1
|
Shi Y, Min X, Li Y, Guo L, Cai Z, Li D, Jiang X, Feng N, Li X, Yang X. Yinjia pills inhibits the malignant biological behavior of HeLa cells through PKM2-medicated inhibition of JAK/STAT3 pathway. Cytotechnology 2025; 77:5. [PMID: 39575323 PMCID: PMC11579276 DOI: 10.1007/s10616-024-00668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
Cervical cancer is one of the most common tumors in women and is a major problem in gynecological health. Studies have shown that Yinjia pills (YJP), a traditional Chinese medicine, can effectively slow the progression of cervical cancer. Therefore, this study mainly explored the molecular mechanism by which YJP delays the progression of cervical cancer. The expression level of PKM2 in cervical cancer was evaluated by the gene expression profiling interactive analysis (GEPIA) database, and the prognostic value of the PKM2 gene was evaluated by the Kaplan‒Meier plotter database. HeLa cervical cancer cells were treated with different concentrations of YJP (2.5, 5, 10, and 20 mg/mL). The levels of the inflammatory factors were detected by ELISA. Cell proliferation activity, migration and invasion were detected by CCK-8 assay, Transwell assays and cell scratch experiment. Apoptosis was detected by flow cytometry. Western blotting was used to detect the expression of proteins. In this study, PKM2 was upregulated in both cervical squamous cell carcinoma (CESC) and endometrial adenocarcinoma tissues, and a Kaplan‒Meier analysis showed that higher PKM2 expression was associated with lower patient survival. YJP inhibited the proliferation, migration and invasion of HeLa cells in a dose-dependent manner, promoted the apoptosis of HeLa cells, and inhibited the expression of inflammatory factors. In addition, YJP inhibited the activation of the JAK/STAT3 pathway and the occurrence of EMT. Knockdown of PKM2 also inhibited the malignant biological behavior of HeLa cells, but overexpression of PKM2 weakened the inhibitory effect of YJP on the malignant biological behavior of HeLa cells. Angoline, a JAK/STAT3 pathway inhibitor, attenuated the effect of PKM2 overexpression on the efficacy of YJP. In conclusion, YJP can inhibit the activation of the JAK/STAT3 pathway by regulating PKM2, thereby inhibiting the malignant biological behavior of HeLa cells.
Collapse
Affiliation(s)
- Ying Shi
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaoli Min
- Department of Cerebrovascular Disease, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan China
| | - Yi Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Lihua Guo
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Zheng Cai
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Dongge Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xueying Jiang
- The First Clinical Medical College, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan China
| | - Ni Feng
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaolin Li
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| | - Xiaoxia Yang
- Oncology Department, The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, 120 Guanghua Street, Kunming, 650200 Yunnan China
| |
Collapse
|
2
|
Aikawa S, Hiraoka T, Matsuo M, Fukui Y, Fujita H, Saito-Fujita T, Shimizu-Hirota R, Takeda N, Hiratsuka D, He X, Ishizawa C, Iida R, Akaeda S, Harada M, Wada-Hiraike O, Ikawa M, Osuga Y, Hirota Y. Spatiotemporal functions of leukemia inhibitory factor in embryo attachment and implantation chamber formation. Cell Death Discov 2024; 10:481. [PMID: 39587062 PMCID: PMC11589870 DOI: 10.1038/s41420-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Embryo implantation is crucial for successful pregnancy, requiring appropriate uterine responses to implantation-competent blastocysts. Molecular communication at the maternal-fetal junction governs this process. Leukemia inhibitory factor (Lif) plays a pivotal role in implantation across species. Lif is abundantly expressed in the glandular epithelium during blastocyst-receptive phase and is induced in the stroma surrounding attached blastocysts. While diminished Lif expression leads to infertility, its influence on peri-implantation uteri remains unclear. Therefore, we investigated the role of Lif in uterine physiology using its uterine-specific knockout (uKO) and uterine epithelial-specific KO (eKO) in mice. Lif eKO and uKO mice displayed infertility owing to failed embryo attachment. Recombinant Lif supplementation rescued the reproductive phenotype of Lif eKO mice, but not Lif uKO mice; however, recombinant Lif injection rescued embryo attachment in Lif uKO mice. RNA-seq analysis indicated that Lif governs uterine epithelial genes, but not embryonic genes, to facilitate embryo attachment via activating nuclear Stat3. Concordantly, three-dimensional imaging of the uterine epithelium revealed that luminal closure and crypt formation are regulated by the uterine Lif-Stat3 axis as well as the presence of blastocysts. Collectively, our findings shed light on previously unknown mechanism on how Lif influences uterine functions molecularly and physiologically during early pregnancy.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Tomoko Saito-Fujita
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daiki Hiratsuka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xueting He
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Ishizawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Iida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Wei SY, Zhang JL, Guan HQ, Cai JJ, Jiang XF, Wang H, Wu DD, Lin XH. High androgen level during controlled ovarian stimulation cycle impairs endometrial receptivity in PCOS patients. Sci Rep 2024; 14:23100. [PMID: 39367050 PMCID: PMC11452613 DOI: 10.1038/s41598-024-74295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
PCOS is one of the most common endocrine disorders among women of reproductive age. While the mechanism involved is not yet fully characterized. Our study aims to examine the pregnancy outcomes of embryo transfers in women with PCOS after pretreatment, and to explore the possible effect of high androgen levels on endometrial receptivity. Retrospective cohort study was conducted to analyze pregnancy outcomes among 2714 infertile women with tubal factor and 452 PCOS women. Endometrium samples were collected from 6 controls and 6 PCOS patients to detect the expression of endometrial receptivity marks. The implantation rate, clinical and ongoing pregnancy rates and live birth rate in women with PCOS followed fresh embryo transfers were obviously decreased even after the pretreatment. Similar pregnancy outcomes were found in frozen-thawed embryo transfer cycles between women with or without PCOS. Strikingly, serum total testosterone (TT) levels on trigger day were significantly higher in PCOS women. Women with high TT levels presented significantly lower clinical and ongoing pregnancy rates, and the expression of insulin-like growth factor binding protein 1 (IGFBP-1), and leukemia inhibitory factor (LIF) in the endometria decreased significantly as well. High doses of testosterone significantly down-regulated the expression of IGFBP-1 and LIF in Ishikawa cells. Although endocrine abnormalities had been improved before the controlled ovarian stimulation (COS) cycle started, higher serum TT levels were detected on the trigger day of the COS cycle in PCOS patients, which may contribute to the decreased fresh embryo implantation by impairing endometrial receptivity.
Collapse
Affiliation(s)
- Si-Yi Wei
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - Jian-Lin Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
| | - He-Qin Guan
- Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Jiao-Jiao Cai
- Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang, China
| | - Xia-Fei Jiang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China
| | - Hui Wang
- Hangzhou Women's Hospital, 369 Kumpeng Road, Hangzhou, 310008, China.
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China.
- Department of Obstetrics and Gynecology, Maternity and Child Health Hospital of Songjiang District, Shanghai, China.
| | - Dan-Dan Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910 Hengshan Road, Shanghai, 200030, China.
| | - Xian-Hua Lin
- Hangzhou Women's Hospital, 369 Kumpeng Road, Hangzhou, 310008, China.
| |
Collapse
|
4
|
Almirón A, Lorenz V, Doná F, Varayoud J, Milesi MM. Epigenetic alteration of uterine Leukemia Inhibitory Factor gene after glyphosate or a glyphosate-based herbicide exposure in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104564. [PMID: 39277068 DOI: 10.1016/j.etap.2024.104564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Glyphosate-based herbicides (GBHs) or its active ingredient, glyphosate (Gly), induce implantation failure in rats. We aimed to elucidate a mechanism of action of these compounds assessing the transcriptional and epigenetic status of the receptivity marker, leukemia inhibitory factor (Lif) gene. F0 rats were orally exposed to GBH or Gly at 3.8 or 3.9 mg Gly/kg/day, respectively, from gestational day (GD) 9 until weaning. F1 females were mated and uterine samples collected at GD5. Methylation-sensitive restriction enzymes (MSRE) sites and transcription factors were in silico predicted in regulatory regions of Lif gene. DNA methylation status and histone modifications (histone 3 and 4 acetylation (H3Ac and H4Ac) and H3 lysine-27-trimethylation (H3K27me3)) were assessed. GBH and Gly decreased Lif mRNA levels and caused DNA hypermethylation. GBH increased H3Ac levels, whereas Gly reduced them; both compounds enhanced H3K27me3 levels. Finally, both GBH and Gly induced similar epigenetic alterations in the regulatory regions of Lif.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Florencia Doná
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe 3000, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Argentina.
