1
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
2
|
Rybka KA, Sturm KL, De Guzman RM, Bah S, Jacobskind JS, Rosinger ZJ, Taroc EZM, Forni PE, Zuloaga DG. Androgen regulation of corticotropin releasing factor receptor 1 in the mouse brain. Neuroscience 2022; 491:185-199. [DOI: 10.1016/j.neuroscience.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022]
|
3
|
Harris AN, Castro RA, Lee HW, Verlander JW, Weiner ID. Role of the renal androgen receptor in sex differences in ammonia metabolism. Am J Physiol Renal Physiol 2021; 321:F629-F644. [PMID: 34605272 PMCID: PMC8616601 DOI: 10.1152/ajprenal.00260.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
There are sex differences in renal ammonia metabolism and structure, many of which are mediated by testosterone. The goal of the present study was to determine the role of renal expression of testosterone's canonical receptor, androgen receptor (AR), in these sexual dimorphisms. We studied mice with kidney-specific AR deletion [KS-AR-knockout (KO)] generated using Cre/loxP techniques; control mice were Cre-negative littermates (wild type). In male but not female mice, KS-AR-KO increased ammonia excretion, which eliminated sex differences. Although renal structural size typically parallel ammonia excretion, KS-AR-KO decreased kidney size, cortical proximal tubule volume density, and cortical proximal tubule cell height in males-neither were altered in females and collecting duct volume density was unaltered in both sexes. Analysis of key protein involved in ammonia handling showed in male mice that KS-AR-KO increased both phosphoenolpyruvate carboxykinase (PEPCK) and Na+-K+-2Cl- cotransporter (NKCC2) expression and decreased Na+/H+ exchanger isoform 3 (NHE3) and electrogenic Na+-bicarbonate cotransporter 1 (NBCe1)-A expression. In female mice, KS-AR-KO did not alter these parameters. These effects occurred even though KS-AR-KO did not alter plasma testosterone, food intake, or serum Na+, K+, or [Formula: see text] significantly in either sex. In conclusion, AR-dependent signaling pathways in male, but not female, kidneys regulate PEPCK and NKCC2 expression and lead to the sexual differences in ammonia excretion. Opposing effects on NHE3 and NBCe1-A expression likely limit the magnitude of ammonia excretion changes. As AR is not present in the thick ascending limb, the effect of KS-AR-KO on NKCC2 expression is indirect. Finally, AR mediates the greater kidney size and proximal tubule volume density in male compared with female mice.NEW & NOTEWORTHY Sexual dimorphisms in ammonia metabolism involve androgen receptor (AR)-dependent signaling pathways in male, but not female, kidneys that lead to altered proximal tubule (PT), phosphoenolpyruvate carboxykinase, and thick ascending limb Na+-K+-2Cl- cotransporter expression. Adaptive responses in Na+/H+ exchanger 3 and electrogenic Na+-bicarbonate cotransporter 1-A expression limit the magnitude of the effect on ammonia excretion. Finally, the greater kidney size and PT volume density in male mice is the result of PT androgen signaling through AR.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Rebeca A Castro
- Department of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
4
|
Chen CV, Jordan CL, Breedlove SM. Testosterone works through androgen receptors to modulate neuronal response to anxiogenic stimuli. Neurosci Lett 2021; 753:135852. [PMID: 33785380 DOI: 10.1016/j.neulet.2021.135852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Testosterone (T) exerts anxiolytic effects through functional androgen receptors (ARs) in rodents. T treatment of castrated mice reduces anxiety-like behavior in wild-type (WT) males, but not males with a spontaneous mutation that renders AR dysfunctional (testicular feminization mutation, Tfm). Using Cre-LoxP technology we created males carrying induced dysfunctional AR allele (induced TFM; iTfm) to determine the brain regions responsible for T-induced anxiolysis. Adult WT and iTfm mice were castrated and T treated. Castrated WTs given a blank capsule (WT + B) served as additional controls. Mice were later exposed to the anxiogenic light/dark box, sacrificed and their brains processed for immediate early gene cFos immunoreactivity. Analyses revealed that T treatment increased cFos-expressing neurons in the basolateral amygdala (blAMY) of WT males, but not in iTfm males, which did not differ from WT + B mice. In contrast, WT + T males displayed fewer cFos + cells than iTfm + T or WT + B groups in the suprachiasmatic nucleus of the hypothalamus (SCN). No effects of genotype or hormone were seen in cFos expression in the hippocampus, medial prefrontal cortex, paraventricular nucleus of the hypothalamus, oval and anterodorsal bed nucleus of the stria terminalis, or dorsal periaqueductal grey. AR immunohistochemistry indicated that ∼65 % of cells in the blAMY and SCN were AR + in WT males, so AR could act directly within neurons in these regions to modulate the animals' response to anxiogenic stimuli. Because absence of a functional AR did not affect cFos response to mild stress in the other brain regions, they are unlikely to mediate androgen's anxiolytic effects.
