This review will examine current knowledge on the risk factors for the increased susceptibility to AKI in the elderly and will also explore potential aspects that might contribute to a decreased kidney repair response in this age group.
Collapse
|
7
|
Bhargava A, Arnold AP, Bangasser DA, Denton KM, Gupta A, Hilliard Krause LM, Mayer EA, McCarthy M, Miller WL, Raznahan A, Verma R. Considering Sex as a Biological Variable in Basic and Clinical Studies: An Endocrine Society Scientific Statement. Endocr Rev 2021; 42:219-258. [PMID: 33704446 PMCID: PMC8348944 DOI: 10.1210/endrev/bnaa034] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 02/08/2023]
Abstract
In May 2014, the National Institutes of Health (NIH) stated its intent to "require applicants to consider sex as a biological variable (SABV) in the design and analysis of NIH-funded research involving animals and cells." Since then, proposed research plans that include animals routinely state that both sexes/genders will be used; however, in many instances, researchers and reviewers are at a loss about the issue of sex differences. Moreover, the terms sex and gender are used interchangeably by many researchers, further complicating the issue. In addition, the sex or gender of the researcher might influence study outcomes, especially those concerning behavioral studies, in both animals and humans. The act of observation may change the outcome (the "observer effect") and any experimental manipulation, no matter how well-controlled, is subject to it. This is nowhere more applicable than in physiology and behavior. The sex of established cultured cell lines is another issue, in addition to aneuploidy; chromosomal numbers can change as cells are passaged. Additionally, culture medium contains steroids, growth hormone, and insulin that might influence expression of various genes. These issues often are not taken into account, determined, or even considered. Issues pertaining to the "sex" of cultured cells are beyond the scope of this Statement. However, we will discuss the factors that influence sex and gender in both basic research (that using animal models) and clinical research (that involving human subjects), as well as in some areas of science where sex differences are routinely studied. Sex differences in baseline physiology and associated mechanisms form the foundation for understanding sex differences in diseases pathology, treatments, and outcomes. The purpose of this Statement is to highlight lessons learned, caveats, and what to consider when evaluating data pertaining to sex differences, using 3 areas of research as examples; it is not intended to serve as a guideline for research design.
Collapse
Affiliation(s)
- Aditi Bhargava
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Arpana Gupta
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margaret McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Walter L Miller
- Center for Reproductive Sciences, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institutes of Mental Health, Intramural Research Program, Bethesda, MD, USA
| | - Ragini Verma
- Diffusion and Connectomics In Precision Healthcare Research (DiCIPHR) lab, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Analysis of aging-related protein interactome and cross-network module comparisons across tissues provide new insights into aging. Comput Biol Chem 2021; 92:107506. [PMID: 34020164 DOI: 10.1016/j.compbiolchem.2021.107506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
Delaying the human aging process and thus eliminating the risk factors for age-related diseases is one of the prime objectives. While various aging-associated genes and proteins have been characterized, which provide a significant understanding of the human aging process, a significant success in regulating aging is not achieved yet. Understanding how aging proteins interact with each other and also with other proteins could provide important insights into the underlying mechanisms governing the aging process. Therefore, in this work, information of gene expression was included to the static aging-related protein interactome to understand the network-based relationships among aging-related essential (AE) proteins, aging-related non-essential (ANE) proteins, and housekeeping-proteins that could regulate or influence aging. Comprehensive analyses provided various systems-level insights into the regulatory characteristics of aging; for example, (i) network-based correlation analysis predicted functional relationships among AE proteins and ANE proteins; (ii) network variability analysis predicted aging to affect different tissues in strikingly different ways by differentially regulating various regulatory interactions; (iii) cross-network comparisons identified two aging-related modules to be significantly conserved across most of the tissues. Overall, the findings obtained during this study could be helpful for researchers to delay, prevent, or even reverse various aspects of the aging.
Collapse
|
9
|
Differential effects of sodium chloride and monosodium glutamate on kidney of adult and aging mice. Sci Rep 2021; 11:481. [PMID: 33436880 PMCID: PMC7804302 DOI: 10.1038/s41598-020-80048-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Monosodium Glutamate (MSG) is used as flavour enhancer, with potential beneficial effects due to its nutritional value. Given the decline in kidney functions during aging, we investigated the impact of MSG voluntary intake on the kidney of male mice, aged 6 or 18 months. For 2 months, they freely consumed water (control group), sodium chloride (0.3% NaCl) or MSG (1% MSG) in addition to standard diet. Young animals consuming sodium chloride presented signs of proteinuria, hyperfiltration, enhanced expression and excretion of Aquaporin 2 and initial degenerative reactions suggestive of fibrosis, while MSG-consuming mice were similar to controls. In old mice, aging-related effects including proteinuria and increased renal corpuscle volume were observed in all groups. At an advanced age, MSG caused no adverse effects on the kidney compared to controls, despite the presence of a sodium moiety, similar to sodium chloride. These data show that prolonged MSG intake in mice has less impact on kidney compared to sodium chloride, that already in young animals induced some effects on kidney, possibly related to hypertension.
