1
|
Felton EK, Kulesz PA, Leasure JL, Rodgers SP. Effects of exercise and transient estradiol exposure in middle-aged female rats. Horm Behav 2025; 168:105690. [PMID: 39864230 DOI: 10.1016/j.yhbeh.2025.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The benefits of estrogen treatment on cognition in middle-aged and older women are dependent on many factors, including the timing of treatment. Moreover, the potential interactive effects with other lifestyle factors, such as exercise, are poorly understood. In this study, we tested for lasting benefits of independent and combined treatment with estrogen and voluntary exercise initiated in midlife, using a rat model of menopause. Twelve-month-old, retired female breeders were bilaterally ovariectomized and received six weeks of 17β-estradiol (E2) treatment via subcutaneous implant, with or without access to running wheels. After E2 treatment, animals in the exercise groups had running wheel access for seven additional weeks, including a two-week period of cognitive and affective testing. Thereafter, hippocampal neuronal and cellular plasticity were assessed. E2 and exercise independently exerted effects on behavioral and cellular outcome measures. Transient E2 treatment enduringly increased motor output, lowered body weight, and increased behavioral plasticity. Exercise decreased total hippocampal microglia number and increased brain weight. No additive effects of exercise and E2 treatment were observed. E2 treatment may provide a means by which to enduringly increase physical activity in middle age, but combined E2 and exercise do not produce additive benefits on hippocampal behavioral or cellular plasticity.
Collapse
Affiliation(s)
- Emily K Felton
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States
| | - Paulina A Kulesz
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States; Department of Biology & Biochemistry, University of Houston, Houston, TX 77204-5022, United States.
| | - Shaefali P Rodgers
- Department of Psychology, University of Houston, Houston, TX 77204-5022, United States; Houston Methodist Research Institute, Houston, TX 77030, United States
| |
Collapse
|
2
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
3
|
Isola JVV, Ko S, Ocañas SR, Stout MB. Role of Estrogen Receptor α in Aging and Chronic Disease. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2023; 5:e230005. [PMID: 37425648 PMCID: PMC10327608 DOI: 10.20900/agmr20230005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Estrogen receptor alpha (ERα) plays a crucial role in reproductive function in both sexes. It also mediates cellular responses to estrogens in multiple nonreproductive organ systems, many of which regulate systemic metabolic homeostasis and inflammatory processes in mammals. The loss of estrogens and/or ERα agonism during aging is associated with the emergence of several comorbid conditions, particularly in females undergoing the menopausal transition. Emerging data also suggests that male mammals likely benefit from ERα agonism if done in a way that circumvents feminizing characteristics. This has led us, and others, to speculate that tissue-specific ERα agonism may hold therapeutic potential for curtailing aging and chronic disease burden in males and females that are at high-risk of cancer and/or cardiovascular events with traditional estrogen replacement therapies. In this mini-review, we emphasize the role of ERα in the brain and liver, summarizing recent evidence that indicates these two organs systems mediate the beneficial effects of estrogens on metabolism and inflammation during aging. We also discuss how 17α-estradiol administration elicits health benefits in an ERα-dependent manner, which provides proof-of-concept that ERα may be a druggable target for attenuating aging and age-related disease burden.
Collapse
Affiliation(s)
- José V. V. Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sunghwan Ko
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions. Cells 2023; 12:cells12060895. [PMID: 36980236 PMCID: PMC10047206 DOI: 10.3390/cells12060895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The importance of estrogenic signaling for a broad spectrum of biological processes, including reproduction, cancer development, energy metabolism, memory and learning, and so on, has been well documented. Among reported estrogen receptors, estrogen receptor alpha (ERα) has been known to be a major mediator of cellular estrogenic signaling. Accumulating evidence has shown that the regulations of ERα gene transcription, splicing, and expression across the tissues are highly complex. The ERα promoter region is composed of multiple leader exons and 5′-untranslated region (5′-UTR) exons. Differential splicing results in multiple ERα proteins with different molecular weights and functional domains. Furthermore, various post-translational modifications (PTMs) further impact ERα cellular localization, ligand affinity, and therefore functionality. These splicing isoforms and PTMs are differentially expressed in a tissue-specific manner, mediate certain aspects of ERα signaling, and may work even antagonistically against the full-length ERα. The fundamental understanding of the ERα splicing isoforms in normal physiology is limited and association studies of the splicing isoforms and the PTMs are scarce. This review aims to summarize the functional diversity of these ERα variants and the PTMs in normal physiological processes, particularly as studied in transgenic mouse models.