Collapse
Affiliation(s)
- Chieh V Chen
- Texas A&M University, Psychiatry Department, Clinical Building 1 Suite 1100, 8441 Riverside Parkway, Bryan, TX 77807, United States; Michigan State University, United States.
| | - Cynthia L Jordan
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| | - S Marc Breedlove
- Psychology Department, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States; Neuroscience Program, 293 Farm Lane, Giltner Room 108, East Lansing, MI 48824, United States
| |
Collapse
|
5
|
Rosinger ZJ, De Guzman RM, Jacobskind JS, Saglimbeni B, Malone M, Fico D, Justice NJ, Forni PE, Zuloaga DG. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol Behav 2020; 219:112847. [PMID: 32081812 DOI: 10.1016/j.physbeh.2020.112847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are strikingly more prevalent in women compared with men. Dysregulation of corticotropin-releasing factor (CRF) binding to its cognate receptor (CRFR1) is thought to play a critical role in the etiology of these disorders. In the present study, we investigated whether there were sex differences in the effects of chronic variable stress (CVS) on CRFR1 cells using CRFR1-GFP reporter mice experiencing a 9-day CVS paradigm. Brains were collected from CVS and stress naïve female and male mice following exposure to the open field test. This CVS paradigm effectively increased anxiety-like behavior in female and male mice. In addition, we assessed changes in activation of CRFR1 cells (co-localization with c-Fos and phosphorylated CREB (pCREB)) in stress associated brain structures, including two sexually dimorphic CRFR1 cell groups in the anteroventral periventricular nucleus (AVPV/PeN; F>M) and paraventricular hypothalamus (PVN; M>F). CVS increased CRFR1-GFP cell number as well as the number of CRFR1/pCREB co-expressing cells in the female but not male AVPV/PeN. In the PVN, the number of CRFR1/pCREB co-expressing cells was overall greater in males regardless of treatment and CVS resulted in a male-specific reduction of CRFR1/c-Fos cells. In addition, CVS induced a female-specific reduction in CRFR1/c-Fos cells within the anteroventral bed nucleus of the stria terminalis and both sexes exhibited a reduction in CRFR1/c-Fos co-expressing cells following CVS within the ventral basolateral amygdala. Overall, these sex-specific effects of CVS on CRFR1 populations may have implications for sex differences in stress-induction of mood disorders.
Collapse
Affiliation(s)
- Zachary J Rosinger
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Rose M De Guzman
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Brianna Saglimbeni
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY 12222, United States.
| |
Collapse
|
6
|
Tomassoni-Ardori F, Fulgenzi G, Becker J, Barrick C, Palko ME, Kuhn S, Koparde V, Cam M, Yanpallewar S, Oberdoerffer S, Tessarollo L. Rbfox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. eLife 2019; 8:49673. [PMID: 31429825 PMCID: PMC6715404 DOI: 10.7554/elife.49673] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its Ntrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB.T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes.