Collapse
|
10
|
Feldkamp LLI, Kaminsky E, Kienitz T, Quinkler M. Central Diabetes Insipidus Caused by Arginine Vasopressin Gene Mutation: Report of a Novel Mutation and Review of Literature. Horm Metab Res 2020; 52:796-802. [PMID: 32629514 DOI: 10.1055/a-1175-1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant hereditary disorder characterized by severe polydipsia and polyuria that usually presents in early childhood. In this study, we describe a new arginine vasopressin (AVP) gene mutation in an ethnic German family with FNDI and provide an overview of disease-associated AVP-gene mutations that are already described in literature. Three members of a German family with neurohypophyseal diabetes insipidus were studied. Isolated DNA from peripheral blood samples was used for mutation analysis by sequencing the whole coding region of AVP-NPII gene. Furthermore, we searched the electronic databases MEDLINE (Pubmed) as well as HGMD, LOVD-ClinVar, db-SNP and genomAD in order to compare our cases to that of other patients with FNDI. Genetic analysis of the patients revealed a novel heterozygote missense mutation in exon 2 of the AVP gene (c.274T>G), which has not yet been described in literature. We identified reports of more than 90 disease-associated mutations in the AVP gene in literature. The novel mutation of the AVP gene seems to cause FNDI in the presented German family. Similar to our newly detected mutation, most mutations causing FNDI are found in exon 2 of the AVP gene coding for neurophysin II. Clinically, it is important to think of FNDI in young children presenting with polydipsia and polyuria.
Collapse
Affiliation(s)
- Lara L I Feldkamp
- Endocrinology in Charlottenburg, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tina Kienitz
- Endocrinology in Charlottenburg, Berlin, Germany
| | | |
Collapse
|
11
|
Meade RD, Akerman AP, Notley SR, McGinn R, Poirier P, Gosselin P, Kenny GP. Physiological factors characterizing heat-vulnerable older adults: A narrative review. ENVIRONMENT INTERNATIONAL 2020; 144:105909. [PMID: 32919284 DOI: 10.1016/j.envint.2020.105909] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/17/2020] [Indexed: 05/26/2023]
Abstract
More frequent and intense periods of extreme heat (heatwaves) represent the most direct challenge to human health posed by climate change. Older adults are particularly vulnerable, especially those with common age-associated chronic health conditions (e.g., cardiovascular disease, hypertension, obesity, type 2 diabetes, chronic kidney disease). In parallel, the global population is aging and age-associated disease rates are on the rise. Impairments in the physiological responses tasked with maintaining homeostasis during heat exposure have long been thought to contribute to increased risk of health disorders in older adults during heatwaves. As such, a comprehensive overview of the provisional links between age-related physiological dysfunction and elevated risk of heat-related injury in older adults would be of great value to healthcare officials and policy makers concerned with protecting heat-vulnerable sectors of the population from the adverse health impacts of heatwaves. In this narrative review, we therefore summarize our current understanding of the physiological mechanisms by which aging impairs the regulation of body temperature, hemodynamic stability and hydration status. We then examine how these impairments may contribute to acute pathophysiological events common during heatwaves (e.g., heatstroke, major adverse cardiovascular events, acute kidney injury) and discuss how age-associated chronic health conditions may exacerbate those impairments. Finally, we briefly consider the importance of physiological research in the development of climate-health programs aimed at protecting heat-vulnerable individuals.
Collapse
Affiliation(s)
- Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ryan McGinn
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Paul Poirier
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Québec, Canada
| | - Pierre Gosselin
- Institut National de Santé Publique du Québec and Université Laval, Québec, Québec, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Anastasio P, Trepiccione F, De Santo NG, Capasso G, Viggiano D, Capolongo G. Regulation of urinary calcium excretion by vasopressin. Clin Kidney J 2020; 13:873-877. [PMID: 33123363 PMCID: PMC7577769 DOI: 10.1093/ckj/sfaa134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background The antidiuretic hormone (ADH) or arginine vasopressin (AVP) regulates the body's water balance. Recently, modifications in AVP levels have been related to osteoporosis during ageing and microgravity/bed rest. Therefore the present study was devised to assess whether the absence of AVP, as in patients with central diabetes insipidus (CDI), modulates renal calcium excretion. Methods We retrospectively analysed data from 12 patients with CDI with measured 24-h urinary excretion levels of calcium. Data were available at the moment of the diagnosis when patients were drug-free and after therapy with dDAVP, an analog of AVP. Hypercalciuria was defined as 24-h urinary Ca2+ >275 mg/day in males and >250 mg/day in females and a urinary calcium (Ca):creatinine (Cr) ratio >0.20 mg/mg. Results Untreated CDI patients had a daily urinary Ca2+ excretion of 383 ± 47 mg/day and a urinary Ca:Cr ratio of 0.26 ± 0.38 mg/mg. The urine osmolarity significantly increased after the administration of dDAVP by 210% and the urinary flow decreased by 72%. Furthermore, the estimated glomerular filtration rate (eGFR) increased by 7%, which did not reach statistical significance. dDAVP treatment did not significantly modify the urinary Ca2+ concentration; however, the daily calcium excretion and the urinary Ca:Cr ratio were significantly decreased (160 ± 27 mg/day and 0.11 ± 0.02 mg/mg, respectively). Conclusions Patients with CDI show hypercalciuria even though urine is more diluted than normal controls, and dDAVP reverses this effect. These data support the intriguing relationship between AVP and osteoporosis in ageing and microgravity/bed rest.