| |
Collapse
|
5
|
Almirón A, Lorenz V, Varayoud J, Durando M, Milesi MM. Perinatal Exposure to Glyphosate or a Commercial Formulation Alters Uterine Mechanistic Pathways Associated with Implantation Failure in Rats. TOXICS 2024; 12:590. [PMID: 39195693 PMCID: PMC11358895 DOI: 10.3390/toxics12080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Perinatal exposure to a glyphosate-based herbicide (GBH) or its active ingredient, glyphosate (Gly), has been demonstrated to increase implantation failure in rats. This study investigates potential mechanisms of action, analyzing uterine preparation towards the receptive state. Pregnant Wistar rats (F0) were treated orally with GBH or Gly (3.8 and 3.9 mg Gly/kg/day, respectively) from gestational day (GD) 9 until weaning. Adult F1 females became pregnant and uterine samples were collected on GD5 (preimplantation period). Histomorphological uterine parameters were assessed. Immunohistochemistry was applied to evaluate cell proliferation and protein expression of estrogen receptors (ERα and ERβ), cell cycle regulators (PTEN, cyclin G1, p27, and IGF1R-α), and the Wnt5a/β-catenin/FOXA2/Lif pathway. Both GBH and Gly females showed increased stromal proliferation, associated with a high expression of ERs. Dysregulation of PTEN and cyclin G1 was also observed in the Gly group. Reduced gland number was observed in both groups, along with decreased expression of Wnt5a/β-catenin/FOXA2/Lif pathway in the glandular epithelium. Overall, GBH and Gly perinatal exposure disrupted intrinsic uterine pathways involved in endometrial proliferation and glandular function, providing a plausible mechanism for glyphosate-induced implantation failure by compromising uterine receptivity. Similar effects between GBH and Gly suggest the active principle mainly drives the adverse outcomes.
Collapse
Affiliation(s)
- Ailín Almirón
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - Milena Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe S3000, Argentina; (A.A.)
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe S3000, Argentina
| |
Collapse
|
6
|
McGlade EA, Mao J, Stephens KK, Kelleher AM, Maddison LA, Bernhardt ML, DeMayo FJ, Lydon JP, Winuthayanon W. Generation of Oviductal Glycoprotein 1 Cre Mouse Model for the Study of Secretory Epithelial Cells of the Oviduct. Endocrinology 2024; 165:bqae070. [PMID: 38916490 PMCID: PMC11210311 DOI: 10.1210/endocr/bqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
The epithelial cell lining of the oviduct plays an important role in oocyte pickup, sperm migration, preimplantation embryo development, and embryo transport. The oviduct epithelial cell layer comprises ciliated and nonciliated secretory cells. The ciliary function has been shown to support gamete and embryo movement in the oviduct, yet secretory cell function has not been well characterized. Therefore, our goal was to generate a secretory cell-specific Cre recombinase mouse model to study the role of the oviductal secretory cells. A knock-in mouse model, Ovgp1Cre:eGFP, was created by expressing Cre from the endogenous Ovgp1 (oviductal glycoprotein 1) locus, with enhanced green fluorescent protein (eGFP) as a reporter. EGFP signals were strongly detected in the secretory epithelial cells of the oviducts at estrus in adult Ovgp1Cre:eGFP mice. Signals were also detected in the ovarian stroma, uterine stroma, vaginal epithelial cells, epididymal epithelial cells, and elongated spermatids. To validate recombinase activity, progesterone receptor (PGR) expression was ablated using the Ovgp1Cre:eGFP; Pgrf/f mouse model. Surprisingly, the deletion was restricted to the epithelial cells of the uterotubal junction (UTJ) region of Ovgp1Cre:eGFP; Pgrf/f oviducts. Deletion of Pgr in the epithelial cells of the UTJ region had no effect on female fecundity. In summary, we found that eGFP signals were likely specific to secretory epithelial cells in all regions of the oviduct. However, due to a potential target-specific Cre activity, validation of appropriate recombination and expression of the gene(s) of interest is absolutely required to confirm efficient deletion when generating conditional knockout mice using the Ovgp1Cre:eGFP line.
Collapse
Affiliation(s)
- Emily A McGlade
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jiude Mao
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Kalli K Stephens
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Andrew M Kelleher
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
| | - Lisette A Maddison
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Miranda L Bernhardt
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wipawee Winuthayanon
- Obstetrics, Gynecology and Women's Health, University of Missouri–Columbia, Columbia, MO 65211, USA
- Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
7
|
Ji X, Hu Q, Yang C, Huang L, Huang Y, Deng L, Song X, Zhang Y, Wang Y. Exploring the therapeutic effect of Pen Yan Kang Fu Decoction on SPID rats based on LIF/JAK2/STAT3 signaling pathway. 3 Biotech 2024; 14:134. [PMID: 38665879 PMCID: PMC11039587 DOI: 10.1007/s13205-024-03981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Tubal inflammation, endometritis, and uterine adhesions due to post-pelvic inflammatory disease (SPID) are important causes of infertility. Chronic endometritis (CE) belongs to SPID, which seriously affects women's reproductive health, quality of life, and family harmony, and is a hot and difficult problem in clinical research. The efficacy of Pen Yan Kang Fu Decoction (PYKFD) has been verified in long-term clinical practice for chronic endometritis infertility caused by the SPID. Numerous studies have confirmed that the LIF/JAK2/STAT3 signaling pathway is important in embryo implantation and development, and endometritis infertility is close to LIF/JAK2/STAT3. In vivo results showed that PYKFD increased endometrial receptivity, repaired uterine tissue damage, and regulates the expression of endometrial receptivity-related factors ER (estrogen receptor), PR (progesterone receptor), CD31, and integrin αvβ3, and induced the transduction of LIF/JAK2/STAT3 signaling pathway. PYKFD can also regulate the expression of IL-6. The results of in vitro experiments showed that PYKFD regulates the behavior of rat endometrial epithelial cells (REECs) involving LIF. In conclusion, PYKFD can improve endometrial receptivity and promote endometrial repair by LIF/JAK2/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03981-0.
Collapse
Affiliation(s)
- Xiaoli Ji
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Quan Hu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Chengcheng Yang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Li Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Linwen Deng
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Xiaoqing Song
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Yongqing Zhang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
| | - Yan Wang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072 Sichuan Province People’s Republic of China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, West Section of Liutai Avenue Chengdu, Sichuan, 611137 People’s Republic of China
| |
Collapse
|
8
|
Diao H, Xiao S, Zhou T, Martin TE, Watford WT, Ye X. Attenuated retinoic acid signaling is among the early responses in mouse uterus approaching embryo attachment. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2024; 8:61-65. [PMID: 38404366 PMCID: PMC10885870 DOI: 10.1097/rd9.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024] Open
Abstract
The uterus is transiently receptive for embryo implantation. It remains to be understood why the uterus does not reject a semi-allogeneic embryo (to the biological mother) or an allogeneic embryo (to a surrogate) for implantation. To gain insights, we examined uterine early response genes approaching embryo attachment on day 3 post coitum (D3) at 22 hours when blue dye reaction, an indication of embryo attachment, had not manifested in mice. C57BL/6 pseudo-pregnant (control) and pregnant mouse uteri were collected on D3 at 22 hours for microarray analysis. The self-assembling-manifold (SAM) algorithm identified 21,858 unique probesets. Principal component analysis indicated a clear separation between the pseudo-pregnant and pregnant groups. There were 106 upregulated and five downregulated protein-coding genes in the pregnant uterus with fold change (fc) >1.5 and q value <5%. Gene ontology (GO) analysis of the 106 upregulated genes revealed 38 significant GO biological process (GOBP) terms (P <0.05), and 32 (84%) of them were associated with immune responses, with a dominant natural killer (NK) cell activation signature. Among the top eight upregulated protein-coding genes, Cyp26a1 inactivates retinoic acid (RA) while Lrat promotes vitamin A storage, both of which are expected to attenuate RA bioavailability; Atp6v0d2 and Gjb2 play roles in ion transport and transmembrane transport; Gzmb, Gzmc, and Il2rb are involved in immune responses; and Tdo2 is important for kynurenine pathway. Most of these genes or their related pathways have functions in immune regulations. RA signaling has been implicated in immune tolerance and immune homeostasis, and uterine NK cells have been implicated in immunotolerance at the maternal-fetal interface in the placenta. The mechanisms of immune responses approaching embryo attachment remain to be elucidated. The coordinated effects of the early response genes may hold the keys to the question of why the uterus does not reject an implanting embryo.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Taylor E. Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Hu C, Deng J, Liu M, Ni T, Chen ZJ, Yan J, Li Y. Endometrial BMP2 Deficiency Impairs ITGB3-Mediated Trophoblast Invasion in Women With Repeated Implantation Failure. Endocrinology 2024; 165:bqae002. [PMID: 38195194 DOI: 10.1210/endocr/bqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND Repeated implantation failure (RIF) leads to a waste of high-quality embryos and remains a challenge in assisted reproductive technology. During early human placentation, the invasion of trophoblast cells into the decidua is an essential step for the establishment of maternal-fetal interactions and subsequent successful pregnancy. Bone morphogenetic protein 2 (BMP2) has been reported to regulate endometrial receptivity and promote trophoblast invasion. However, whether there is dysregulation of endometrial BMP2 expression in patients with RIF remains unknown. Additionally, the molecular mechanisms underlying the effects of BMP2 on human trophoblast invasion and early placentation remain to be further elucidated. METHODS Midluteal phase endometrial samples were biopsied from patients with RIF and from routine control in vitro fertilization followed by quantitative polymerase chain reaction and immunoblotting analyses. Human trophoblast organoids, primary human trophoblast cells, and an immortalized trophoblast cell line (HTR8/SVneo) were used as study models. RESULTS We found that BMP2 was aberrantly low in midluteal phase endometrial tissues from patients with RIF. Recombinant human BMP2 treatment upregulated integrin β3 (ITGB3) in a SMAD2/3-SMAD4 signaling-dependent manner in both HTR8/SVneo cells and primary trophoblast cells. siRNA-mediated integrin β3 downregulation reduced both basal and BMP2-upregulated trophoblast invasion and vascular mimicry in HTR8/SVneo cells. Importantly, shRNA-mediated ITGB3 knockdown significantly decreased the formation ability of human trophoblast organoids. CONCLUSION Our results demonstrate endometrial BMP2 deficiency in patients with RIF. ITGB3 mediates both basal and BMP2-promoted human trophoblast invasion and is essential for early placentation. These findings broaden our knowledge regarding the regulation of early placentation and provide candidate diagnostic and therapeutic targets for RIF clinical management.