Collapse
|
5
|
Tecalco-Cruz AC, López-Canovas L, Azuara-Liceaga E. Estrogen signaling via estrogen receptor alpha and its implications for neurodegeneration associated with Alzheimer's disease in aging women. Metab Brain Dis 2023; 38:783-793. [PMID: 36640216 DOI: 10.1007/s11011-023-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Estrogen receptor alpha (ERα) is a transcription factor activated by estrogenic hormones to regulate gene expression in certain organs, including the brain. In the brain, estrogen signaling pathways are central for maintaining cognitive functions. Herein, we review the neuroprotective effects of estrogens mediated by ERα. The estrogen/ERα pathways are affected by the reduction of estrogens in menopause, and this event may be a risk factor for neurodegeneration associated with Alzheimer's disease in women. Thus, developing a better understanding of estrogen/ERα signaling may be critical for defining new biomarkers and potential therapeutic targets for Alzheimer's disease in women.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico.
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| |
Collapse
|
6
|
Baumgartner NE, McQuillen SM, Perry SF, Miller S, Maroteaux MJ, Gibbs RB, Daniel JM. History of Previous Midlife Estradiol Treatment Permanently Alters Interactions of Brain Insulin-like Growth Factor-1 Signaling and Hippocampal Estrogen Synthesis to Enhance Cognitive Aging in a Rat Model of Menopause. J Neurosci 2022; 42:7969-7983. [PMID: 36261268 PMCID: PMC9617614 DOI: 10.1523/jneurosci.0588-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Across species, including humans, elevated levels of brain estrogen receptor (ER) α are associated with enhanced cognitive aging, even in the absence of circulating estrogens. In rodents, short-term estrogen treatment, such as that commonly used in the menopausal transition, results in long-term increases in ERα levels in the hippocampus, leading to enhanced memory long after termination of estrogen treatment. However, mechanisms by which increased levels of brain ERα enhances cognitive aging remain unclear. Here we demonstrate in aging female rats that insulin-like growth factor-1 (IGF-1), which can activate ER via ligand-independent mechanisms, requires concomitant synthesis of brain-derived neuroestrogens to phosphorylate ERα via MAPK signaling, ultimately resulting in enhanced memory. In a rat model of menopause involving long-term ovarian hormone deprivation, hippocampal neuroestrogen activity decreases, altering IGF-1 activity and resulting in impaired memory. However, this process is reversed by short-term estradiol treatment. Forty days of estradiol exposure following ovariectomy results in maintenance of neuroestrogen levels that persist beyond the period of hormone treatment, allowing for continued interactions between IGF-1 and neuroestrogen signaling, elevated levels of hippocampal ERα, and ultimately enhanced memory. Collectively, results demonstrate that short-term estradiol use following loss of ovarian function has long-lasting effects on hippocampal function and memory by dynamically regulating cellular mechanisms that promote activity of ERα in the absence of circulating estrogens. Translational impacts of these findings suggest lasting cognitive benefits of short-term estrogen use near menopause and highlight the importance of hippocampal ERα, independent from the role of circulating estrogens, in regulating memory in aging females.SIGNIFICANCE STATEMENT Declines in ovarian hormones following menopause coincide with increased risk of cognitive decline. Because of potential health risks, current recommendations are that menopausal estrogen therapy be limited to a few years. Long-term consequences for the brain and memory of this short-term midlife estrogen therapy are unclear. Here, in a rodent model of menopause, we determined mechanisms by which short-term midlife estrogen exposure can enhance hippocampal function and memory with cognitive benefits and molecular changes enduring long after termination of estrogen exposure. Our model indicates long-lasting benefits of maintaining hippocampal estrogen receptor function in the absence of ongoing estrogen exposure and suggests potential strategies for combating age-related cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | - Matthieu J Maroteaux
- Brain Institute
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261
| | - Jill M Daniel
- Brain Institute
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
7
|
Salas A, Beltrán-Flores S, Évora C, Reyes R, Montes de Oca F, Delgado A, Almeida TA. Stem Cell Growth and Differentiation in Organ Culture: New Insights for Uterine Fibroid Treatment. Biomedicines 2022; 10:biomedicines10071542. [PMID: 35884847 PMCID: PMC9313456 DOI: 10.3390/biomedicines10071542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Organ culture allows for the understanding of normal and tumor cell biology, and tissues generally remain viable for 5–7 days. Strikingly, we determined that myometrial and MED12 mutant leiomyoma cells repopulated cell-depleted tissue slices after 20 days of culture. Using immunofluorescence and quantitative PCR of stem cell and undifferentiated cell markers, we observed clusters of CD49b+ cells in tumor slices. CD49b+ cells, however, were sparsely detected in the myometrial slices. Almost all LM cells strongly expressed Ki67, while only a few myometrial cells were stained for this proliferation marker. The CD73 marker was expressed only in tumor cells, whereas the mesenchymal stem cell receptor KIT was detected only in normal cells. HMGA2 and CD24 showed broader expression patterns and higher signal intensity in leiomyoma than in myometrial cells. In this study, we propose that activating CD49b+ stem cells in myometrium leads to asymmetrical division, giving rise to transit-amplifying KIT+ cells that differentiate to smooth muscle cells. On the contrary, activated leiomyoma CD49b+ cells symmetrically divide to form clusters of stem cells that divide and differentiate to smooth muscle cells without losing proliferation ability. In conclusion, normal and mutant stem cells can proliferate and differentiate in long-term organ culture, constituting a helpful platform for novel therapeutic discovery.
Collapse
Affiliation(s)
- Ana Salas
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
- Institute of Tropical Diseases and Healthcare of the Canary Island, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Silvia Beltrán-Flores
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Faculty of Pharmacy, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (C.É.); (A.D.)
- Institute of Biomedical Technologies (ITB), Medicine Section, Faculty of Health Science, University of La Laguna, St. Santa María Soledad, s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
- Institute of Tropical Diseases and Healthcare of the Canary Island, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | | | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Faculty of Pharmacy, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (C.É.); (A.D.)
- Institute of Biomedical Technologies (ITB), Medicine Section, Faculty of Health Science, University of La Laguna, St. Santa María Soledad, s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
| | - Teresa A. Almeida
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Biology Section, Science Faculty, University of La Laguna, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain; (A.S.); (S.B.-F.); (R.R.)
- Institute of Tropical Diseases and Healthcare of the Canary Island, Ave. Astrofísico Fco. Sánchez s/n. San Cristóbal de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Correspondence: ; Tel.: +34-922-316-502 (ext. 6117)
| |
Collapse
|
8
|
Baumgartner NE, Black KL, McQuillen SM, Daniel JM. Previous estradiol treatment during midlife maintains transcriptional regulation of memory-related proteins by ERα in the hippocampus in a rat model of menopause. Neurobiol Aging 2021; 105:365-373. [PMID: 34198140 PMCID: PMC8338908 DOI: 10.1016/j.neurobiolaging.2021.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 10/21/2022]
Abstract
Previous midlife estradiol treatment, like continuous treatment, improves memory and results in lasting increases in hippocampal levels of estrogen receptor (ER) α and ER-dependent transcription in ovariectomized rodents. We hypothesized that previous and continuous midlife estradiol act to specifically increase levels of nuclear ERα, resulting in transcriptional regulation of proteins that mediate estrogen effects on memory. Ovariectomized middle-aged rats received estradiol or vehicle capsule implants. After 40 days, rats initially receiving vehicle received another vehicle capsule (ovariectomized controls). Rats initially receiving estradiol received either another estradiol (continuous estradiol) or a vehicle (previous estradiol) capsule. One month later, hippocampi were dissected and processed. Continuous and previous estradiol increased levels of nuclear, but not membrane or cytosolic ERα and had no effect on Esr1. Continuous and previous estradiol impacted gene expression and/or protein levels of mediators of estrogenic action on memory including ChAT, BDNF, and PSD-95. Findings demonstrate a long-lasting role for hippocampal ERα as a transcriptional regulator of memory following termination of previous estradiol treatment in a rat model of menopause.
Collapse
Affiliation(s)
- Nina E Baumgartner
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA.
| | - Katelyn L Black
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Shannon M McQuillen
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA
| | - Jill M Daniel
- Brain Institute, Tulane University, New Orleans, LA; Neuroscience Program, Tulane University, New Orleans, LA; Psychology Department, Tulane University, New Orleans, LA
| |
Collapse
|
9
|
Baumgartner NE, Daniel JM. Estrogen receptor α: a critical role in successful female cognitive aging. Climacteric 2021; 24:333-339. [PMID: 33522313 DOI: 10.1080/13697137.2021.1875426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Due to potential health risks, current recommendations are that individuals who wish to use hormone therapy to treat menopausal symptoms do so for the shortest period of time possible. In our investigation into how short-term use of estrogens in midlife following loss of ovarian function exerts long-term effects on female cognitive aging in rodents, we discovered a link between the ability of previous exposure to estradiol to enhance memory in the long term and its ability to increase estrogen receptor α (ERα) levels in the hippocampus, a brain area important for memory. Follow-up studies in model systems implicate a role for ERα in enhanced cognitive function independent of ovarian or exogenously administered estrogens. Results are consistent with clinical studies in which brain ERα levels in older women and men are related to cognitive functioning and risk of cognitive decline is associated with polymorphisms in the gene that transcribes ERα. Research in preclinical models reveals mechanisms through which ERα can be activated and affect cognition in the absence of ovarian estrogens, including ligand-independent activation via insulin-like growth factor-1 signaling and activation by brain-derived neuroestrogens. This report reviews preclinical and clinical data that collectively point to the importance of ERα in cognition and highlights the need to differentiate the role of estrogen receptors from their classical ligands as we seek approaches to facilitate successful cognitive aging.
Collapse
Affiliation(s)
- N E Baumgartner
- Neuroscience Program, Tulane University, New Orleans, LA, USA.,Brain Institute, Tulane University, New Orleans, LA, USA
| | - J M Daniel
- Neuroscience Program, Tulane University, New Orleans, LA, USA.,Brain Institute, Tulane University, New Orleans, LA, USA.,Department of Psychology, Tulane University, New Orleans, LA, USA
| |
Collapse
|
10
|
Torromino G, Maggi A, De Leonibus E. Estrogen-dependent hippocampal wiring as a risk factor for age-related dementia in women. Prog Neurobiol 2020; 197:101895. [PMID: 32781107 DOI: 10.1016/j.pneurobio.2020.101895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/08/2023]
Abstract
Women are more prone than men to develop age-related dementia, such as Alzheimer's disease (AD). This has been linked to the marked decrease in circulating estrogens during menopause. This review proposes to change this perspective and consider women's vulnerability to developing AD as a consequence of sex differences in the neurobiology of memory, focusing on the hippocampus. The hippocampus of cognitively impaired subjects tends to shrink with age; however, in many cases, this can be prevented by exercise or cognitive training, suggesting that if you do not use the hippocampus you lose it. We will review the developmental trajectory of sex steroids-regulated differences on the hippocampus, proposing that the overall shaping action of sex-steroids results in a lower usage of the hippocampus in females, which in turn makes them more vulnerable to the effects of ageing, the "network fragility hypothesis". To explain why women rely less on hippocampus-dependent strategies, we propose a "computational hypothesis" that is based on experimental evidence suggesting that the direct effects of estrogens on hippocampal synaptic and structural plasticity during the estrous-cycle confers instability to the memory-dependent hippocampal network. Finally, we propose to counteract AD with training and/or treatments, such as orienteering, which specifically favour the use of the hippocampus.
Collapse
Affiliation(s)
- Giulia Torromino
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Telethon Foundation, Pozzuoli, Naples, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Monterotondo, Rome, Italy.
| |
Collapse
|
11
|
Loss of Estrogen Efficacy Against Hippocampus Damage in Long-Term OVX Mice Is Related to the Reduction of Hippocampus Local Estrogen Production and Estrogen Receptor Degradation. Mol Neurobiol 2020; 57:3540-3551. [PMID: 32542593 DOI: 10.1007/s12035-020-01960-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Postmenopausal women experience a higher risk for neurodegenerative diseases, including cognitive impairment and ischemic stroke. Many preclinical studies have indicated that estrogen replacement therapy (ERT) may provide protective effects against these neurological diseases. However, the results of Women's Health Initiative (WHI) studies have led to the proposal of "critical period hypothesis," which states that there is a precise window of opportunity for administering beneficial hormone therapy following menopause. However, the underlying molecular mechanisms require further characterization. Here, we explored the effects of ERT on cognition decline and global cerebral ischemia (GCI)-induced hippocampal neuronal damage in mice that had experienced both short-term (ovariectomized (OVX) 1 week) and long-term (OVX 10 weeks) estrogen deprivation. We also further explored the concentration of 17β-estradiol (E2) in the circulation and hippocampus and the expression of aromatase and estrogen receptors (ERα, ERα-Ser118, and ERβ). We found that the neuroprotective effectiveness of ERT against hippocampus damage exhibited in OVX1w mice was totally absent in OVX10w mice. Interestingly, the concentration of hippocampal E2 was irreversibly reduced in OVX10w mice, which was related to the decrease of aromatase expression in the hippocampus. In addition, long-term estrogen deprivation (LTED) led to a decrease in estrogen receptor proteins in the hippocampus. Thus, we concluded that the loss of ERT neuroprotection against hippocampus injury in LTED mice was related to the reduction in hippocampus E2 production and estrogen receptor degradation. These results provide several intervention targets to restore the effectiveness of ERT neuroprotection in elderly post-menopausal women.
Collapse
|
12
|
Baumgartner NE, Grissom EM, Pollard KJ, McQuillen SM, Daniel JM. Neuroestrogen-Dependent Transcriptional Activity in the Brains of ERE-Luciferase Reporter Mice following Short- and Long-Term Ovariectomy. eNeuro 2019; 6:ENEURO.0275-19.2019. [PMID: 31575604 PMCID: PMC6795557 DOI: 10.1523/eneuro.0275-19.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 12/22/2022] Open
Abstract
Previous work has demonstrated that estrogen receptors are transcriptionally active in the absence of ovarian estrogens. The current work aims to determine whether brain-derived estrogens influence estrogen receptor-dependent transcription after short- or long-term loss of ovarian function. Experiments were conducted using estrogen response element (ERE)-Luciferase reporter mice, which express the gene for luciferase driven by consensus ERE, allowing for the quantification of ERE-dependent transcription. Brain regions examined were hippocampus, cortex, and hypothalamus. In Experiment 1, short-term (10 d) ovariectomy had no impact on ERE-dependent transcription across brain regions compared with sham surgery. In Experiment 2, chronic intracerebroventricular administration of the aromatase inhibitor letrozole significantly decreased transcriptional activity in 10-d-old ovariectomized mice across brain regions, indicating that the sustained transcription in short-term ovariectomized mice is mediated at least in part via actions of neuroestrogens. Additionally, intracerebroventricular administration of estrogen receptor antagonist ICI-182,780 blocked transcription in 10-d-old ovariectomized mice across brain regions, providing evidence that sustained transcription in ovariectomized mice is estrogen receptor dependent. In Experiment 3, long-term (70 d) ovariectomy significantly decreased ERE-dependent transcription across brain regions, though some residual activity remained. In Experiment 4, chronic intracerebroventricular letrozole administration had no impact on transcription in 70 d ovariectomized mice across brain regions, indicating that the residual ERE-dependent transcription in long-term ovariectomized mice is not mediated by neuroestrogens. Overall, the results indicate that ERE-dependent transcription in the brain continues after ovariectomy and that the actions of neuroestrogens contribute to the maintenance of ERE-dependent transcription in the brain following short-term, but not long-term, loss of ovarian function.
Collapse
Affiliation(s)
| | - Elin M Grissom
- Neuroscience Program
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| | | | | | - Jill M Daniel
- Neuroscience Program
- Tulane Brain Institute
- Department of Psychology, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|
13
|
Pollard KJ, Daniel JM. Nuclear estrogen receptor activation by insulin-like growth factor-1 in Neuro-2A neuroblastoma cells requires endogenous estrogen synthesis and is mediated by mutually repressive MAPK and PI3K cascades. Mol Cell Endocrinol 2019; 490:68-79. [PMID: 30986444 PMCID: PMC6520186 DOI: 10.1016/j.mce.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 02/01/2023]
Abstract
Non-canonical mechanisms of estrogen receptor activation may continue to support women's cognitive health long after cessation of ovarian function. These mechanisms of estrogen receptor activation may include ligand-dependent actions via locally synthesized neuroestrogens and ligand-independent actions via growth factor-dependent activation of intracellular kinase cascades. We tested the hypothesis that ligand-dependent and ligand-independent mechanisms interact to activate nuclear estrogen receptors in the Neuro-2A neuroblastoma cell line in the absence of exogenous estrogens. Transcriptional output of estrogen receptors was measured following treatment with insulin-like growth factor-1 (IGF-1) in the presence of specific inhibitors for mitogen-activated protein kinase (MAPK), phosphoinositde-3 kinase (PI3K), and neuroestrogen synthesis. Results indicate that IGF-1-dependent activation of nuclear estrogen receptors is mediated by MAPK, is opposed PI3K, and requires concomitant endogenous neuroestrogen synthesis. We conclude that both cellular signaling context and endogenous ligand availability are important modulators of ligand-independent nuclear estrogen receptor activation.
Collapse
Affiliation(s)
- Kevin J Pollard
- Tulane Brain Institute, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Neuroscience Program, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA.
| | - Jill M Daniel
- Tulane Brain Institute, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Neuroscience Program, Tulane University, 200 Flower Hall, New Orleans, LA, 70118, USA; Department of Psychology, Tulane University, 2007 Percival Stern Hall, New Orleans, LA, 70118, USA
| |
Collapse
|
14
|
Estrogenic Regulation of Neuroprotective and Neuroinflammatory Mechanisms: Implications for Depression and Cognition. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11355-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Santen RJ, Simpson E. History of Estrogen: Its Purification, Structure, Synthesis, Biologic Actions, and Clinical Implications. Endocrinology 2019; 160:605-625. [PMID: 30566601 DOI: 10.1210/en.2018-00529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022]
Abstract
This mini-review summarizes key points from the Clark Sawin Memorial Lecture on the History of Estrogen delivered at Endo 2018 and focuses on the rationales and motivation leading to various discoveries and their clinical applications. During the classical period of antiquity, incisive clinical observations uncovered important findings; however, extensive anatomical dissections to solidify proof were generally lacking. Initiation of the experimental approach followed later, influenced by Claude Bernard's treatise "An Introduction to the Study of Experimental Medicine." With this approach, investigators began to explore the function of the ovaries and their "internal secretions" and, after intensive investigations for several years, purified various estrogens. Clinical therapies for hot flashes, osteoporosis, and dysmenorrhea were quickly developed and, later, methods of hormonal contraception. Sophisticated biochemical methods revealed the mechanisms of estrogen synthesis through the enzyme aromatase and, after discovery of the estrogen receptors, their specific biologic actions. Molecular techniques facilitated understanding of the specific transcriptional and translational events requiring estrogen. This body of knowledge led to methods to prevent and treat hormone-dependent neoplasms as well as a variety of other estrogen-related conditions. More recently, the role of estrogen in men was uncovered by prismatic examples of estrogen deficiency in male patients and by knockout of the estrogen receptor and aromatase in animals. As studies became more extensive, the effects of estrogen on nearly every organ were described. We conclude that the history of estrogen illustrates the role of intellectual reasoning, motivation, and serendipity in advancing knowledge about this important sex steroid.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, Virginia
| | - Evan Simpson
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Pollard KJ, Wartman HD, Daniel JM. Previous estradiol treatment in ovariectomized mice provides lasting enhancement of memory and brain estrogen receptor activity. Horm Behav 2018; 102:76-84. [PMID: 29742445 PMCID: PMC6004337 DOI: 10.1016/j.yhbeh.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Jill M Daniel
- Tulane University, Tulane Brain Institute, United States; Tulane University, Department of Psychology, United States
| |
Collapse
|