Collapse
Affiliation(s)
- Pietro Anastasio
- Department of Translational Medical Sciences, University of Campania 'L.Vanvitelli', Naples, Italy
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'L.Vanvitelli', Naples, Italy.,BIOGEM, Ariano Irpino, Italy
| | | | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'L.Vanvitelli', Naples, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Davide Viggiano
- Department of Translational Medical Sciences, University of Campania 'L.Vanvitelli', Naples, Italy.,BIOGEM, Ariano Irpino, Italy.,Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giovanna Capolongo
- Department of Translational Medical Sciences, University of Campania 'L.Vanvitelli', Naples, Italy
| |
Collapse
|
13
|
Sun ZJ, Hsiao HJ, Cheng HJ, Chou CY, Lu FH, Yang YC, Wu JS, Chang CJ. Relationship between Kidney Stone Disease and Arterial Stiffness in a Taiwanese Population. J Clin Med 2020; 9:jcm9061693. [PMID: 32498283 PMCID: PMC7355902 DOI: 10.3390/jcm9061693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 11/28/2022] Open
Abstract
Previous studies examining the association between kidney stone disease (KSD) and arterial stiffness have been limited. Both age and gender have been found to have an impact on KSD, but their influence on the relationship between KSD and increased arterial stiffness is unclear. This study included 6694 subjects from October 2006 to August 2009. The diagnosis of kidney stone was based on the results of ultrasonographic examination. Increased arterial stiffness was defined as right-sided brachial-ankle pulse wave velocity (baPWV) ≥ 14 m/s. Associations between KSD and increased arterial stiffness were analyzed using multiple logistic regression models. KSD was positively related to increased arterial stiffness in both male and female groups (males: odds ratio [OR], 1.306; 95% confidence interval [CI], 1.035–1.649; females: OR, 1.585; 95% CI, 1.038–2.419) after adjusting for confounding factors. Subgroup analysis by age group (<50 and ≥50 years) showed a significant positive relationship only in the groups ≥ 50 years for both genders (males: OR, 1.546; 95% CI, 1.111–2.151; females: OR, 1.783; 95% CI, 1.042–3.054), but not in the groups < 50 years. In conclusion, KSD is associated with a higher risk of increased arterial stiffness in individuals aged ≥ 50 years, but not in those aged < 50 years for both genders.
Collapse
Affiliation(s)
- Zih-Jie Sun
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
- Department of Family Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, No.345, Zhuangjing Rd., Douliu City, Yunlin 64043, Taiwan
| | - Hsuan-Jung Hsiao
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Hsiang-Ju Cheng
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Chieh-Ying Chou
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Feng-Hwa Lu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Yi-Ching Yang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
| | - Jin-Shang Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
- Department of Family Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, No.345, Zhuangjing Rd., Douliu City, Yunlin 64043, Taiwan
- Correspondence: (J.-S.W.); (C.-J.C.); Tel.: +886-6-2353535 (J.-S.W.)
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng Li Road, Tainan 70403, Taiwan; (Z.-J.S.); (H.-J.H.); (H.-J.C.); (C.-Y.C.); (F.-H.L.); (Y.-C.Y.)
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No.539, Zhongxiao Rd., East Dist., Chiayi 60002, Taiwan
- Correspondence: (J.-S.W.); (C.-J.C.); Tel.: +886-6-2353535 (J.-S.W.)
| |
Collapse
|
14
|
van Gastel J, Leysen H, Santos-Otte P, Hendrickx JO, Azmi A, Martin B, Maudsley S. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging (Albany NY) 2019; 11:11268-11313. [PMID: 31794429 PMCID: PMC6932917 DOI: 10.18632/aging.102528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Jhana O Hendrickx
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Bronwen Martin
- Faculty of Pharmaceutical, Veterinary and Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
15
|
The Role of Water Homeostasis in Muscle Function and Frailty: A Review. Nutrients 2019; 11:nu11081857. [PMID: 31405072 PMCID: PMC6723611 DOI: 10.3390/nu11081857] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023] Open
Abstract
Water, the main component of the body, is distributed in the extracellular and intracellular compartments. Water exchange between these compartments is mainly governed by osmotic pressure. Extracellular water osmolarity must remain within very narrow limits to be compatible with life. Older adults lose the thirst sensation and the ability to concentrate urine, and this favours increased extracellular osmolarity (hyperosmotic stress). This situation, in turn, leads to cell dehydration, which has severe consequences for the intracellular protein structure and function and, ultimately, results in cell damage. Moreover, the fact that water determines cell volume may act as a metabolic signal, with cell swelling acting as an anabolic signal and cell shrinkage acting as a catabolic signal. Ageing also leads to a progressive loss in muscle mass and strength. Muscle strength is the main determinant of functional capacity, and, in elderly people, depends more on muscle quality than on muscle quantity (or muscle mass). Intracellular water content in lean mass has been related to muscle strength, functional capacity, and frailty risk, and has been proposed as an indicator of muscle quality and cell hydration. This review aims to assess the role of hyperosmotic stress and cell dehydration on muscle function and frailty.