Collapse
Affiliation(s)
- Cuiping Hu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Jianye Deng
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Mingxi Liu
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Tianxiang Ni
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, 250012, China
| | - Junhao Yan
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| | - Yan Li
- Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
| |
Collapse
|
10
|
Wang P, Du S, Guo C, Ni Z, Huang Z, Deng N, Bao H, Deng W, Lu J, Kong S, Zhang H, Wang H. The presence of blastocyst within the uteri facilitates lumenal epithelium transformation for implantation via upregulating lysosome proteostasis activity. Autophagy 2024; 20:58-75. [PMID: 37584546 PMCID: PMC10761037 DOI: 10.1080/15548627.2023.2247747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
ABBREVIATIONS ACTB: actin beta; AREG: amphiregulin; ATP6V0A4: ATPase, H+ transporting, lysosomal V0 subunit A4; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CLDN1: claudin 1; CTSB: cathepsin B; DEGs: differentially expressed genes; E2: 17β-estradiol; ESR: estrogen receptor; GATA2: GATA binding protein 2; GLA: galactosidase, alpha; GO: gene ontology; HBEGF: heparin-binding EGF-like growth factor; IGF1R: insulin-like growth factor 1 receptor; Ihh: Indian hedgehog; ISH: in situ hybridization; LAMP1: lysosomal-associated membrane protein 1; LCM: laser capture microdissection; Le: lumenal epithelium; LGMN: legumain; LIF: leukemia inhibitory factor; LIFR: LIF receptor alpha; MSX1: msh homeobox 1; MUC1: mucin 1, transmembrane; P4: progesterone; PBS: phosphate-buffered saline; PCA: principal component analysis; PPT1: palmitoyl-protein thioesterase 1; PGR: progesterone receptor; PSP: pseudopregnancy; PTGS2/COX2: prostaglandin-endoperoxide synthase 2; qPCR: quantitative real-time polymerase chain reaction; SP: pregnancy; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Peike Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuailin Du
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chuanhui Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zhangli Ni
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ziying Huang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Na Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hua Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Sun X, Feng Y, Ma Q, Wang Y, Ma F. Protein glycosylation: bridging maternal-fetal crosstalk during embryo implantation†. Biol Reprod 2023; 109:785-798. [PMID: 37658761 DOI: 10.1093/biolre/ioad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility is a challenging health problem that affects 8-15% of couples worldwide. Establishing pregnancy requires successful embryo implantation, but about 85% of unsuccessful pregnancies are due to embryo implantation failure or loss soon after. Factors crucial for successful implantation include invasive blastocysts, receptive endometrium, invasion of trophoblast cells, and regulation of immune tolerance at the maternal-fetal interface. Maternal-fetal crosstalk, which relies heavily on protein-protein interactions, is a critical factor in implantation that involves multiple cellular communication and molecular pathways. Glycosylation, a protein modification process, is closely related to cell growth, adhesion, transport, signal transduction, and recognition. Protein glycosylation plays a crucial role in maternal-fetal crosstalk and can be divided into N-glycosylation and O-glycosylation, which are often terminated by sialylation or fucosylation. This review article examines the role of protein glycosylation in maternal-fetal crosstalk based on two transcriptome datasets from the GEO database (GSE139087 and GSE113790) and existing research, particularly in the context of the mechanism of protein glycosylation and embryo implantation. Dysregulation of protein glycosylation can lead to adverse pregnancy outcomes, such as missed abortion and recurrent spontaneous abortion, underscoring the importance of a thorough understanding of protein glycosylation in the diagnosis and treatment of female reproductive disorders. This knowledge could have significant clinical implications, leading to the development of more effective diagnostic and therapeutic approaches for these conditions.
Collapse
Affiliation(s)
- Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qianhong Ma
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Li Q, Chen Y, Adeniran SO, Qiu Z, Zhao Q, Zheng P. LIF regulates the expression of miR-27a-3p and HOXA10 in bovine endometrial epithelial cells via STAT3 pathway. Theriogenology 2023; 210:101-109. [PMID: 37490795 DOI: 10.1016/j.theriogenology.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
LIF is crucial in regulating embryo implantation, while HOXA10 is a marker gene for uterine receptivity. However, the specific mechanism of LIF regulating HOXA10 during cow embryo implantation has not been fully understood. To address this knowledge gap, the experiment involved treating bovine endometrial epithelial cells (BEECs) with LIF to investigate the relationship between LIF, miRNA, and HOXA10. The experimental findings revealed that applying LIF resulted in a substantial increase in the proliferation of endometrial epithelial cells. Moreover, the expressions of PI3K, AKT, HOXA10, CDK4, cyclinD1, and cyclinE1 were significantly elevated. Conversely, the expression of p21Cipl was significantly reduced. In the group that received a combination of LIF and a STAT3 inhibitor, the expression of PI3K/AKT remained significantly increased, but there was no significant change in the expression of HOXA10. When miRNA-27a-3p was overexpressed, it resulted in a decrease in both the RNA and protein expression of HOXA10. Conversely, inhibiting miRNA-27a-3p increased the RNA and protein expression of HOXA10. In the presence of LIF treatment, the expression of miRNA-27a-3p was reduced, while the expression of HOXA10 was increased. However, when LIF and a STAT3 inhibitor were combined, there was no significant change in the expression of miRNA-27a-3p or HOXA10. Consequently, LIF facilitated cell proliferation by activating the PI3K/AKT pathway. LIF controlled the expression of miRNA-27a-3p and HOXA10 in endometrial epithelial cells through STAT3, with miRNA-27a-3p negatively regulating the expression of HOXA10.
Collapse
Affiliation(s)
- Qi Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanru Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Samson Olugbenga Adeniran
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University Ibafo, Ogun State, Nigeria
| | - Zixi Qiu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Qian Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
13
|
Barisas DAG, Kabir AU, Wu J, Krchma K, Kim M, Subramanian M, Zinselmeyer BH, Stewart CL, Choi K. Tumor-derived interleukin-1α and leukemia inhibitory factor promote extramedullary hematopoiesis. PLoS Biol 2023; 21:e3001746. [PMID: 37134077 PMCID: PMC10155962 DOI: 10.1371/journal.pbio.3001746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023] Open
Abstract
Extramedullary hematopoiesis (EMH) expands hematopoietic capacity outside of the bone marrow in response to inflammatory conditions, including infections and cancer. Because of its inducible nature, EMH offers a unique opportunity to study the interaction between hematopoietic stem and progenitor cells (HSPCs) and their niche. In cancer patients, the spleen frequently serves as an EMH organ and provides myeloid cells that may worsen pathology. Here, we examined the relationship between HSPCs and their splenic niche in EMH in a mouse breast cancer model. We identify tumor produced IL-1α and leukemia inhibitory factor (LIF) acting on splenic HSPCs and splenic niche cells, respectively. IL-1α induced TNFα expression in splenic HSPCs, which then activated splenic niche activity, while LIF induced proliferation of splenic niche cells. IL-1α and LIF display cooperative effects in activating EMH and are both up-regulated in some human cancers. Together, these data expand avenues for developing niche-directed therapies and further exploring EMH accompanying inflammatory pathologies like cancer.
Collapse
Affiliation(s)
- Derek A. G. Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Immunology Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ashraf Ul Kabir
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jun Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Karen Krchma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Minseo Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Madhav Subramanian
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bernd H. Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Colin L. Stewart
- Developmental and Regenerative Biology, A*STAR Skin Research Laboratories, Singapore, Singapore
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Immunology Program, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
14
|
Namiki T, Terakawa J, Karakama H, Noguchi M, Murakami H, Hasegawa Y, Ohara O, Daikoku T, Ito J, Kashiwazaki N. Uterine epithelial Gp130 orchestrates hormone response and epithelial remodeling for successful embryo attachment in mice. Sci Rep 2023; 13:854. [PMID: 36646738 PMCID: PMC9842754 DOI: 10.1038/s41598-023-27859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Leukemia inhibitory factor (LIF) receptor, an interleukin 6 cytokine family signal transducer (Il6st, also known as Gp130) that is expressed in the uterine epithelium and stroma, has been recognized to play an essential role in embryo implantation. However, the molecular mechanism underlying Gp130-mediated LIF signaling in the uterine epithelium during embryo implantation has not been elucidated. In this study, we generated mice with uterine epithelium specific deletion of Gp130 (Gp130 ecKO). Gp130 ecKO females were infertile due to the failure of embryo attachment and decidualization. Histomorphological observation revealed that the endometrial shape and embryo position from Gp130 ecKO were comparable to those of the control, and uterine epithelial cell proliferation, whose attenuation is essential for embryo implantation, was controlled in Gp130 ecKO. Comprehensive gene expression analysis using RNA-seq indicates that epithelial Gp130 regulates the expression of estrogen- and progesterone-responsive genes in conjunction with immune response during embryo implantation. We also found that an epithelial remodeling factor, snail family transcriptional repressor 1 (Snai1), was markedly reduced in the pre-implantation uterus from Gp130 ecKO. These results suggest that not only the suppression of uterine epithelial cell proliferation, but also Gp130-mediated epithelial remodeling is required for successful implantation in mice.
Collapse
Affiliation(s)
- Takafumi Namiki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Jumpei Terakawa
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan. .,Laboratory of Toxicology, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Harumi Karakama
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Michiko Noguchi
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Laboratory of Theriogenology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Hironobu Murakami
- Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan.,Laboratory of Infectious Diseases, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Takiko Daikoku
- Research Center for Experimental Modeling of Human Disease, Institute for Experimental Animals, Kanazawa University, Kanazawa, Japan
| | - Junya Ito
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan. .,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan. .,Center for Human and Animal Symbiosis Science, Azabu University, Sagamihara, Japan.
| | - Naomi Kashiwazaki
- Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-Ku, Sagamihara, Kanagawa, 252-5201, Japan.,Graduate School of Veterinary Science, Azabu University, Sagamihara, Japan
| |
Collapse
|
15
|
Zhang D, Wang Z, Luo X, Guo H, Qiu G, Gong Y, Gao H, Cui S. Cysteine dioxygenase and taurine are essential for embryo implantation by involving in E 2-ERα and P 4-PR signaling in mouse. J Anim Sci Biotechnol 2023; 14:6. [PMID: 36604722 PMCID: PMC9814424 DOI: 10.1186/s40104-022-00804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/20/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Taurine performs multiple physiological functions, and the maintenance of taurine level for most mammals relies on active uptake from diet and endogenous taurine synthesis through its synthesis enzymes, including cysteine dioxygenase (CDO). In addition, uterus tissue and uterus fluid are rich in taurine, and taurine synthesis is regulated by estrogen (E2) and progesterone (P4), the key hormones priming embryo-uterine crosstalk during embryo implantation, but the functional interactions and mechanisms among which are largely unknown. The present study was thus proposed to identify the effects of CDO and taurine on embryo implantation and related mechanisms by using Cdo knockout (KO) and ovariectomy (OVX) mouse models. RESULTS The uterine CDO expression was assayed from the first day of plugging (d 1) to d 8 and the results showed that CDO expression level increased from d 1 to d 4, followed by a significant decline on d 5 and persisted to d 8, which was highly correlated with serum and uterine taurine levels, and serum P4 concentration. Next, Cdo KO mouse was established by CRISPER/Cas9. It was showed that Cdo deletion sharply decreased the taurine levels both in serum and uterus tissue, causing implantation defects and severe subfertility. However, the implantation defects in Cdo KO mice were partly rescued by the taurine supplementation. In addition, Cdo deletion led to a sharp decrease in the expressions of P4 receptor (PR) and its responsive genes Ihh, Hoxa10 and Hand2. Although the expression of uterine estrogen receptor (ERα) had no significant change, the levels of ERα induced genes (Muc1, Ltf) during the implantation window were upregulated after Cdo deletion. These accompanied by the suppression of stroma cell proliferation. Meanwhile, E2 inhibited CDO expression through ERα and P4 upregulated CDO expression through PR. CONCLUSION The present study firstly demonstrates that taurine and CDO play prominent roles in uterine receptivity and embryo implantation by involving in E2-ERα and P4-PR signaling. These are crucial for our understanding the mechanism of embryo implantation, and infer that taurine is a potential agent for improving reproductive efficiency of livestock industry and reproductive medicine.
Collapse
Affiliation(s)
- Di Zhang
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Zhijuan Wang
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, People’s Republic of China
| | - Xuan Luo
- grid.22935.3f0000 0004 0530 8290State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, People’s Republic of China
| | - Hongzhou Guo
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Guobin Qiu
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Yuneng Gong
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Hongxu Gao
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China
| | - Sheng Cui
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009 People’s Republic of China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009 People’s Republic of China ,grid.268415.cInstitute of Reproduction and Metabolism, Yangzhou University, 225009 Jiangsu, People’s Republic of China
| |
Collapse
|
16
|
Wang J, Wang K. New insights into Chlamydia pathogenesis: Role of leukemia inhibitory factor. Front Cell Infect Microbiol 2022; 12:1029178. [PMID: 36329823 PMCID: PMC9623337 DOI: 10.3389/fcimb.2022.1029178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections worldwide. Since the symptoms of Ct infection are often subtle or absent, most people are unaware of their infection until they are tested or develop severe complications such as infertility. It is believed that the primary culprit of Ct-associated tissue damage is unresolved chronic inflammation, resulting in aberrant production of cytokines, chemokines, and growth factors, as well as dysregulated tissue influx of innate and adaptive immune cells. A member of the IL-6 cytokine family, leukemia inhibitory factor (LIF), is one of the cytokines induced by Ct infection but its role in Ct pathogenesis is unclear. In this article, we review the biology of LIF and LIF receptor (LIFR)-mediated signaling pathways, summarize the physiological role of LIF in the reproductive system, and discuss the impact of LIF in chronic inflammatory conditions and its implication in Ct pathogenesis. Under normal circumstances, LIF is produced to maintain epithelial homeostasis and tissue repair, including the aftermath of Ct infection. However, LIF/LIFR-mediated signaling – particularly prolonged strong signaling – can gradually transform the microenvironment of the fallopian tube by altering the fate of epithelial cells and the cellular composition of epithelium. This harmful transformation of epithelium may be a key process that leads to an enhanced risk of infertility, ectopic pregnancy and cancer following Ct infection.
Collapse
Affiliation(s)
- Jun Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- *Correspondence: Jun Wang,
| | - Katherine Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
| |
Collapse
|
17
|
Aslanian-Kalkhoran L, Esparvarinha M, Nickho H, Aghebati-Maleki L, Heris JA, Danaii S, Yousefi M. Understanding main pregnancy complications through animal models. J Reprod Immunol 2022; 153:103676. [PMID: 35914401 DOI: 10.1016/j.jri.2022.103676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Since human pregnancy is an inefficient process, achieving desired and pleasant outcome of pregnancy - the birth of a healthy and fit baby - is the main goal in any pregnancy. Spontaneous pregnancy failure is actually the most common complication of pregnancy and Most of these pregnancy losses are not known. Animal models have been utilized widely to investigate the system of natural biological adaptation to pregnancy along with increasing our comprehension of the most important hereditary and non-hereditary factors that contribute to pregnancy disorders. We use model organisms because their complexity better reproduces the human condition. A useful animal model for the disease should be pathologically similar to the disease conditions in humans. Animal models deserve a place in research because of the ethical limitations that apply to pregnant women's experiments. The present review provides insights into the overall risk factors involved in recurrent miscarriage, recurrent implant failure and preeclampsia and animal models developed to help researchers identify the source of miscarriage and the best research and treatment strategy for women with Repeated miscarriage and implant failure.
Collapse
Affiliation(s)
- Lida Aslanian-Kalkhoran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Mojgan Esparvarinha
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Nickho
- Department of Immuunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Islamic Republic of Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
18
|
Halder S, Parte S, Kshirsagar P, Muniyan S, Nair HB, Batra SK, Seshacharyulu P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim Biophys Acta Rev Cancer 2022; 1877:188737. [PMID: 35680099 PMCID: PMC9793423 DOI: 10.1016/j.bbcan.2022.188737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/09/2022] [Accepted: 05/28/2022] [Indexed: 12/30/2022]
Abstract
The dysregulation of leukemia inhibitory factor (LIF) and its cognate receptor (LIFR) has been associated with multiple cancer initiation, progression, and metastasis. LIF plays a significant tumor-promoting role in cancer, while LIFR functions as a tumor promoter and suppressor. Epithelial and stromal cells secrete LIF via autocrine and paracrine signaling mechanism(s) that bind with LIFR and subsequently with co-receptor glycoprotein 130 (gp130) to activate JAK/STAT1/3, PI3K/AKT, mTORC1/p70s6K, Hippo/YAP, and MAPK signaling pathways. Clinically, activating the LIF/LIFR axis is associated with poor survival and anti-cancer therapy resistance. This review article provides an overview of the structure and ligands of LIFR, LIF/LIFR signaling in developmental biology, stem cells, cancer stem cells, genetics and epigenetics of LIFR, LIFR regulation by long non-coding RNAs and miRNAs, and LIF/LIFR signaling in cancers. Finally, neutralizing antibodies and small molecule inhibitors preferentially blocking LIF interaction with LIFR and antagonists against LIFR under pre-clinical and early-phase pre-clinical trials were discussed.
Collapse
Affiliation(s)
- Sushanta Halder
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Seema Parte
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Prakash Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Eppley Institute for Research in Cancer and Allied Diseases, USA,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA,Corresponding authors at: Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. (S.K. Batra), (P. Seshacharyulu)
| |
Collapse
|
19
|
Na E, Allen E, Baird LA, Odom CV, Korkmaz FT, Shenoy AT, Matschulat AM, Jones MR, Kotton DN, Mizgerd JP, Varelas X, Traber KE, Quinton LJ. Epithelial LIF signaling limits apoptosis and lung injury during bacterial pneumonia. Am J Physiol Lung Cell Mol Physiol 2022; 322:L550-L563. [PMID: 35137631 PMCID: PMC8957336 DOI: 10.1152/ajplung.00325.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
During bacterial pneumonia, alveolar epithelial cells are critical for maintaining gas exchange and providing antimicrobial as well as pro-immune properties. We previously demonstrated that leukemia inhibitory factor (LIF), an IL-6 family cytokine, is produced by type II alveolar epithelial cells (ATII) and is critical for tissue protection during bacterial pneumonia. However, the target cells and mechanisms of LIF-mediated protection remain unknown. Here, we demonstrate that antibody-induced LIF blockade remodels the lung epithelial transcriptome in association with increased apoptosis. Based on these data, we performed pneumonia studies using a novel mouse model in which LIFR (the unique receptor for LIF) is absent in lung epithelium. Although LIFR is expressed on the surface of epithelial cells, its absence only minimally contributed to tissue protection during pneumonia. Single-cell RNA-sequencing (scRNAseq) was conducted to identify adult murine lung cell types most prominently expressing Lifr, revealing endothelial cells, mesenchymal cells, and ATIIs as major sources of Lifr. Sequencing data indicated that ATII cells were significantly impacted by pneumonia, with additional differences observed in response to LIF neutralization, including but not limited to gene programs related to cell death, injury, and inflammation. Overall, our data suggest that LIF signaling on epithelial cells alters responses in this cell type during pneumonia. However, our results also suggest separate and perhaps more prominent roles of LIFR in other cell types, such as endothelial cells or mesenchymal cells, which provide grounds for future investigation.
Collapse
Affiliation(s)
- Elim Na
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Eri Allen
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Lillia A Baird
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Christine V Odom
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
| | - Filiz T Korkmaz
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Anukul T Shenoy
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Adeline M Matschulat
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew R Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Darrell N Kotton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Xaralabos Varelas
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Lee J Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| |
Collapse
|
20
|
Chemerinski A, Liu C, Morelli SS, Babwah AV, Douglas NC. Mouse Cre drivers: tools for studying disorders of the human female neuroendocrine-reproductive axis†. Biol Reprod 2022; 106:835-853. [PMID: 35084017 PMCID: PMC9113446 DOI: 10.1093/biolre/ioac012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Benign disorders of the human female reproductive system, such primary ovarian insufficiency and polycystic ovary syndrome are associated with infertility and recurrent miscarriage, as well as increased risk of adverse health outcomes, including cardiovascular disease and type 2 diabetes. For many of these conditions, the contributing molecular and cellular processes are poorly understood. The overarching similarities between mice and humans have rendered mouse models irreplaceable in understanding normal physiology and elucidating pathological processes that underlie disorders of the female reproductive system. The utilization of Cre-LoxP recombination technology, which allows for spatial and temporal control of gene expression, has identified the role of numerous genes in development of the female reproductive system and in processes, such as ovulation and endometrial decidualization, that are required for the establishment and maintenance of pregnancy in mammals. In this comprehensive review, we provide a detailed overview of Cre drivers with activity in the neuroendocrine-reproductive axis that have been used to study disruptions in key intracellular signaling pathways. We first summarize normal development of the hypothalamus, pituitary, ovary, and uterus, highlighting similarities and differences between mice and humans. We then describe human conditions resulting from abnormal development and/or function of the organ. Finally, we describe loss-of-function models for each Cre driver that elegantly recapitulate some key features of the human condition and are associated with impaired fertility. The examples we provide illustrate use of each Cre driver as a tool for elucidating genetic and molecular underpinnings of reproductive dysfunction.
Collapse
Affiliation(s)
- Anat Chemerinski
- Correspondence: Rutgers New Jersey Medical School, 185 South Orange Avenue, MSB E561, Newark, NJ 07103, USA. Tel: 301-910-6800; Fax: 973-972-4574. E-mail:
| | | | - Sara S Morelli
- Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | | | | |
Collapse
|
21
|
Yao F, Deng Y, Zhao Y, Mei Y, Zhang Y, Liu X, Martinez C, Su X, Rosato RR, Teng H, Hang Q, Yap S, Chen D, Wang Y, Chen MJM, Zhang M, Liang H, Xie D, Chen X, Zhu H, Chang JC, You MJ, Sun Y, Gan B, Ma L. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis. Nat Commun 2021; 12:7333. [PMID: 34921145 PMCID: PMC8683481 DOI: 10.1038/s41467-021-27452-9] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
The growing knowledge of ferroptosis has suggested the role and therapeutic potential of ferroptosis in cancer, but has not been translated into effective therapy. Liver cancer, primarily hepatocellular carcinoma (HCC), is highly lethal with limited treatment options. LIFR is frequently downregulated in HCC. Here, by studying hepatocyte-specific and inducible Lifr-knockout mice, we show that loss of Lifr promotes liver tumorigenesis and confers resistance to drug-induced ferroptosis. Mechanistically, loss of LIFR activates NF-κB signaling through SHP1, leading to upregulation of the iron-sequestering cytokine LCN2, which depletes iron and renders insensitivity to ferroptosis inducers. Notably, an LCN2-neutralizing antibody enhances the ferroptosis-inducing and anticancer effects of sorafenib on HCC patient-derived xenograft tumors with low LIFR expression and high LCN2 expression. Thus, anti-LCN2 therapy is a promising way to improve liver cancer treatment by targeting ferroptosis.
Collapse
Affiliation(s)
- Fan Yao
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yalan Deng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ying Mei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Consuelo Martinez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaohua Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roberto R Rosato
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Hongqi Teng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qinglei Hang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shannon Yap
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dahu Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yumeng Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mei-Ju May Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mutian Zhang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jenny C Chang
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
22
|
Li M, Ning N, Liu Y, Li X, Mei Q, Zhou J, Huang Q, Xiang W, Zhang L, Xu X. The potential of Zishen Yutai pills to facilitate endometrial recovery and restore fertility after induced abortion in rats. PHARMACEUTICAL BIOLOGY 2021; 59:1505-1516. [PMID: 34711116 PMCID: PMC8555532 DOI: 10.1080/13880209.2021.1993272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Abortions damage the endometrium in women. Currently, therapeutic options for endometrial recovery are limited. Zishen Yutai Pill (ZYP) was found to promote endometrial blood supply as a traditional Chinese medicine. However, whether ZYP promotes endometrial recovery post-abortion has not yet been explored. OBJECTIVE This study evaluated the role of ZYP in rat endometrial recovery after induced abortion and explored its mechanism of action. MATERIALS AND METHODS Sprague-Dawley rats were divided into three groups: no-operation group, control group, and ZYP group. The rats in the control and ZYP group were induced abortion, and then treated with normal saline or ZYPs, respectively, for 1-3 oestrous cycles. Morphological changes in the endometrium were examined. Expression levels of the factors related to endometrial recovery were analyzed. The duration of this study was almost seven months. RESULTS The endometrial thickness (7.3 ± 0.17 mm) and number of glands (5.5 ± 0.20) increased significantly in the ZYP group compared with those in the control group (5.5 ± 0.15 mm and 3.5 ± 0.18; p < 0.05). Fibrosis of the endometrium was ameliorated by ZYP administration (45 ± 6% vs. 58 ± 7%; p < 0.05). ZYPs treatment increased the expression of VEGF, ER, MMP-9, LIF, and HB-EGF, but decreased TGF-β expression. Moreover, the average number of pups in the ZYP group (9.0 ± 1.5) was greater than that in the control (4 ± 1.3). DISCUSSION AND CONCLUSION ZYPs accelerate endometrial recovery and restored fertility in rats, suggesting its potential to promote human endometrial repair.
Collapse
Affiliation(s)
- Mianmian Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Company Limited, Guangzhou, Guangdong, China
| | - Yu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohui Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiebin Zhou
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Company Limited, Guangzhou, Guangdong, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Company Limited, Guangzhou, Guangdong, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Fukui Y, Hirota Y, Saito-Fujita T, Aikawa S, Hiraoka T, Kaku T, Hirata T, Akaeda S, Matsuo M, Shimizu-Hirota R, Takeda N, Ikawa M, Osuga Y. Uterine Epithelial LIF Receptors Contribute to Implantation Chamber Formation in Blastocyst Attachment. Endocrinology 2021; 162:6353290. [PMID: 34402888 DOI: 10.1210/endocr/bqab169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/28/2022]
Abstract
Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/antimüllerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.
Collapse
Affiliation(s)
- Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
24
|
Dhakal P, Fitzgerald HC, Kelleher AM, Liu H, Spencer TE. Uterine glands impact embryo survival and stromal cell decidualization in mice. FASEB J 2021; 35:e21938. [PMID: 34547143 DOI: 10.1096/fj.202101170rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Uterine glands are essential for the establishment of pregnancy and have critical roles in endometrial receptivity to blastocyst implantation, stromal cell decidualization, and placentation. Uterine gland dysfunction is considered a major contributing factor to pregnancy loss, however our understanding of how glands impact embryo survival and stromal cell decidualization is incomplete. Forkhead box A2 (FOXA2) is expressed only in the glandular epithelium and regulates its development and function. Mice with a conditional deletion of FOXA2 in the uterus are infertile due to defective embryo implantation arising from a lack of leukemia inhibitory factor (LIF), a critical factor of uterine gland origin. Here, a glandless FOXA2-deficient mouse model, coupled with LIF repletion to rescue the implantation defect, was used to investigate the roles of uterine glands in embryo survival and decidualization. Studies found that embryo survival and decidualization were compromised in glandless FOXA2-deficient mice on gestational day 6.5, resulting in abrupt pregnancy loss by day 7.5. These findings strongly support the hypothesis that uterine glands secrete factors other than LIF that impact embryo survival and stromal cell decidualization for pregnancy success.
Collapse
Affiliation(s)
- Pramod Dhakal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | | | - Andrew M Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.,Division of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
25
|
Zhao Y, He D, Zeng H, Luo J, Yang S, Chen J, Abdullah RK, Liu N. Expression and significance of miR-30d-5p and SOCS1 in patients with recurrent implantation failure during implantation window. Reprod Biol Endocrinol 2021; 19:138. [PMID: 34496883 PMCID: PMC8425163 DOI: 10.1186/s12958-021-00820-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Poor endometrial receptivity is a major factor that leads to recurrent implantation failure. However, the traditional method cannot accurately evaluate endometrial receptivity. Various studies have indicated that microRNAs (miRNAs) are involved in multiple processes of embryo implantation, but the role of miRNAs in endometrial receptivity in patients with recurrent implantation failure (RIF) remains elusive. In the present study, we investigated the presence of pinopodes and the roles of miR-30d-5p, suppressor of cytokine signalling 1 (SOCS1) and the leukaemia inhibitory factor (LIF) pathway in women with a history of RIF during the implantation window. METHODS Endometrial tissue samples were collected between January 2018 to June 2019 from two groups of women who underwent in vitro fertilisation and embryo transfer (IVF-ET) or frozen ET. The RIF group included 20 women who underwent ≥ 3 ETs, including a total of ≥ 4 good-quality embryos, without pregnancy, whereas the control group included 10 women who had given birth at least once in the past year. An endometrial biopsy was performed during the implantation window (LH + 7). The development of pinopodes in the endometrial biopsy samples from all groups was evaluated using scanning electron microscopy (SEM). Quantitative reverse transcription-polymerase chain reaction and western blotting were used to investigate the expression levels of miR-30d-5p, SOCS1, and the LIF pathway. RESULTS The presence of developed pinopodes decreased in patients with RIF on LH + 7. The expression level of miR-30d-5p decreased in the endometria during the implantation window of patients with RIF, whereas the mRNA and protein levels of SOCS1 were significantly higher in the RIF group than in the control group. Furthermore, a negative correlation was observed between the expression of miR-30d-5p and SOCS1 (r2 = 0.8362). In addition, a significant decrease in LIF and p-STAT3 expression was observed during the implantation window in patients with RIF. CONCLUSIONS MiR-30d-5p and SOCS1 may be potential biomarkers for endometrial receptivity. Changes in pinopode development and abnormal expression of miR-30d-5p, SOCS1 and LIF pathway in the endometrium could be the reasons for implantation failure.
Collapse
Affiliation(s)
- Yuhao Zhao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Dongmei He
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hong Zeng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiefeng Luo
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuang Yang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jingjing Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Raed K Abdullah
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Nenghui Liu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
26
|
Chen S, Liu B, Li J, Liao S, Bi Y, Huang W, Yuan L, Yang Y, Qin A. Talin1 regulates endometrial adhesive capacity through the Ras signaling pathway. Life Sci 2021; 274:119332. [PMID: 33711384 DOI: 10.1016/j.lfs.2021.119332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023]
Abstract
AIMS Blastocyst implantation is mainly depended on the adhesion between cells and cell matrix. Endometrial adhesion plays an important role in establishing embryo implantation, but the underlying mechanisms are remains unclear. Talin1 is a local adhesion complex protein that is necessary for cell adhesion and movement. However, the role and mechanisms of Talin1 in embryo implantation are still unclear. MAIN METHODS The expression of Talin1 and Integrin αvβ3 was measured in the receptive endometrium from the RIF (Recurrent implantation failure) cohort and NC (normal fertile control group) cohort. A JEG-3 trophoblast and endometrial epithelial cell adhesion model and pregnant mouse model were established. The molecular mechanism of Talin1-mediated cell adhesion was explored by RNA sequencing, RT-qPCR, as well as western blotting assays. KEY FINDINGS Talin1 enhances endometrial cell adhesion by regulating the Ras signaling pathway, and ultimately facilitates embryo implantation. SIGNIFICANCE This study revealed the molecular mechanisms of regarding the pathogenesis of RIF caused by endometrial receptivity insufficiency. Further pharmacological research on the Ras signaling pathway would be valuable and might provide new therapeutic targets for RIF patients.
Collapse
Affiliation(s)
- Saiqiong Chen
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China; Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Bo Liu
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jingjing Li
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, China
| | - Shengbin Liao
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yin Bi
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Weiyu Huang
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Lifang Yuan
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yihua Yang
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Aiping Qin
- Center of Reproductive Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
27
|
Griffiths RM, Pru CA, Behura SK, Cronrath AR, McCallum ML, Kelp NC, Winuthayanon W, Spencer TE, Pru JK. AMPK is required for uterine receptivity and normal responses to steroid hormones. Reproduction 2021; 159:707-717. [PMID: 32191914 DOI: 10.1530/rep-19-0402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that 5'-AMP-activated protein kinase (AMPK) is essential for normal reproductive functions in female mice. Conditional ablation of Prkaa1 and Prkaa2, genes that encode the α1 and α2 catalytic domains of AMPK, resulted in early reproductive senescence, faulty artificial decidualization, uterine inflammation and fibrotic postparturient endometrial regeneration. We also noted a delay in the timing of embryo implantation in Prkaa1/2d/d female mice, suggesting a role for AMPK in establishing uterine receptivity. As outlined in new studies here, conditional uterine ablation of Prkaa1/2 led to an increase in ESR1 in the uteri of Prkaa1/2d/d mice, resulting in prolonged epithelial cell proliferation and retention of E2-induced gene expression (e.g. Msx1, Muc1, Ltf) through the implantation window. Within the stromal compartment, stromal cell proliferation was reduced by five-fold in Prkaa1/2d/d mice, and this was accompanied by a significant decrease in cell cycle regulatory genes and aberrant expression of decidualization marker genes such as Hand2, Bmp2, Fst and Inhbb. This phenotype is consistent with our prior study, demonstrating a failure of the Prkaa1/2d/d uterus to undergo decidualization. Despite these uterine defects, ovarian function seemed to be normal following ablation of Prkaa1/2 from peri-ovulatory follicles in which ovulation, luteinization and serum progesterone levels were not different on day 5 of pregnancy or pseudopregnancy between Prkaa1/2fl/fl and Prkaa1/2d/d mice. These cumulative findings demonstrate that AMPK activity plays a prominent role in mediating several steroid hormone-dependent events such as epithelial cell proliferation, uterine receptivity and decidualization as pregnancy is established.
Collapse
Affiliation(s)
- Richard M Griffiths
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Cindy A Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Susanta K Behura
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - Andrea R Cronrath
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Melissa L McCallum
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Nicole C Kelp
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Wipawee Winuthayanon
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology, and Women's Health, University of Missouri, Columbia, Missouri, USA
| | - James K Pru
- Department of Animal Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
28
|
Ajdary M, Zandieh Z, Amjadi FS, Keyhanfar F, Mehdizadeh M, Aflatoonian R. Interaction of sperm with endometrium can regulate genes involved in endometrial receptivity pathway in mice: An experimental study. Int J Reprod Biomed 2020; 18:815-824. [PMID: 33134794 PMCID: PMC7569714 DOI: 10.18502/ijrm.v13i10.7765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/04/2019] [Accepted: 05/30/2020] [Indexed: 11/24/2022] Open
Abstract
Background Many researchers consider implantation and endometrial receptivity as pertinent issues in reproductive science. Although, several experiments have been performed and their results evaluated, yet there is no confirmed evidence about the related factors and the role of sperm in endometrial receptivity. Objective To investigate the effect of the sperm-endometrium interaction in regulating genes involved in the endometrial receptivity pathway. Materials and Methods In this experimental study, 10 male and 30 female NMRI mice were included, and half of the male cases were vasectomized. The subjects were divided into two groups as follows; group 1 (case) comprised of 15 females mated with 5 non-vasectomized male mice, while group 2 (control) consisted of 15 females mated with 5 vasectomized males. Cases were sacrificed and assessed after 36 hr and the endometrial tissue was extracted and kept at -80°C until the next use. The expression of the endometrial receptivity pathway genes, including VEGF, HBEGF, FGF2, EGF, LIF, LIFR, HOXA10, MUC1, PGR, and CSF, was examined in both groups. For statistical analysis, an independent samples test (Mean ± SD) was used. Results The mRNA levels of LIF (p = 0.045), LIFR (p = 0.040), MUC1 (p = 0.032), VEGF (p = 0.022), EFG (p = 0.035), and FGF2 (p = 0.040) were significantly upregulated in the case group compared with the control group. Conclusion Finally, seminal plasma was observed to be effective in expressing the involved genes in the successful implantation pathway, including LIF, LIFR, MUC1, VEGF, EGF, and FGF2.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Amjadi
- Department of Anatomical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
29
|
Orazov M, Radzinsky V, Khamoshina M, Volkova S, Abitova M, Shustova V. ENDOMETRIC FACTOR OF ENDOMETRIOSIS-ASSOCIATED INFERTILITY. REPRODUCTIVE MEDICINE 2020. [DOI: 10.37800/rm2020-1-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND
Despite numerous studies and a not decreasing amount of endometriosis and associated infertility, the study of endometriosis- associated infertility does not lose its relevance, and the characteristics of the endometrium is appeared to be central and predictive factors that determine the success of overcoming infertility.
OBJECTIVE
To reflect the molecular genetic features of the state of the endometrium with endometriosis associated with infertility, expand the understanding of its pathogenesis, substantiate theoretical aspects of the use of hormonal preimplantation preparation of the endometrium in endometriosis-associated infertility.
MATERIALS AND METHODS
To write this review, we searched for domestic and foreign publications in Russian and international search systems (eLIBRARY, PubMed, MedLine, Crossref, etc.) over the past 1–16 years.
RESULTS
The model of changes in endometrial receptivity is examined the mechanisms of resistance to progesterone and overproduction of estrogens as key endometrial factors in the pathogenesis of endometriosis-associated infertility and theoretical justification for the use of hormonal therapy for the preimplantation preparation of compromised endometrium is given.
CONCLUSION
Despite the large number of publications, there is no consensus and the same approaches to determining the receptivity of the endometrium and its role in implantation disorders in endometriosis, as well as clear ideas about the pathogenesis of endometriosis-associated infertility. A personalized approach in the management of patients with endometriosis-associated infertility will lead to a common denominator of many factors affecting reproduction and determine their potential role in both the diagnosis and treatment of a particular patient.
Collapse
|
30
|
Jahanbin KH, Ghafourian M, Rashno M. Effect of Different Concentrations of Leukemia Inhibitory Factor on Gene Expression of Vascular Endothelial Growth Factor-A in Trophoblast Tumor Cell Line. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:116-121. [PMID: 32681623 PMCID: PMC7382685 DOI: 10.22074/ijfs.2020.6058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Background Several studies have shown that leukemia inhibitory factor (LIF) is one of the most important cytokines participating in the process of embryo implantation and pregnancy, while, the role of this factor on vascular endothelial factor-A (VEGF-A), as one of the most important angiogenic factor, has not been fully investigated yet. The aim of this study was to evaluate the effect of LIF on gene expression of VEGF in the choriocarcinoma cells (JEG-3). Materials and Methods In this experimental study, JEG-3 choriocarcinoma cells were treated with different concentrations of LIF (1, 10, and 50 ng) for 6, 12, 24, 48 and 72 hours. Expression of VEGF was analyzed by real-time PCR. Delta CTs were subjected to one-way analysis of variance (ANOVA) and a post hoc Tukey's test by SPSS version 25.0 software for data analyzing. Results In the stimulated cells, different concentrations of LIF caused significant decrease of VEGF gene expression (P<0.05) at 12, 24 and 48 hours. In contrast, it was increased after 72 hours (P<0.001). Analysis of data after 6 hours also showed that level of VEGF gene expression was significantly decreased by increasing LIF concentration (P<0.001). Conclusion Expression level of VEGF gene was decreased in trophoblast cells (except after 72 hours) under the effect of different concentrations of LIF in a time-dependent manner. So, this study showed that further studies are needed to determine the effect of LIF on other angiogenic factors in trophoblast cells.
Collapse
Affiliation(s)
- K Hodakaram Jahanbin
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic Address: .,Fertility, Infertility, and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
31
|
Zhou X, Xu B, Zhang D, Jiang X, Chang HM, Leung PCK, Xia X, Zhang A. Loss of CDYL Results in Suppression of CTNNB1 and Decreased Endometrial Receptivity. Front Cell Dev Biol 2020; 8:105. [PMID: 32158757 PMCID: PMC7051920 DOI: 10.3389/fcell.2020.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Impaired endometrial receptivity is one of the major causes of recurrent implantation failure (RIF), although the underlying molecular mechanism has not been fully elucidated. In the present study, we demonstrated that chromodomain Y like (CDYL) was highly expressed in the endometrium at mid-secretory phase during the normal menstrual cycles. However, the expression of CDYL was downregulated in the endometrial tissues obtained from women with RIF, consistently with the protein level of LIF, which is a marker of endometrial receptivity. In CDYL-knockdown human endometrial Ishikawa cells, we identified 1738 differentially expressed genes (DEGs). Importantly, the catenin beta 1 (CTNNB1) expression was dramatically reduced responding to the CDYL inhibition, both in Ishikawa cells as well as the primary endometrial epithelial and stromal cells. In addition, the expression of CTNNB1was decreased in the endometrium from RIF patients as well. These results suggested that the expression of CTNNB1 was regulated by CDYL in endometrium. The cell migration was impaired by CDYL-knockdown in Ishikawa cells and primary endometrial stromal cells (ESCs), which could be rescued by CDYL or CTNNB1 overexpression. Collectively, our findings indicated that the decreased expression of CDYL may suppress endometrial cell migration capability by affecting CTNNB1 expression, which would contribute to poor endometrial receptivity in women with RIF.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bufang Xu
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoping Jiang
- Department of Obstetrics and Gynecology, Chinese People's Armed Police Force Shanghai Corps Hospital, Shanghai, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Xiaoyu Xia
- Department of Histoembryology, Genetics and Developmental Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Aijun Zhang
- Department of Reproductive Medical Center, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Ye X. Uterine Luminal Epithelium as the Transient Gateway for Embryo Implantation. Trends Endocrinol Metab 2020; 31:165-180. [PMID: 31866217 PMCID: PMC6983336 DOI: 10.1016/j.tem.2019.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
The uterine luminal epithelium (LE) is the first maternal contact for an implanting embryo. Intrauterine fluid resorption, cessation of LE proliferation and apoptosis, and LE structural changes are prerequisites for establishing transient uterine receptivity for embryo implantation. Vesicle trafficking in the LE and receptor-mediated paracrine and autocrine mechanisms are crucial both for LE preparation and LE communications with the embryo and stroma during the initiation of embryo implantation. This review mainly covers recent in vivo studies in LE of mouse models from 0.5 days post-coitus (D0.5) to ∼D4 20 h when the trophoblasts pass through the LE layer for embryo implantation. The review is organized into three interconnected sections: preimplantation LE preparation for embryo attachment, embryo-LE communications, and LE-stroma communications.
Collapse
Affiliation(s)
- Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
33
|
Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int J Mol Sci 2019; 20:E5332. [PMID: 31717776 PMCID: PMC6862690 DOI: 10.3390/ijms20215332] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recurrent pregnancy loss (RPL) represents an unresolved problem for contemporary gynecology and obstetrics. In fact, it is not only a relevant complication of pregnancy, but is also a significant reproductive disorder affecting around 5% of couples desiring a child. The current knowledge on RPL is largely incomplete, since nearly 50% of RPL cases are still classified as unexplained. Emerging evidence indicates that the endometrium is a key tissue involved in the correct immunologic dialogue between the mother and the conceptus, which is a condition essential for the proper establishment and maintenance of a successful pregnancy. The immunologic events occurring at the maternal-fetal interface within the endometrium in early pregnancy are extremely complex and involve a large array of immune cells and molecules with immunoregulatory properties. A growing body of experimental studies suggests that endometrial immune dysregulation could be responsible for several, if not many, cases of RPL of unknown origin. The present article reviews the major immunologic pathways, cells, and molecular determinants involved in the endometrial dysfunction observed with specific application to RPL.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Adalgisa Pietropolli
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Laego A. Gemelli, 8, 00168, Rome Italy;
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Emilio Piccione
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA;
| |
Collapse
|
34
|
Gurbuz RH, Atilla P, Orgul G, Tanacan A, Dolgun A, Cakar AN, Beksac MS. Impaired Placentation and Early Pregnancy Loss in Patients with MTHFR Polymorphisms and Type-1 Diabetes Mellitus. Fetal Pediatr Pathol 2019; 38:376-386. [PMID: 30955395 DOI: 10.1080/15513815.2019.1600623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Objective: To evaluate the impact of type-1 diabetes mellitus (DM) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms on impaired placentation leading to early pregnancy loss. Methods: Miscarriage materials were obtained from eight pregnant women with type-1 DM without MTHFR polymorphism, eight with MTHFR polymorphisms without type-1 DM, and eight controls with neither DM nor MTHFR polymorphisms. Insulin-like growth factor-1 (IGF-1), leukemia inhibitory factor (LIF), and Beclin-1 expression were assessed to evaluate placentation. Results: Cytoplasmic LIF, IGF-1, and Beclin-1 expression were decreased in the superficial and glandular epithelial cells of the decidua in both study groups. LIF expression was increased in interstitial trophoblasts in the MTHFR group. IGF-1 expression was decreased in the decidual cells and interstitial trophoblasts in both study groups, while the decrease in stromal cells was noted only in type-1 DM group. Beclin-1 expression was increased in interstitial and villous trophoblasts in both study groups. Conclusion: The expression of IGF-1, LIF, and Beclin-1 are altered in both the decidua and the trophoblasts in pregnancies of women with type-1 DM and MTHFR polymorphisms, compared to normal pregnancies undergoing (elective) terminations.
Collapse
Affiliation(s)
- Rumeysa Hekimoglu Gurbuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Pergin Atilla
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Gokcen Orgul
- Department of Obstetrics and Gynecology, Division of Perinatology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Atakan Tanacan
- Department of Obstetrics and Gynecology, Division of Perinatology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| | - Anil Dolgun
- College of Science, Engineering and Health, Lecturer of Statistics, RMIT University , Melbourne , Australia
| | - Ayse Nur Cakar
- Department of Histogy and Embryology, TOBB University Faculty of Medicine , Ankara , Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Division of Perinatology, Hacettepe University Faculty of Medicine , Ankara , Turkey
| |
Collapse
|
35
|
Yu M, Qin H, Wang H, Liu J, Liu S, Yan Q. N-glycosylation of uterine endometrium determines its receptivity. J Cell Physiol 2019; 235:1076-1089. [PMID: 31276203 DOI: 10.1002/jcp.29022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During "window of implantation", uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.
Collapse
Affiliation(s)
- Ming Yu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Jianwei Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, Liaoning, China
| |
Collapse
|
36
|
Wang X, Yu Q. Endometriosis-related ceRNA network to identify predictive biomarkers of endometrial receptivity. Epigenomics 2019; 11:147-167. [PMID: 30638056 DOI: 10.2217/epi-2018-0190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM As RNA, which plays a role in the regulation of endometrial receptivity, can be modulated via ceRNA mechanisms, we constructed a ceRNA network to explore potential RNA/ceRNA biomarkers indicating endometrial receptivity associated with endometriosis. MATERIALS & METHODS RNA sequencing was performed on eutopic endometrium from eight patients with and without endometriosis. Bioinformatics algorithms were used to predict ceRNA network and pathway analysis. RESULTS We identified an endometriosis-associated ceRNA network involving 45 pathways and four ceRNAs as potential predictive biomarkers for endometrial receptivity. Patients with endometriosis presented lower levels of progesterone receptor type B expression. CONCLUSION Differentially expressed RNAs and lower progesterone receptors type B levels in endometriosis might be related to the impairment of endometrial receptivity.
Collapse
Affiliation(s)
- Xi Wang
- Department of Obstetrics & Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Yu
- Department of Obstetrics & Gynaecology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
37
|
St-Jean G, Boyer A, Zamberlam G, Godin P, Paquet M, Boerboom D. Targeted ablation of Wnt4 and Wnt5a in Müllerian duct mesenchyme impedes endometrial gland development and causes partial Müllerian agenesis. Biol Reprod 2019; 100:49-60. [PMID: 30010727 DOI: 10.1093/biolre/ioy160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Wnt4 and Wnt5a have well-established roles in the embryonic development of the female reproductive tract, as well as in implantation, decidualization, and ovarian function in adult mice. Although these roles appear to overlap, whether Wnt5a and Wnt4 are functionally redundant in these tissues has not been determined. We addressed this by concomitantly inactivating Wnt4 and Wnt5a in the Müllerian mesenchyme and in ovarian granulosa cells by crossing mice bearing floxed alleles to the Amhr2cre strain. Whereas fertility was reduced by ∼50% in Wnt4flox/flox; Amhr2cre/+ and Wnt5aflox/flox; Amhr2cre/+ females, Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice were either nearly or completely sterile. Loss of fertility was not due to an ovarian defect, as serum ovarian hormone levels, follicle counts, and ovulation rates were comparable to controls. Conversely, the uterus was abnormal in Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice, with thin myometrial and stromal layers, frequent fibrosis and a >90% reduction in numbers of uterine glands, suggesting redundant or additive roles of Wnt4 and Wnt5a in uterine adenogenesis. Loss of fertility in Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ mice was attributed to defects in decidualization, implantation, and placental development, the severity of which were proportional to the extent of gland loss. Furthermore, a third of Wnt4flox/flox; Wnt5aflox/flox; Amhr2cre/+ females had a partial agenesis of Müllerian duct-derived structures, but with normal oviducts and ovaries. Together, our results suggest that Wnt4 and Wnt5a play redundant roles in the development of the female reproductive tract, and may provide insight into the etiology of certain cases of Müllerian agenesis in women.
Collapse
Affiliation(s)
- Guillaume St-Jean
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Alexandre Boyer
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Gustavo Zamberlam
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Philippe Godin
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marilène Paquet
- Département de Pathologie et de Microbiologie, Université de Montréal, Québec, Canada
| | - Derek Boerboom
- Département de Biomédecine Vétérinaire, Université de Montréal, Québec, Canada
| |
Collapse
|
38
|
Namiki T, Ito J, Kashiwazaki N. Molecular mechanisms of embryonic implantation in mammals: Lessons from the gene manipulation of mice. Reprod Med Biol 2018; 17:331-342. [PMID: 30377389 PMCID: PMC6194304 DOI: 10.1002/rmb2.12103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human infertility has become a serious and social issue all over the world, especially in developed countries. Numerous types of assisted reproductive technology have been developed and are widely used to treat infertility. However, pregnancy outcomes require further improvement. It is essential to understand the cross-talk between the uterus (mother) and the embryo (fetus) in pregnancy, which is a very complicated event. METHODS The mammalian uterus requires many physiological and morphological changes for pregnancy-associated events, including implantation, decidualization, placentation, and parturition, to occur. Here is discussed recent advances in the knowledge of the molecular mechanisms underlying these reproductive events - in particular, embryonic implantation and decidualization - based on original and review articles. MAIN FINDINGS RESULTS In mice, embryonic implantation and decidualization are regulated by two steroid hormones: estrogen and progesterone. Along with these hormones, cytokines, cell-cycle regulators, growth factors, and transcription factors have essential roles in implantation and decidualization in mice. CONCLUSION Recent studies using the gene manipulation of mice have given considerable insight into the molecular mechanisms underlying embryonic implantation and decidualization. However, as most of the findings are based on mice, comparative research using different mammalian species will be useful for a better understanding of the species-dependent differences that are associated with reproductive events, including embryonic implantation.
Collapse
Affiliation(s)
- Takafumi Namiki
- Laboratory of Animal ReproductionGraduate School of Veterinary ScienceAzabu UniversitySagamiharaJapan
| | - Junya Ito
- Laboratory of Animal ReproductionGraduate School of Veterinary ScienceAzabu UniversitySagamiharaJapan
- School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Naomi Kashiwazaki
- Laboratory of Animal ReproductionGraduate School of Veterinary ScienceAzabu UniversitySagamiharaJapan
- School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| |
Collapse
|
39
|
Uterine glands coordinate on-time embryo implantation and impact endometrial decidualization for pregnancy success. Nat Commun 2018; 9:2435. [PMID: 29934619 PMCID: PMC6015089 DOI: 10.1038/s41467-018-04848-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022] Open
Abstract
Uterine glands are essential for pregnancy establishment. By employing forkhead box A2 (FOXA2)-deficient mouse models coupled with leukemia inhibitory factor (LIF) repletion, we reveal definitive roles of uterine glands in embryo implantation and stromal cell decidualization. Here we report that LIF from the uterine glands initiates embryo-uterine communication, leading to embryo attachment and stromal cell decidualization. Detailed histological and molecular analyses discovered that implantation crypt formation does not involve uterine glands, but removal of the luminal epithelium is delayed and subsequent decidualization fails in LIF-replaced glandless but not gland-containing FOXA2-deficient mice. