1
|
Chen J, Zhao W, Cao L, Martins RST, Canário AVM. Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish. BMC Biol 2024; 22:163. [PMID: 39075492 PMCID: PMC11288053 DOI: 10.1186/s12915-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism. RESULTS We show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2-/- adults laid 40% more eggs than their wild-type siblings. The sst1.1-/- and sst1.2-/- mutants had divergent metabolic phenotypes: the former had 25% more pancreatic α-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic β-cells, improved glucose clearance and reduced adipocyte mass. CONCLUSIONS We conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.
Collapse
Affiliation(s)
- Jie Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Wenting Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lei Cao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rute S T Martins
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Adelino V M Canário
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
2
|
Cox JF, Carrasco A, Navarrete F, Allende R, Saravia F, Dorado J. Unveiling the Role of IGF-I in Fertility: Effect of Long-Acting Bovine Somatotropin (bST) on Terminal Follicular Development and Fertility during an Annual Reproductive Cycle in Sheep. Animals (Basel) 2024; 14:1097. [PMID: 38612336 PMCID: PMC11011003 DOI: 10.3390/ani14071097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
The study aimed to assess the effect of long-acting bST treatment, in a dose that only increases IGF-I plasma concentrations, on ovarian and fertility markers of estrous synchronized ewes that were fed to keep their bodyweight. Three experiments were designed to evaluate this effect: in Experiment 1, 18 ewes were distributed in groups (bST 0, 30, 50 mg) to measure plasma IGF-I and insulin for 15 days; in Experiment 2, 92 ewes (5 replicates) in two groups (0 and 30 mg bST) were synchronized using a 6-day progesterone protocol during the breeding season to assess the effect of bST on follicular and luteal performances, estrous and ovulation, and fertility after mating. In Experiment 3, 50 ewes (3 replicates) were used to repeat the study before but during anestrus. Results indicate that 50 mg bST increased IGF-I and insulin plasma concentrations, but 30 mg bST only increased IGF-I concentrations; and that only during the breeding season did 30 mg bST increase the number of lambs born and the reproductive success of ovulatory-sized follicles compared to controls. This occurred without it affecting any other reproductive marker. In conclusion, 30 mg bST treatment may improve oocyte competence for fertility during the breeding season.
Collapse
Affiliation(s)
- José Francisco Cox
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Albert Carrasco
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Felipe Navarrete
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Rodrigo Allende
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile (F.S.)
| | - Jesús Dorado
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Cordoba, Campus Rabanales, 14014 Cordoba, Spain
| |
Collapse
|
3
|
Goodman RL, Moore AM, Onslow K, Hileman SM, Hardy SL, Bowdridge EC, Walters BA, Agus S, Griesgraber MJ, Aerts EG, Lehman MN, Coolen LM. Lesions of KNDy and Kiss1R Neurons in the Arcuate Nucleus Produce Different Effects on LH Pulse Patterns in Female Sheep. Endocrinology 2023; 164:bqad148. [PMID: 37776515 PMCID: PMC10587900 DOI: 10.1210/endocr/bqad148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
The current model for the synchronization of GnRH neural activity driving GnRH and LH pulses proposes that a set of arcuate (ARC) neurons that contain kisspeptin, neurokinin B, and dynorphin (KNDy neurons) is the GnRH pulse generator. This study tested the functional role of ovine KNDy neurons in pulse generation and explored the roles of nearby Kiss1 receptor (Kiss1R)-containing cells using lesions produced with saporin (SAP) conjugates. Injection of NK3-SAP ablated over 90% of the KNDy cells, while Kiss-SAP (saporin conjugated to kisspeptin-54) lesioned about two-thirds of the Kiss1R population without affecting KNDy or GnRH cell number. Both lesions produced a dramatic decrease in LH pulse amplitude but had different effects on LH pulse patterns. NK3-SAP increased interpulse interval, but Kiss-SAP did not. In contrast, Kiss-SAP disrupted the regular hourly occurrence of LH pulses, but NK3-SAP did not. Because Kiss1R is not expressed in KNDy cells, HiPlex RNAScope was used to assess the colocalization of 8 neurotransmitters and 3 receptors in ARC Kiss1R-containing cells. Kiss1R cells primarily contained transcript markers for GABA (68%), glutamate (28%), ESR1 (estrogen receptor-α) mRNA, and OPRK1 (kappa opioid receptor) mRNA. These data support the conclusion that KNDy neurons are essential for GnRH pulses in ewes, whereas ARC Kiss1R cells are not but do maintain the amplitude and regularity of GnRH pulses. We thus propose that in sheep, ARC Kiss1R neurons form part of a positive feedback circuit that reinforces the activity of the KNDy neural network, with GABA or glutamate likely being involved.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Aleisha M Moore
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Kayla Onslow
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Steve L Hardy
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Burgundy A Walters
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Sami Agus
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Max J Griesgraber
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Eliana G Aerts
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
4
|
Luo X, Zu Z, Riaz H, Dan X, Yu X, Liu S, Guo A, Wen Y, Liang A, Yang L. Evaluation of a Novel DNA Vaccine Double Encoding Somatostatin and Cortistatin for Promoting the Growth of Mice. Animals (Basel) 2022; 12:ani12121490. [PMID: 35739827 PMCID: PMC9219454 DOI: 10.3390/ani12121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/22/2022] Open
Abstract
Animal growth traits are directly linked with the economics of livestock species. A somatostatin DNA vaccine has been developed to improve the growth of animals. However, the growth-promoting effect is still unsatisfying. The current study aimed to evaluate the effect of a novel eukaryotic dual expression vaccine known as pIRES-S/CST14-S/2SS, which encodes the genes obtained by fusing somatostatin (SS) and cortistatin (CST) into hepatitis B surface antigen (HBsAg). After transfection into GH3 cells with pIRES-S/CST14-S/2SS, green fluorescence signals were observed by fluorescence microscopy, suggesting the effective expression of CST and SS in GH3 cells using the IRES elements. Subsequently, both GH and PRL levels were found to be significantly lower in pIRES-S/CST14-S/2SS-treated cells as compared to the control group (p < 0.05). Furthermore, the antibody level, hormone secretion, and weight gain in the mice injected with novel recombinant plasmids were also evaluated. The anti-SS antibodies were detectable in all vaccine treated groups, resulting in significantly higher levels of GH secretion (p < 0.05). It is worth mentioning that pIRES-S/CST14-S/2SS (10 μg/100 μL) vaccinated mice exhibited a higher body weight gain in the second immunization period. This study increases the understanding of the relationship between somatostatin and cortistatin, and may help to develop an effective growth-promoting DNA vaccine in animals.
Collapse
Affiliation(s)
- Xuan Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China
| | - Zhuoxin Zu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Hasan Riaz
- Department of Biosciences, COMSATS University, Sahiwal Campus, Islamabad 57000, Pakistan;
| | - Xingang Dan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Xue Yu
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China;
| | - Shuanghang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yilin Wen
- Yongzhou Vocational Technical College, Yongzhou 425100, China;
| | - Aixin Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
- Correspondence: (A.L.); (L.Y.)
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (X.L.); (Z.Z.); (X.D.); (S.L.)
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Wuhan 430070, China
- Correspondence: (A.L.); (L.Y.)
| |
Collapse
|
5
|
Crespo D, Skaftnesmo KO, Kjærner-Semb E, Yilmaz O, Norberg B, Olausson S, Vogelsang P, Bogerd J, Kleppe L, Edvardsen RB, Andersson E, Wargelius A, Hansen TJ, Fjelldal PG, Schulz RW. Pituitary Gonadotropin Gene Expression During Induced Onset of Postsmolt Maturation in Male Atlantic Salmon: In Vivo and Tissue Culture Studies. Front Endocrinol (Lausanne) 2022; 13:826920. [PMID: 35370944 PMCID: PMC8964956 DOI: 10.3389/fendo.2022.826920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17β-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- *Correspondence: Diego Crespo,
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Ozlem Yilmaz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Sara Olausson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Petra Vogelsang
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rolf B. Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Tom J. Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Rüdiger W. Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Lopez JA, Bowdridge EC, McCosh RB, Bedenbaugh MN, Lindo AN, Metzger M, Haller M, Lehman MN, Hileman SM, Goodman RL. Morphological and functional evidence for sexual dimorphism in neurokinin B signalling in the retrochiasmatic area of sheep. J Neuroendocrinol 2020; 32:e12877. [PMID: 32572994 PMCID: PMC7449597 DOI: 10.1111/jne.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/26/2022]
Abstract
Neurokinin B (NKB) is critical for fertility in humans and stimulates gonadotrophin-releasing hormone/luteinising hormone (LH) secretion in several species, including sheep. There is increasing evidence that the actions of NKB in the retrochiasmatic area (RCh) contribute to the induction of the preovulatory LH surge in sheep. In the present study, we determined whether there are sex differences in the response to RCh administration of senktide, an agonist to the NKB receptor (neurokinin receptor-3 [NK3R]), and in NKB and NK3R expression in the RCh of sheep. To normalise endogenous hormone concentrations, animals were gonadectomised and given implants to mimic the pattern of ovarian steroids seen in the oestrous cycle. In females, senktide microimplants in the RCh produced an increase in LH concentrations that lasted for at least 8 hours after the start of treatment, whereas a much shorter increment (approximately 2 hours) was seen in males. We next collected tissue from gonadectomised lambs 18 hours after the insertion of oestradiol implants that produce an LH surge in female, but not male, sheep for immunohistochemical analysis of NKB and NK3R expression. As expected, there were more NKB-containing neurones in the arcuate nucleus of females than males. Interestingly, there was a similar sexual dimorphism in NK3R-containing neurones in the RCh, NKB-containing close contacts onto these RCh NK3R neurones, and overall NKB-positive fibres in this region. These data demonstrate that there are both functional and morphological sex differences in NKB-NK3R signalling in the RCh and raise the possibility that this dimorphism contributes to the sex-dependent ability of oestradiol to induce an LH surge in female sheep.
Collapse
Affiliation(s)
- Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Ashley N Lindo
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Makayla Metzger
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Megan Haller
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Michael N Lehman
- Department of Biological Sciences, Brain Health Research Institute, Kent State University, Kent, OH, USA
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
7
|
McCosh RB, Lopez JA, Szeligo BM, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Evidence that Nitric Oxide Is Critical for LH Surge Generation in Female Sheep. Endocrinology 2020; 161:bqaa010. [PMID: 32067028 PMCID: PMC7060766 DOI: 10.1210/endocr/bqaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Elevated and sustained estradiol concentrations cause a gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) surge that is necessary for ovulation. In sheep, several different neural systems have been implicated in this stimulatory action of estradiol and this study focused on somatostatin (SST) neurons in the ventral lateral region of the ventral medial nucleus (vlVMN) which express c-Fos during the surge. First, we determined if increased activity of SST neurons could be related to elevated GnRH secretion by assessing SST synapses onto GnRH neurons and neurons coexpressing kisspeptin, neurokinin B, dynorphin (KNDy). We found that the percentage of preoptic area GnRH neurons that receive SST input increased during the surge compared with other phases of the cycle. However, since SST is generally inhibitory, and pharmacological manipulation of SST signaling did not alter the LH surge in sheep, we hypothesized that nitric oxide (NO) was also produced by these neurons to account for their activation during the surge. In support of this hypothesis we found that (1) the majority of SST cells in the vlVMN (>80%) contained neuronal nitric oxide synthase (nNOS); (2) the expression of c-Fos in dual-labeled SST-nNOS cells, but not in single-labeled cells, increased during the surge compared with other phases of the cycle; and (3) intracerebroventricular (ICV) infusion of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, completely blocked the estrogen-induced LH surge. These data support the hypothesis that the population of SST-nNOS cells in the vlVMN are a source of NO that is critical for the LH surge, and we propose that they are an important site of estradiol positive feedback in sheep.
Collapse
Affiliation(s)
- Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Brett M Szeligo
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
| | - Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University Health Science Center, Morgantown, West Virginia
| |
Collapse
|
8
|
Goodman RL, He W, Lopez JA, Bedenbaugh MN, McCosh RB, Bowdridge EC, Coolen LM, Lehman MN, Hileman SM. Evidence That the LH Surge in Ewes Involves Both Neurokinin B-Dependent and -Independent Actions of Kisspeptin. Endocrinology 2019; 160:2990-3000. [PMID: 31599937 PMCID: PMC6857763 DOI: 10.1210/en.2019-00597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Recent evidence has implicated neurokinin B (NKB) signaling in the retrochiasmatic area (RCh) of the ewe in the LH surge. To test this hypothesis, we first lesioned NK3R neurons in this area by using a saporin conjugate (NK3-SAP). Three weeks after bilateral injection of NK3-SAP or a blank control (BLK-SAP) into the RCh, an LH surge was induced by using an artificial follicular-phase model in ovariectomized ewes. NK3-SAP lesioned approximately 88% of RCh NK3R-containing neurons and reduced the amplitude of the estrogen-induced LH surge by 58%, an inhibition similar to that seen previously with intracerebroventricular (icv) infusion of a KISS1R antagonist (p271). We next tested the hypothesis that NKB signaling in the RCh acts via kisspeptin by determining whether the combined effects of NK3R-SAP lesions and icv infusion of p271 were additive. Experiment 1 was replicated except that ewes received two sequential artificial follicular phases with infusions of p271 or vehicle using a crossover design. The combination of the two treatments decreased the peak of the LH surge by 59%, which was similar to that seen with NK3-SAP (52%) or p271 (54%) alone. In contrast, p271 infusion delayed the onset and peak of the LH surge in both NK3-SAP- and BLK-SAP-injected ewes. Based on these data, we propose that NKB signaling in the RCh increases kisspeptin levels critical for the full amplitude of the LH surge in the ewe but that kisspeptin release occurs independently of RCh input at the onset of the surge to initiate GnRH secretion.
Collapse
Affiliation(s)
- Robert L Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
- Correspondence: Robert L. Goodman, PhD, Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia 26506. E-mail:
| | - Wen He
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Justin A Lopez
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Michelle N Bedenbaugh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Richard B McCosh
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| | - Lique M Coolen
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute and Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Stanley M Hileman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
9
|
Moore AM, Coolen LM, Lehman MN. Kisspeptin/Neurokinin B/Dynorphin (KNDy) cells as integrators of diverse internal and external cues: evidence from viral-based monosynaptic tract-tracing in mice. Sci Rep 2019; 9:14768. [PMID: 31611573 PMCID: PMC6791851 DOI: 10.1038/s41598-019-51201-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/25/2019] [Indexed: 02/01/2023] Open
Abstract
Neurons in the hypothalamic arcuate nucleus (ARC) that co-express kisspeptin, neurokinin B and dynorphin (KNDy cells) are essential for mammalian reproduction as key regulators of gonadotropin-releasing hormone (GnRH) secretion. Although multiple endogenous and exogenous signals act indirectly via KNDy neurons to regulate GnRH, the identity of upstream neurons that provide synaptic input to this subpopulation is unclear. We used rabies-mediated tract-tracing in transgenic Kiss1-Cre mice combined with whole-brain optical clearing and multiple-label immunofluorescence to create a comprehensive and quantitative brain-wide map of neurons providing monosynaptic input to KNDy cells, as well as identify the estrogen receptor content and peptidergic phenotype of afferents. Over 90% of monosynaptic input to KNDy neurons originated from hypothalamic nuclei in both male and female mice. The greatest input arose from non-KNDy ARC neurons, including proopiomelanocortin-expressing cells. Significant female-dominant sex differences in afferent input were detected from estrogen-sensitive hypothalamic nuclei critical for reproductive endocrine function and sexual behavior in mice, indicating KNDy cells may provide a unique site for the coordination of sex-specific behavior and gonadotropin release. These data provide key insight into the structural framework underlying the ability of KNDy neurons to integrate endogenous and environmental signals important for the regulation of reproductive function.
Collapse
Affiliation(s)
- Aleisha M Moore
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA.
| | - Lique M Coolen
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| | - Michael N Lehman
- Brain Health Research Institute and Dept. of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
10
|
Sugimoto A, Tsuchida H, Ieda N, Ikegami K, Inoue N, Uenoyama Y, Tsukamura H. Somatostatin-Somatostatin Receptor 2 Signaling Mediates LH Pulse Suppression in Lactating Rats. Endocrinology 2019; 160:473-483. [PMID: 30544226 DOI: 10.1210/en.2018-00882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Follicular development and ovulation are profoundly suppressed during lactation in mammals. This suppression is suggested to be mainly due to the suckling-induced inhibition of kisspeptin gene (Kiss1) expression in the arcuate nucleus (ARC) and consequent inhibition of pulsatile GnRH/LH release. We examined whether central somatostatin (SST) signaling mediates the suckling-induced suppression of pulsatile LH secretion. SST has been reported to be expressed in the posterior intralaminar thalamic nucleus (PIL), where the suckling stimulus is postulated to be relayed to the hypothalamus during lactation. SST inhibitory receptors (SSTRs) are abundantly expressed in the ARC, where kisspeptin/neurokinin B/dynorphin A (KNDy) neurons are located. Histological and quantitative studies revealed that the suckling stimulus increased the number of SST-expressing cells in the PIL, and Sstr2 expression in the ARC. Furthermore, a central injection of an SSTR2 antagonist caused a significant increase in pulsatile LH release in lactating rats. Double labeling of Sstr2 and the neurokinin B gene, as a marker for ARC KNDy neurons, showed Sstr2 expression was abundantly detected in the ARC, but few KNDy neurons coexpressed Sstr2 in lactating rats. Taken together, these findings suggest the suckling-induced activation of SST-SSTR2 signaling mediates, at least in part, the suppression of pulsatile LH secretion during lactation in rats, probably via the indirect effects of SST on KNDy neurons. These results provide a new aspect on the role of central SST-SSTR signaling in understanding the mechanism underlying lactational anestrus.
Collapse
Affiliation(s)
- Arisa Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hitomi Tsuchida
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
11
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2019; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
12
|
Nestor CC, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Regulation of GnRH pulsatility in ewes. Reproduction 2018; 156:R83-R99. [PMID: 29880718 DOI: 10.1530/rep-18-0127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle N Bedenbaugh
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael N Lehman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
13
|
Dufourny L, Delmas O, Teixeira-Gomes AP, Decourt C, Sliwowska JH. Neuroanatomical connections between kisspeptin neurones and somatostatin neurones in female and male rat hypothalamus: a possible involvement of SSTR1 in kisspeptin release. J Neuroendocrinol 2018; 30:e12593. [PMID: 29543369 DOI: 10.1111/jne.12593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
Somatostatin (SST) a neuropeptide involved in the central modulation of several physiological functions, is co-distributed in the same hypothalamic areas as kisspeptin (KP), the most potent secretagogue of the gonadotropin-releasing hormone (GnRH) secretion known to date. As SST infused intracerebroventricularly (icv) evoked a potent inhibition of GnRH release, we explored neuroanatomical relationships between KP and SST populations in male and female rats. For that, intact males and ovariectomised oestradiol-replaced females were killed and their brains processed in order to simultaneously detect KP, SST and synapsin, a marker for synapses. We observed numerous appositions of KP on SST neurones both in female and male arcuate nucleus (ARC) and ventromedial hypothalamus. A large association between SST terminals and KP neurones at the level of the pre-optic area (POA) was also observed in female rats and in a more limited frame in males. Finally, most KP neurones from the ARC showed SST appositions in both sexes. To determine whether SST could affect KP cell activity, we assessed whether SST receptors (SSTR) were present on KP neurones in the ARC. We also looked for the presence of SSTR1 and SSTR2A in the brain of male rats. Brains were processed through a sequential double immunocytochemistry in order to detect KP and SSTR1 or KP and SSTR2A. We observed overlapping distributions of immunoreactive neurones for SSTR1 and KP and counted approximately one third of KP neurones with SSTR1. In contrast, neurones labelled for SSTR2A or KP were often juxtaposed in the ARC and the occurrence of double-labelled neurones was sporadic (<5%). These results suggest that SST action on KP neurones would pass mainly through SSTR1 at the level of the ARC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laurence Dufourny
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Oona Delmas
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
- INRA UMR INRA 1282 Infectiologie et Santé Publique, Université François Rabelais, F-37380, Nouzilly, France
| | - Caroline Decourt
- UMR85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
- CNRS, UMR 7247, F-37380, Nouzilly, France
- Université de Tours, F-37041, Tours, France
- IFCE, F-37380, Nouzilly, France
| | - Joanna H Sliwowska
- Lab. of Neurobiology, Dpt of Veterinary Medicine and Animal Sciences, Poznan University of Life Science, 60-625, Poznan, Poland
| |
Collapse
|
14
|
Moore AM, Lucas KA, Goodman RL, Coolen LM, Lehman MN. Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Sci Rep 2018; 8:2242. [PMID: 29396547 PMCID: PMC5797235 DOI: 10.1038/s41598-018-20563-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons of the arcuate nucleus (ARC) play a key role in the regulation of fertility. The ability to detect features of KNDy neurons that are essential for fertility may require three-dimensional (3D) imaging of the complete population. Recently developed protocols for optical tissue clearing permits 3D imaging of neuronal populations in un-sectioned brains. However, these techniques have largely been described in the mouse brain. We report 3D imaging of the KNDy cell population in the whole rat brain and sheep hypothalamus using immunolabelling and modification of a solvent-based clearing protocol, iDISCO. This study expands the use of optical tissue clearing for multiple mammalian models and provides versatile analysis of KNDy neurons across species. Additionally, we detected a small population of previously unreported kisspeptin neurons in the lateral region of the ovine mediobasal hypothalamus, demonstrating the ability of this technique to detect novel features of the kisspeptin system.
Collapse
Affiliation(s)
- Aleisha M Moore
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathryn A Lucas
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Robert L Goodman
- Dept. of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
- Dept. of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Michael N Lehman
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
15
|
Yeo SH, Colledge WH. The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2018; 9:188. [PMID: 29755406 PMCID: PMC5932150 DOI: 10.3389/fendo.2018.00188] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023] Open
Abstract
Kisspeptin-GPR54 signaling in the hypothalamus is required for reproduction and fertility in mammals. Kiss1 neurons are key regulators of gonadotropin-releasing hormone (GnRH) release and modulation of the hypothalamic-pituitary-gonadal (HPG) axis. Arcuate Kiss1 neurons project to GnRH nerve terminals in the median eminence, orchestrating the pulsatile secretion of luteinizing hormone (LH) through the intricate interaction between GnRH pulse frequency and the pituitary gonadotrophs. Arcuate Kiss1 neurons, also known as KNDy neurons in rodents and ruminants because of their co-expression of neurokinin B and dynorphin represent an ideal hub to receive afferent inputs from other brain regions in response to physiological and environmental changes, which can regulate the HPG axis. This review will focus on studies performed primarily in rodent and ruminant species to explore potential afferent inputs to Kiss1 neurons with emphasis on the arcuate region but also considering the rostral periventricular region of the third ventricle (RP3V). Specifically, we will discuss how these inputs can be modulated by hormonal, metabolic, and environmental factors to control gonadotropin secretion and fertility. We also summarize the methods and techniques that can be used to study functional inputs into Kiss1 neurons.
Collapse
|
16
|
Dufourny L, Lomet D. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus. Gen Comp Endocrinol 2017; 254:68-74. [PMID: 28935581 DOI: 10.1016/j.ygcen.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/05/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined.
Collapse
Affiliation(s)
- Laurence Dufourny
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| | - Didier Lomet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR 7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| |
Collapse
|