Collapse
|
16
|
Birder LA, Van Kerrebroeck PEV. Pathophysiological Mechanisms of Nocturia and Nocturnal Polyuria: The Contribution of Cellular Function, the Urinary Bladder Urothelium, and Circadian Rhythm. Urology 2019; 133S:14-23. [PMID: 31369749 DOI: 10.1016/j.urology.2019.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022]
Abstract
Alterations to arginine vasopressin (AVP) secretion, the urinary bladder urothelium (UT) and other components of the bladder, and the water homeostasis biosystem may be relevant to the pathophysiology of nocturia and nocturnal polyuria (NP). AVP is the primary hormone involved in water homeostasis. Disruption to the physiological release of AVP or its target effects may relate to several urinary disturbances. Circadian dysregulation and the effects of aging, for example, the development of oxidative stress and mitochondrial dysfunction, may play a role in nocturia voiding symptoms. The urinary bladder UT not only acts as a highly efficient barrier that is maintained during the filling and voiding of the urinary bladder, but is also capable of sensory and transducer function through a network of functional receptors and ion channels that enable reciprocal communication between UT cells and neighboring elements of the bladder mucosa and wall. Functional components of the UT (eg, claudins and receptors or ion channels) play important roles in AVP-mediated water homeostasis. These components and functions involved in water homeostasis, as well as kidney function, may be affected by the aging process, including age-related mitochondrial dysfunction. The characteristics of NP are discussed and the association between NP and circadian rhythm is examined in light of reports that suggest that nocturia should be considered as a type of circadian dysfunction. Many possible pathologic mechanisms that underlie nocturia and NP have been identified. Future studies may provide further insight into pathophysiology with the hope of identifying new treatment modalities.
Collapse
Affiliation(s)
- Lori A Birder
- Departments of Medicine and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | |
Collapse
|
17
|
Wang F, Su H, Wang X, Wu Q, Zhou Y, Xu H, Zhang R. Pituitrin use is associated with an increased risk of inguinal hematomas and pseudoaneurysms in patients undergoing femoral artery puncture. J Int Med Res 2019; 47:2976-2986. [PMID: 31119963 PMCID: PMC6683930 DOI: 10.1177/0300060519849785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective Femoral artery puncture (FAP) is an effective method for interventional percutaneous vascular procedures. However, FAP leads to complications including hematomas and pseudoaneurysms. This study was performed to determine whether pituitrin infusion or vascular closure devices (VCDs) increase the risk of complications after FAP. Methods This single-center retrospective study included 3641 patients who underwent FAP. The patients were divided into two groups: a groin complication group (including hematomas and pseudoaneurysms) and a no-groin complication group. Results In the multivariate analysis, perioperative pituitrin infusion and the use of VCDs were strongly associated with inguinal hematomas and pseudoaneurysms. The complication rate was obviously higher in patients who underwent bronchial artery embolization (BAE). Because high dosages of pituitrin and VCDs were used in patients undergoing BAE, postoperative hematoma development occurred significantly earlier in these patients. Hematomas occurred within 14 days of the operation in all patients who underwent BAE. Conclusion Perioperative pituitrin infusion and the use of VCDs are associated with an increased risk of complications after FAP, including hematomas and pseudoaneurysms. Notably, patients who underwent BAE, who are subject to higher pituitrin and VCD use, showed a higher complication rate. The incidence of complications was highest within 2 weeks postoperatively.
Collapse
Affiliation(s)
- Fang Wang
- 1 Department of Nursing, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hua Su
- 2 Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Xiaoxia Wang
- 1 Department of Nursing, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Qionghui Wu
- 1 Department of Nursing, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Yong Zhou
- 2 Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hangdi Xu
- 2 Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ruifeng Zhang
- 2 Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Serra-Prat M, Lorenzo I, Palomera E, Yébenes JC, Campins L, Cabré M. Intracellular Water Content in Lean Mass is Associated with Muscle Strength, Functional Capacity, and Frailty in Community-Dwelling Elderly Individuals. A Cross-Sectional Study. Nutrients 2019; 11:nu11030661. [PMID: 30893821 PMCID: PMC6471552 DOI: 10.3390/nu11030661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
High intracellular water (ICW) content has been associated with better functional performance and a lower frailty risk in elderly people. However, it is not clear if the protective effect of high ICW is due to greater muscle mass or better muscle quality and cell hydration. We aimed to assess the relationship between ICW content in lean mass (LM) and muscle strength, functional performance, frailty, and other clinical characteristics in elderly people. In an observational cross-sectional study of community-dwelling subjects aged ≥75 years, ICW and LM were estimated by bioelectrical impedance, and the ICW/LM ratio (mL/kg) calculated. Muscle strength was measured as hand grip, frailty status was assessed according to Fried criteria, and functional status was assessed by Barthel score. For 324 recruited subjects (mean age 80 years), mean (SD) ICW/LM ratio was 408 (29.3) mL/kg. The ICW/LM ratio was negatively correlated with age (rs = −0.249; p < 0.001). A higher ICW/LM ratio was associated with greater muscle strength, better functional capacity, and a lower frailty risk, even when adjusted by age, sex, nº of co-morbidities, and LM. ICW content in LM (including the muscle) may influence muscle strength, functional capacity and frailty. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Mateu Serra-Prat
- Research Unit, Consorci Sanitari del Maresme, 08304 Mataró (Barcelona), Spain.
| | - Isabel Lorenzo
- Research Unit, Consorci Sanitari del Maresme, 08304 Mataró (Barcelona), Spain.
| | - Elisabet Palomera
- Research Unit, Consorci Sanitari del Maresme, 08304 Mataró (Barcelona), Spain.
| | - Juan Carlos Yébenes
- Intensive Care Unit, Consorci Sanitari del Maresme, 08304 Mataró (Barcelona), Spain.
| | - Lluís Campins
- Pharmacy Department. Consorci Sanitari del Maresme, 08304 Mataró (Barcelona), Spain.
| | - Mateu Cabré
- Geriatric Department, Consorci Sanitari del Maresme, 08304 Mataró (Barcelona), Spain.
| |
Collapse
|
19
|
Comparison between men and women of volume regulating hormones and aquaporin-2 excretion following graded central hypovolemia. Eur J Appl Physiol 2018; 119:633-643. [DOI: 10.1007/s00421-018-4053-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/07/2018] [Indexed: 01/28/2023]
|
20
|
Behringer V, Stevens JMG, Deschner T, Sonnweber R, Hohmann G. Aging and sex affect soluble alpha klotho levels in bonobos and chimpanzees. Front Zool 2018; 15:35. [PMID: 30250491 PMCID: PMC6146871 DOI: 10.1186/s12983-018-0282-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Throughout life, physiological homeostasis is challenged and the capacity to cope with such challenges declines with increasing age. In many species, sex differences exist in life expectancy. Sex-specific differences have been related to extrinsic factors like mate competition and/or intrinsic proximate mechanisms such as hormonal changes. In humans, an intrinsic factor related to aging is soluble alpha klotho (α-Kl). Both sexes show an age-related decline in α-Kl, but throughout life women have higher levels than men of the same age. Sex differences in α-Kl have been linked to a shorter lifespan, as well as to specific morbidity factors such as atherosclerosis and arteries calcifications. In non-human animals, information on α-Kl levels is rare and restricted to experimental work. Our cross-sectional study is the first on α-Kl levels in two long-lived species: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). As in most mammals, female bonobos and chimpanzees have longer life expectancy than males. METHODS We measured serum α-Kl levels of 140 subjects from 16 zoos with an ELISA to examine if α-Kl levels reflect this difference in life expectancy. RESULTS In both species and in both sexes, α-Kl levels declined with age suggesting that this marker has potential for aging studies beyond humans. We also found species-specific differences. Adult female bonobos had higher α-Kl levels than males, a difference that corresponds to the pattern found in humans. In chimpanzees, we found the opposite: males had higher α-Kl levels than females. CONCLUSION We suggest that contrasting sex differences in adult α-Kl levels mirror the dominance relations between females and males of the two Pan species; and that this might be related to corresponding sex differences in their exposure to stress. In humans, higher cortisol levels were found to be related to lower α-Kl levels. We conclude that there is great potential for studying aging processes in hominoids, and perhaps also in other non-human primates, by measuring α-Kl levels. To better understand the causes for sex differences in this aging marker, consideration of behavioural parameters such as competition and stress exposure will be required as well as other physiological markers.
Collapse
Affiliation(s)
- V. Behringer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - J. M. G. Stevens
- Antwerp Zoo Centre for Research and Conservation, Royal Zoological Society of Antwerp, K. Astridplein 26, 2018 Antwerp, Belgium
- Behavioral Ecology and Ecophysiology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - T. Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - R. Sonnweber
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - G. Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Canivell S, Mohaupt M, Ackermann D, Pruijm M, Guessous I, Ehret G, Escher G, Pechère-Bertschi A, Vogt B, Devuyst O, Burnier M, Martin PY, Ponte B, Bochud M. Copeptin and insulin resistance: effect modification by age and 11 β-HSD2 activity in a population-based study. J Endocrinol Invest 2018; 41:799-808. [PMID: 29235050 DOI: 10.1007/s40618-017-0807-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE Arginine vasopressin (AVP) may be involved in metabolic syndrome (MetS) by altering liver glycogenolysis, insulin and glucagon secretion, and pituitary ACTH release. Moreover, AVP stimulates the expression of 11β-hydroxysteroid-dehydrogenase-type 2 (11β-HSD2) in mineralocorticosteroid cells. We explored whether apparent 11β-HSD2 activity, estimated using urinary cortisol-to-cortisone ratio, modulates the association between plasma copeptin, as AVP surrogate, and insulin resistance/MetS in the general adult population. METHODS This was a multicentric, family-based, cross-sectional sample of 1089 subjects, aged 18-90 years, 47% men, 13.4% MetS, in Switzerland. Mixed multivariable linear and logistic regression models were built to investigate the association of insulin resistance (HOMA-IR)/fasting glucose and MetS/Type 2 Diabetes with copeptin, while considering potential confounders or effect modifiers into account. Stratified results by age and 11β-HSD2 activity were presented as appropriate. RESULTS Plasma copeptin was higher in men [median 5.2, IQR (3.7-7.8) pmol/L] than in women [median 3.0, IQR (2.2-4.3) pmol/L], P < 0.0001. HOMA-IR was positively associated with copeptin after full adjustment if 11β-HSD2 activity was high [β (95% CI) = 0.32 (0.17-0.46), P < 0.001] or if age was high [β (95% CI) = 0.34 (0.20-0.48), P < 0.001], but not if either 11β-HSD2 activity or age was low. There was a positive association of type 2 diabetes with copeptin [OR (95% CI) = 2.07 (1.10-3.89), P = 0.024), but not for MetS (OR (95% CI) = 1.12 (0.74-1.69), P = 0.605), after full adjustment. CONCLUSIONS Our data suggest that age and apparent 11β-HSD2 activity modulate the association of copeptin with insulin resistance at the population level but not MeTS or diabetes. Further research is needed to corroborate these results and to understand the mechanisms underlying these findings.
Collapse
Affiliation(s)
- S Canivell
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| | - M Mohaupt
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - D Ackermann
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Pruijm
- Service of Nephrology and Hypertension, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - I Guessous
- Department of Community Medicine, Primary Care and Emergency Medicine, University Hospital of Geneva, Geneva, Switzerland
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - G Ehret
- Cardiology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - G Escher
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - A Pechère-Bertschi
- Unit of Hypertension, Departments of Specialties of Medicine and Community Medicine and Primary Care and Emergency Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - B Vogt
- University Clinic for Nephrology, Hypertension and Clinical Pharmacology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - O Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - M Burnier
- Nephrology Service, University Hospital of Lausanne, Lausanne, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - P-Y Martin
- Nephrology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - B Ponte
- Nephrology Service, Department of Specialties of Internal Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - M Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
22
|
Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1501847. [PMID: 29770164 PMCID: PMC5892239 DOI: 10.1155/2018/1501847] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/29/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are produced as a result of aerobic metabolism and as by-products through numerous physiological and biochemical processes. While ROS-dependent modifications are fundamental in transducing intracellular signals controlling pleiotropic functions, imbalanced ROS can cause oxidative damage, eventually leading to many chronic diseases. Moreover, increased ROS and reduced nitric oxide (NO) bioavailability are main key factors in dysfunctions underlying aging, frailty, hypertension, and atherosclerosis. Extensive investigation aims to elucidate the beneficial effects of ROS and NO, providing novel insights into the current medical treatment of oxidative stress-related diseases of high epidemiological impact. This review focuses on emerging topics encompassing the functional involvement of aquaporin channel proteins (AQPs) and membrane transport systems, also allowing permeation of NO and hydrogen peroxide, a major ROS, in oxidative stress physiology and pathophysiology. The most recent advances regarding the modulation exerted by food phytocompounds with antioxidant action on AQPs are also reviewed.
Collapse
|
23
|
Colafella KMM, Denton KM. Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 2018; 14:185-201. [PMID: 29380817 DOI: 10.1038/nrneph.2017.189] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although intrinsic mechanisms that regulate arterial blood pressure (BP) are similar in men and women, marked variations exist at the molecular, cellular and tissue levels. These physiological disparities between the sexes likely contribute to differences in disease onset, susceptibility, prevalence and treatment responses. Key systems that are important in the development of hypertension and cardiovascular disease (CVD), including the sympathetic nervous system, the renin-angiotensin-aldosterone system and the immune system, are differentially activated in males and females. Biological age also contributes to sexual dimorphism, as premenopausal women experience a higher degree of cardioprotection than men of similar age. Furthermore, sex hormones such as oestrogen and testosterone as well as sex chromosome complement likely contribute to sex differences in BP and CVD. At the cellular level, differences in cell senescence pathways may contribute to increased longevity in women and may also limit organ damage caused by hypertension. In addition, many lifestyle and environmental factors - such as smoking, alcohol consumption and diet - may influence BP and CVD in a sex-specific manner. Evidence suggests that cardioprotection in women is lost under conditions of obesity and type 2 diabetes mellitus. Treatment strategies for hypertension and CVD that are tailored according to sex could lead to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia.,Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, Netherlands
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute, Monash University Wellington Road, Clayton, Victoria 3800, Australia.,Department of Physiology, Monash University, 26 Innovation Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Chung E. Desmopressin and nocturnal voiding dysfunction: Clinical evidence and safety profile in the treatment of nocturia. Expert Opin Pharmacother 2018; 19:291-298. [DOI: 10.1080/14656566.2018.1429406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Eric Chung
- Department of Urology, University of Queensland, Princess Alexandra Hospital, Brisbane, Australia
- AndroUrology Centre, St Andrew’s War Memorial Hospital, Brisbane, Australia
| |
Collapse
|
25
|
Diamanti-Kandarakis E, Dattilo M, Macut D, Duntas L, Gonos ES, Goulis DG, Gantenbein CK, Kapetanou M, Koukkou E, Lambrinoudaki I, Michalaki M, Eftekhari-Nader S, Pasquali R, Peppa M, Tzanela M, Vassilatou E, Vryonidou A. MECHANISMS IN ENDOCRINOLOGY: Aging and anti-aging: a Combo-Endocrinology overview. Eur J Endocrinol 2017; 176:R283-R308. [PMID: 28264815 DOI: 10.1530/eje-16-1061] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 12/14/2022]
Abstract
Aging and its underlying pathophysiological background has always attracted the attention of the scientific society. Defined as the gradual, time-dependent, heterogeneous decline of physiological functions, aging is orchestrated by a plethora of molecular mechanisms, which vividly interact to alter body homeostasis. The ability of an organism to adjust to these alterations, in conjunction with the dynamic effect of various environmental stimuli across lifespan, promotes longevity, frailty or disease. Endocrine function undergoes major changes during aging, as well. Specifically, alterations in hormonal networks and concomitant hormonal deficits/excess, augmented by poor sensitivity of tissues to their action, take place. As hypothalamic-pituitary unit is the central regulator of crucial body functions, these alterations can be translated in significant clinical sequelae that can impair the quality of life and promote frailty and disease. Delineating the hormonal signaling alterations that occur across lifespan and exploring possible remedial interventions could possibly help us improve the quality of life of the elderly and promote longevity.
Collapse
Affiliation(s)
| | | | - Djuro Macut
- Clinic for EndocrinologyDiabetes and Metabolic Diseases, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Leonidas Duntas
- Medical SchoolUniversity of Ulm, Ulm, Germany
- Endocrine ClinicEvgenidion Hospital, University of Athens, Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research FoundationInstitute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Dimitrios G Goulis
- First Department of Obstetrics & GynecologyMedical School, Aristotle University of Thessaloniki, Unit of Reproductive Endocrinology, Thessaloniki, Greece
| | - Christina Kanaka Gantenbein
- First Department of Pediatrics Medical SchoolAghia Sophia Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research FoundationInstitute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | | | - Irene Lambrinoudaki
- 2nd Department of Obstetrics and GynecologyUniversity of Athens, Aretaieio Hospital, Athens, Greece
| | - Marina Michalaki
- Endocrine DivisionInternal Medicine Department, University Hospital of Patras, Patras, Greece
| | - Shahla Eftekhari-Nader
- Department of Internal MedicineMc Goven Medical School, The University of Texas, Houston, Texas, USA
| | | | - Melpomeni Peppa
- Second Department of Internal Medicine PropaedeuticResearch Institute and Diabetes Center, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | | | - Evangeline Vassilatou
- Endocrine Unit2nd Department of Internal Medicine, Attikon University Hospital, Athens, Greece
| | - Andromachi Vryonidou
- Department of EndocrinologyDiabetes and Metabolism, 'Red Cross Hospital', Athens, Greece
| |
Collapse
|
26
|
Miyata S. Advances in Understanding of Structural Reorganization in the Hypothalamic Neurosecretory System. Front Endocrinol (Lausanne) 2017; 8:275. [PMID: 29089925 PMCID: PMC5650978 DOI: 10.3389/fendo.2017.00275] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/28/2017] [Indexed: 12/18/2022] Open
Abstract
The hypothalamic neurosecretory system synthesizes neuropeptides in hypothalamic nuclei and releases them from axonal terminals into the circulation in the neurohypophysis (NH) and median eminence (ME). This system plays a crucial role in regulating body fluid homeostasis and social behaviors as well as reproduction, growth, metabolism, and stress responses, and activity-dependent structural reorganization has been reported. Current knowledge on dynamic structural reorganization in the NH and ME, in which the axonal terminals of neurosecretory neurons directly contact the basement membrane (BM) of a fenestrated vasculature, is discussed herein. Glial cells, pituicytes in the NH and tanycytes in the ME, engulf axonal terminals and interpose their cellular processes between axonal terminals and the BM when hormonal demands are low. Increasing demands for neurosecretion result in the retraction of the cellular processes of glial cells from axonal terminals and the BM, permitting increased neurovascular contact. The shape conversion of pituicytes and tanycytes is mediated by neurotransmitters and sex steroid hormones, respectively. The NH and ME have a rough vascular BM profile of wide perivascular spaces and specialized extension structures called "perivascular protrusions." Perivascular protrusions, the insides of which are occupied by the cellular processes of vascular mural cells pericytes, contribute to increasing neurovascular contact and, thus, the efficient diffusion of hypothalamic neuropeptides. A chronic physiological stimulation has been shown to increase perivascular protrusions via the shape conversion of pericytes and the profile of the vascular surface. Continuous angiogenesis occurs in the NH and ME of healthy normal adult rodents depending on the signaling of vascular endothelial growth factor (VEGF). The inhibition of VEGF signaling suppresses the proliferation of endothelial cells (ECs) and promotes their apoptosis, which results in decreases in the population of ECs and axonal terminals. Pituicytes and tanycytes are continuously replaced by the proliferation and differentiation of stem/progenitor cells, which may be regulated by matching those of ECs and axonal terminals. In conclusion, structural reorganization in the NH and ME is caused by the activity-dependent shape conversion of glial cells and vascular mural cells as well as the proliferation of endothelial and glial cells by angiogenesis and gliogenesis, respectively.
Collapse
Affiliation(s)
- Seiji Miyata
- Department of Applied Biology, The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Kyoto, Japan
- *Correspondence: Seiji Miyata,
| |
Collapse
|
27
|
Woodman RJ, Wood KM, Kunnel A, Dedigama M, Pegoli MA, Soiza RL, Mangoni AA. Patterns of Drug Use and Serum Sodium Concentrations in Older Hospitalized Patients: A Latent Class Analysis Approach. Drugs Real World Outcomes 2016; 3:383-391. [PMID: 27787771 PMCID: PMC5127897 DOI: 10.1007/s40801-016-0094-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Several drugs may lower serum sodium concentrations (NaC) in older patients. However, distinguishing their individual effects is particularly difficult in this population because of the high prevalence of polypharmacy and disease states that are per se associated with hyponatremia. OBJECTIVES Our objective was to identify specific patterns of medication use in older hospitalized patients and determine whether these patterns were associated with serum NaC. METHODS We collected clinical and demographic data, pre-admission drugs, Drug Burden Index (DBI) score, and average NaC during hospitalization in a consecutive series of older medical patients (n = 101, mean ± standard deviation [SD] age 87 ± 6 years). We used latent class analysis (LCA) to identify specific patterns of drug use and multivariate regression to determine the associations between 14 separate drug classes, identified patterns of drug use, and NaC. RESULTS LCA revealed three patterns: lower overall drug use (class 1), anticoagulant use and higher drug use (class 2), and antiplatelet use (class 3). Mean (±SD) DBI score in each class was 2.7 ± 1.3, 3.3 ± 1.6, and 2.4 ± 1.5, respectively (p = 0.04). Mean (± SD) NaC in classes 1, 2, and 3 were 140.6 ± 6.8, 138.7 ± 5.3, and 136.5 ± 4.7 mmol/l, respectively (p = 0.006). After adjustment for age, sex, Charlson Comorbidity Index score, estimated glomerular filtration rate (eGFR), DBI score, and digoxin use, mean NaC in class 2 and class 3 was significantly lower than in class 1 (-3.9 mmol/l; 95% confidence interval [CI] -7.1 to -0.8, p = 0.01 and -5.2 mmol/l; 95% CI -7.9 to -2.5, p < 0.001, respectively). Mean serum NaC was not significantly associated with any of the 14 individually assessed drug classes. In addition to latent class, increasing age and higher eGFR were also independently associated with lower serum NaC (p = 0.002 and p = 0.03, respectively). CONCLUSION LCA enabled us to identify patterns of drug use associated with lower serum NaC in older inpatients. Our results suggest that older patients using antiplatelets or anticoagulants are especially at risk of lower serum NaC.
Collapse
Affiliation(s)
- Richard J Woodman
- Centre for Epidemiology and Biostatistics, School of Medicine, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Karen M Wood
- School of Medicine and Dentistry, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Aline Kunnel
- Centre for Epidemiology and Biostatistics, School of Medicine, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Maneesha Dedigama
- Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Matthew A Pegoli
- Department of Pharmacy, Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia
| | - Roy L Soiza
- Department of Medicine for the Elderly, NHS Grampian, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, AB25 2ZN, UK
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Flinders Drive, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
28
|
Influence of sex on aquaporin1-4 and vasopressin V2 receptor expression in the pig kidney during development. Pediatr Res 2016; 80:452-9. [PMID: 27089501 DOI: 10.1038/pr.2016.94] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/15/2016] [Indexed: 11/09/2022]
Abstract
BACKGROUND The ability of the immature kidney to concentrate urine is lower than in adults. The aquaporin (AQP) family and the vasopressin V2 receptor (V2R) play a critical role in the urinary concentrating capacity. Here we investigated a possible sex difference in AQP1, AQP2, AQP3, and AQP4 as well as V2R expression in the fetal pig kidney at different gestation stages. METHODS Pig fetuses were divided into three groups according to gestation age of 60, 80, and 100 d. Quantitative PCR and immunohistochemistry were used to determine the regulation of AQP1, AQP2, AQP3, and AQP4 as well as V2R in the fetal pig kidneys. RESULTS Renal AQP1, AQP2 and AQP3, and V2R expression was increased with gestation age in both sexes, whereas AQP4 expression was unchanged over time. We observed neither sex differences in the AQPs nor V2R expression in the fetal pig kidneys. CONCLUSION AQP1, AQP2, and AQP3, and V2R expression increased with gestation age in the fetal kidney, suggesting that this induction might contribute to the maturation of urinary concentrating capacity. However, no sex differences were observed indicating that sex might not play a role for the maturation of the urinary concentrating activity during kidney development in fetal pig.
Collapse
|
29
|
|
30
|
Pineda R, Sabatier N, Ludwig M, Millar RP, Leng G. A Direct Neurokinin B Projection from the Arcuate Nucleus Regulates Magnocellular Vasopressin Cells of the Supraoptic Nucleus. J Neuroendocrinol 2016; 28. [PMID: 26610724 DOI: 10.1111/jne.12342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/02/2015] [Accepted: 11/22/2015] [Indexed: 01/11/2023]
Abstract
Central administration of neurokinin B (NKB) agonists stimulates immediate early gene expression in the hypothalamus and increases the secretion of vasopressin from the posterior pituitary through a mechanism that depends on the activation of neurokinin receptor 3 receptors (NK3R). The present study reports that, in the rat, immunoreactivity for NK3R is expressed in magnocellular vasopressin and oxytocin neurones in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus, and that NKB immunoreactivity is expressed in fibres in close juxtaposition with vasopressin neurones at both of these sites. Retrograde tracing in the rat shows that some NKB-expressing neurones in the arcuate nucleus project to the SON and, in mice, using an anterograde tracing approach, it is found that kisspeptin-expressing neurones of the arcuate nucleus, which are known to co-express NKB, project to the SON and PVN. Finally, i.c.v. injection of the NK3R agonist senktide is shown to potently increase the electrical activity of vasopressin neurones in the SON in vivo with no significant effect detected on oxytocin neurones. The results suggest that NKB-containing neurones in the arcuate nucleus regulate the secretion of vasopressin from magnocellular neurones in rodents, and the possible significance of this is discussed.
Collapse
Affiliation(s)
- R Pineda
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - N Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - M Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - R P Millar
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
- MRC Receptor Biology Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
31
|
Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Med Hypotheses 2016; 86:18-29. [DOI: 10.1016/j.mehy.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
|
32
|
Abstract
Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ming Zhan
- Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|