Collapse
Affiliation(s)
- Francesco Tomassoni-Ardori
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Gianluca Fulgenzi
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Jodi Becker
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Colleen Barrick
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Mary Ellen Palko
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Skyler Kuhn
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, United States
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, United States
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, United States
| | - Sudhirkumar Yanpallewar
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, United States
| |
Collapse
|
7
|
Heck AL, Handa RJ. Androgens Drive Sex Biases in Hypothalamic Corticotropin-Releasing Hormone Gene Expression After Adrenalectomy of Mice. Endocrinology 2019; 160:1757-1770. [PMID: 31074799 PMCID: PMC6594463 DOI: 10.1210/en.2019-00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/05/2019] [Indexed: 12/16/2022]
Abstract
Although prominent sex differences exist in the hypothalamic-pituitary-adrenal axis's response to stressors, few studies of its regulation in the hypothalamic paraventricular nucleus (PVN) have compared both male and female subjects. In this study, we sought to explore sex differences in the acute regulation of PVN neuropeptide expression following glucocorticoid (GC) removal and the underlying role of gonadal hormones. We first examined the effects of short-term adrenalectomy (ADX) on PVN Crh and arginine vasopressin (Avp) expression in mice using in situ hybridization. ADX increased PVN AVP mRNA levels in both sexes. In contrast, PVN CRH mRNA was increased by 2 days after ADX in males only. Both sexes showed increases in CRH mRNA after 4 days. To determine if gonadal hormones contributed to this sex bias, we examined adrenalectomized (ADX'd) and gonadectomized (GDX'd) mice with or without gonadal hormone replacement. Unlike the pattern in intact animals, 2 days following ADX/gonadectomy, CRH mRNA levels did not increase in either sex. When males were given DHT propionate, CRH mRNA levels increased in ADX'd/GDX'd males similar to those observed following ADX alone. To determine a potential mechanism, we examined the coexpression of androgen receptor (AR) immunoreactivity and CRH neurons. Abundant colocalization was found in the anteroventral bed nucleus of the stria terminalis but not the PVN. Thus, our findings reveal a sex difference in PVN Crh expression following the removal of GC-negative feedback that may depend on indirect AR actions in males.
Collapse
Affiliation(s)
- Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- Correspondence: Robert J. Handa, PhD, Department of Biomedical Sciences, Colorado State University, 1617 Campus Delivery, Fort Collins, Colorado 80523. E-mail:
| |
Collapse
|
8
|
Rosinger ZJ, Jacobskind JS, De Guzman RM, Justice NJ, Zuloaga DG. A sexually dimorphic distribution of corticotropin-releasing factor receptor 1 in the paraventricular hypothalamus. Neuroscience 2019; 409:195-203. [PMID: 31055007 DOI: 10.1016/j.neuroscience.2019.04.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022]
Abstract
Sex differences in neural structures are generally believed to underlie sex differences reported in anxiety, depression, and the hypothalamic-pituitary-adrenal axis, although the specific circuitry involved is largely unclear. Using a corticotropin-releasing factor receptor 1 (CRFR1) reporter mouse line, we report a sexually dimorphic distribution of CRFR1 expressing cells within the paraventricular hypothalamus (PVN; males > females). Relative to adult levels, PVN CRFR1-expressing cells are sparse and not sexually dimorphic at postnatal days 0, 4, or 21. This suggests that PVN cells might recruit CRFR1 during puberty or early adulthood in a sex-specific manner. The adult sex difference in PVN CRFR1 persists in old mice (20-24 months). Adult gonadectomy (6 weeks) resulted in a significant decrease in CRFR1-immunoreactive cells in the male but not female PVN. CRFR1 cells show moderate co-expression with estrogen receptor alpha (ERα) and high co-expression with androgen receptor, indicating potential mechanisms through which circulating gonadal hormones might regulate CRFR1 expression and function. Finally, we demonstrate that a psychological stressor, restraint stress, induces a sexually dimorphic pattern of neural activation in PVN CRFR1 cells (males >females) as assessed by co-localization with the transcription/neural activation marker phosphorylated CREB. Given the known role of CRFR1 in regulating stress-associated behaviors and hormonal responses, this CRFR1 PVN sex difference might contribute to sex differences in these functions.
Collapse
Affiliation(s)
- Zachary J Rosinger
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America
| | - Rose M De Guzman
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, USA
| | - Damian G Zuloaga
- University at Albany, Department of Psychology, Albany, NY 12222, United States of America.
| |
Collapse
|
9
|
Clarke MV, Russell PK, Zajac JD, Davey RA. The androgen receptor in the hypothalamus positively regulates hind-limb muscle mass and voluntary physical activity in adult male mice. J Steroid Biochem Mol Biol 2019; 189:187-194. [PMID: 30853652 DOI: 10.1016/j.jsbmb.2019.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
We have previously shown that expression of the androgen receptor (AR) in neurons within the brain positively regulates hind-limb muscle mass and physical activity in male mice. To further investigate the region of the brain responsible for mediating these effects of testosterone and to determine whether they are only important for muscle mass accrual during development or whether they are also important for the maintenance of muscle mass in the adult, we deleted the AR specifically in the hypothalamus of adult male mice (Hyp-ARKOs). Hyp-ARKO mice were generated by bilateral stereotaxic microinjection of an adeno-associated virus (AAV) expressing GFP and iCre recombinase under the control of the e-synapsin promoter into the hypothalamus of 10-week-old exon 3-AR floxed male mice. AR mRNA was deleted by 45% in the hypothalamus of Hyp-ARKOs at 5 weeks post-AAV-eSyn-iCre injection. This led to an increase in the mass of the androgen-dependent organs, seminal vesicles and kidneys, by 30% (P < 0.01) and 10% (P < 0.05) respectively, and an increase in serum luteinizing hormone (LH) by 2 fold (P < 0.05). Whilst the mean value for serum testosterone was higher in the Hyp-ARKOs, this did not reach statistical significance. Despite a phenotype consistent with increased androgen bioactivity in Hyp-ARKOs, which would be expected to increase muscle mass, the mass of the hind-limb muscles, gastrocnemius (Gast) (P = 0.001), extensor digitorum longus (EDL) (P < 0.001) and soleus (Sol) (P < 0.01) were paradoxically decreased by 12-19% compared to controls. Voluntary physical activity was reduced by 65% (P < 0.05) in Hyp-ARKO male mice and was associated with a reduction in gene expression of Drd1a and Maob (P ≤ 0.05) in the hypothalamus, suggesting involvement of the brain dopaminergic system. These data provide compelling evidence that androgen signalling via the AR in the hypothalamus acts to positively regulate the maintenance of hind-limb muscle mass and voluntary activity in adult male mice, independent of AR signalling in peripheral tissues.
Collapse
Affiliation(s)
- Michele V Clarke
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia.
| |
Collapse
|
10
|
Swift-Gallant A. Individual differences in the biological basis of androphilia in mice and men. Horm Behav 2019; 111:23-30. [PMID: 30579744 DOI: 10.1016/j.yhbeh.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023]
Abstract
For nearly 60 years since the seminal paper from W.C Young and colleagues (Phoenix et al., 1959), the principles of sexual differentiation of the brain and behavior have maintained that female-typical sexual behaviors (e.g., lordosis) and sexual preferences (e.g., attraction to males) are the result of low androgen levels during development, whereas higher androgen levels promote male-typical sexual behaviors (e.g., mounting and thrusting) and preferences (e.g., attraction to females). However, recent reports suggest that the relationship between androgens and male-typical behaviors is not always linear - when androgen signaling is increased in male rodents, via exogenous androgen exposure or androgen receptor overexpression, males continue to exhibit male-typical sexual behaviors, but their sexual preferences are altered such that their interest in same-sex partners is increased. Analogous to this rodent literature, recent findings indicate that high level androgen exposure may contribute to the sexual orientation of a subset of gay men who prefer insertive anal sex and report more male-typical gender traits, whereas gay men who prefer receptive anal sex, and who on average report more gender nonconformity, present with biomarkers suggestive of low androgen exposure. Together, the evidence indicates that for both mice and men there is an inverted-U curvilinear relationship between androgens and sexual preferences, such that low and high androgen exposure increases androphilic sexual attraction, whereas relative mid-range androgen exposure leads to gynephilic attraction. Future directions for studying how individual differences in biological development mediate sexual behavior and sexual preferences in both mice and humans are discussed.
Collapse
Affiliation(s)
- Ashlyn Swift-Gallant
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA; Department of Psychology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
11
|
Domonkos E, Hodosy J, Ostatníková D, Celec P. On the Role of Testosterone in Anxiety-Like Behavior Across Life in Experimental Rodents. Front Endocrinol (Lausanne) 2018; 9:441. [PMID: 30127767 PMCID: PMC6088149 DOI: 10.3389/fendo.2018.00441] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Testosterone affects brain functions and might explain some of the observed behavioral sex differences. Animal models may help in elucidating the possible involvement of sex hormones in these sex differences. The effects of testosterone have been intensively investigated, especially in anxiety models. Numerous experiments have brought inconsistent results with either anxiolytic or anxiogenic effects. Besides methodological variations, contradictory findings might be explained by the divergent metabolism of testosterone and its recognition by neurons during prenatal and postnatal development. Gonadectomy and subsequent supplementation have been used to study the role of sex hormones. However, the variable duration of hypogonadism might affect the outcomes and the effect of long-term androgen deficiency is understudied. Testosterone can be metabolized to dihydrotestosterone strengthening the androgen signaling, but also to estradiol converting the androgen to estrogen activity. Moreover, some metabolites of testosterone can modulate γ-aminobutyric acid and serotonergic neurotransmission. Here we review the currently available experimental data in experimental rodents on the effects of testosterone on anxiety during development. Based on the experimental results, females are generally less anxious than males from puberty to middle-age. The anxiety-like behavior of females and males is likely influenced by early organizational effects, but might be modified by activational effects of testosterone and its metabolites. The effects of sex hormones leading to anxiogenesis or anxiolysis depend on factors affecting hormonal status including age. The biological and several technical issues make the study of effects of testosterone on anxiety very complex and should be taken into account when interpreting experimental results.
Collapse
Affiliation(s)
- Emese Domonkos
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Július Hodosy
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
- Faculty of Medicine, Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Daniela Ostatníková
- Faculty of Medicine, Institute of Physiology, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Faculty of Medicine, Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
- Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
12
|
Jardí F, Laurent MR, Dubois V, Kim N, Khalil R, Decallonne B, Vanderschueren D, Claessens F. Androgen and estrogen actions on male physical activity: a story beyond muscle. J Endocrinol 2018; 238:R31-R52. [PMID: 29743340 DOI: 10.1530/joe-18-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Ferran Jardí
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Gerontology and GeriatricsDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nari Kim
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Mhaouty-Kodja S. Role of the androgen receptor in the central nervous system. Mol Cell Endocrinol 2018; 465:103-112. [PMID: 28826929 DOI: 10.1016/j.mce.2017.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/30/2017] [Accepted: 08/02/2017] [Indexed: 11/17/2022]
Abstract
The involvement of gonadal androgens in functions of the central nervous system was suggested for the first time about half a century ago. Since then, the number of functions attributed to androgens has steadily increased, ranging from regulation of the hypothalamic-pituitary-gonadal axis and reproductive behaviors to modulation of cognition, anxiety and other non-reproductive functions. This review focuses on the implication of the neural androgen receptor in these androgen-sensitive functions and behaviors.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 7 Quai St Bernard, 75005 Paris, France.
| |
Collapse
|
14
|
Monks DA, Swift-Gallant A. Non-neural androgen receptors affect sexual differentiation of brain and behaviour. J Neuroendocrinol 2018; 30. [PMID: 28590577 DOI: 10.1111/jne.12493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/08/2023]
Abstract
Although gonadal testosterone is the principal endocrine factor that promotes masculine traits in mammals, the development of a male phenotype requires local production of both androgenic and oestrogenic signals within target tissues. Much of our knowledge concerning androgenic components of testosterone signalling in sexual differentiation comes from studies of androgen receptor (Ar) loss of function mutants. Here, we review these studies of loss of Ar function and of AR overexpression either globally or selectively in the nervous system of mice. Global and neural mutations affect socio-sexual behaviour and the neuroanatomy of these mice in a sexually differentiated manner. Some masculine traits are affected by both global and neural mutation, indicative of neural mediation, whereas other masculine traits are affected only by global mutation, indicative of an obligatory non-neural androgen target. These results support a model in which multiple sites of androgen action coordinate to produce masculine phenotypes. Furthermore, AR overexpression does not always have a phenotype opposite to that of loss of Ar function mutants, indicative of a nonlinear relationship between androgen dose and masculine phenotype in some cases. Potential mechanisms of Ar gene function in non-neural targets in producing masculine phenotypes are discussed.
Collapse
Affiliation(s)
- D A Monks
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Cells and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - A Swift-Gallant
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
15
|
Acute gonadotropin-releasing hormone agonist treatment enhances extinction memory in male rats. Psychoneuroendocrinology 2017; 82:164-172. [PMID: 28550793 PMCID: PMC5596662 DOI: 10.1016/j.psyneuen.2017.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/13/2017] [Accepted: 05/15/2017] [Indexed: 11/21/2022]
Abstract
Leuprolide acetate (LEU), also known as Lupron, is commonly used to treat prostate cancer in men. As a gonadotropin-releasing hormone (GnRH) receptor agonist, it initially stimulates the release of gonadal hormones, testosterone (T) and estradiol. This surge eventually suppresses these hormones, preventing the further growth and spread of cancer cells. Individuals receiving this treatment often report anxiety and cognitive changes, but LEU's effects on the neural mechanisms that are involved in anxiety during the trajectory of treatment are not well known. In this study, we examined the acute effects of LEU on fear extinction, hypothesizing that increased T levels following a single administration of LEU will facilitate extinction recall by altering neuronal activity within the fear extinction circuitry. Two groups of naïve adult male rats underwent a 3-day fear conditioning, extinction, and recall experiment. The delayed group (n=15) received a single injection of vehicle or LEU (1.2mg/kg) 3weeks before behavioral testing. The acute group (n=25) received an injection one day after fear conditioning, 30min prior to extinction training. Following recall, the brains for all animals were collected for c-fos immunohistochemistry. Blood samples were also collected and assayed for T levels. Acute administration of LEU increased serum T levels during extinction training and enhanced extinction recall 24h later. This enhanced extinction memory was correlated with increased c-fos activity within the infralimbic cortex and amygdala, which was not observed in the delayed group. These results suggest that the elevation in T induced by acute administration of LEU can influence extinction memory consolidation, perhaps through modification of neuronal activity within the infralimbic cortex and amygdala. This may be an important consideration in clinical applications of LEU and its effects on anxiety and cognition.
Collapse
|
16
|
Swift-Gallant A, Monks DA. Androgenic mechanisms of sexual differentiation of the nervous system and behavior. Front Neuroendocrinol 2017; 46:32-45. [PMID: 28455096 DOI: 10.1016/j.yfrne.2017.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/23/2023]
Abstract
Testicular androgens are the major endocrine factor promoting masculine phenotypes in vertebrates, but androgen signaling is complex and operates via multiple signaling pathways and sites of action. Recently, selective androgen receptor mutants have been engineered to study androgenic mechanisms of sexual differentiation of the nervous system and behavior. The focus of these studies has been to evaluate androgenic mechanisms within the nervous system by manipulating androgen receptor conditionally in neural tissues. Here we review both the effects of neural loss of AR function as well as the effects of neural overexpression of AR in relation to global AR mutants. Although some studies have conformed to our expectations, others have proved challenging to assumptions underlying the dominant hypotheses. Notably, these studies have called into question both the primacy of direct, neural mechanisms and also the linearity of the relationship between androgenic dose and sexual differentiation of brain and behavior.
Collapse
Affiliation(s)
- A Swift-Gallant
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON L5L 1C6, Canada
| | - D A Monks
- Department of Psychology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Cells and Systems Biology, University of Toronto, 100 St. George Street, Toronto, ON M5S 3G3, Canada; Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
17
|
Zettergren A, Karlsson S, Studer E, Sarvimäki A, Kettunen P, Thorsell A, Sihlbom C, Westberg L. Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice. BMC Neurosci 2017; 18:9. [PMID: 28056817 PMCID: PMC5217640 DOI: 10.1186/s12868-016-0332-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is well-established that organizational effects of sex steroids during early development are fundamental for sex-typical displays of, for example, mating and aggressive behaviors in rodents and other species. Male and female brains are known to differ with respect to neuronal morphology in particular regions of the brain, including the number and size of neurons, and the density and length of dendrites in nuclei of hypothalamus and amygdala. The aim of the present study was to use global proteomics to identify proteins differentially expressed in hypothalamus/amygdala during early development (postnatal day 8) of male, female and conditional androgen receptor knockout (ARNesDel) male mice, lacking androgen receptors specifically in the brain. Furthermore, verification of selected sexually dimorphic proteins was performed using targeted proteomics. Results Our proteomic approach, iTRAQ, allowed us to investigate expression differences in the 2998 most abundantly expressed proteins in our dissected tissues. Approximately 170 proteins differed between the sexes, and 38 proteins between ARNesDel and control males (p < 0.05). In line with previous explorative studies of sexually dimorphic gene expression we mainly detected subtle protein expression differences (fold changes <1.3). The protein MARCKS (myristoylated alanine rich C kinase substrate), having the largest fold change of the proteins selected from the iTRAQ analyses and of known importance for synaptic transmission and dendritic branching, was confirmed by targeted proteomics as differentially expressed between the sexes. Conclusions Overall, our results provide solid evidence that a large number of proteins show sex differences in their brain expression and could potentially be involved in brain sexual differentiation. Furthermore, our finding of a sexually dimorphic expression of MARCKS in the brain during development warrants further investigation on the involvement in sexual differentiation of this protein. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0332-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sara Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Anna Sarvimäki
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Annika Thorsell
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carina Sihlbom
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.
| |
Collapse
|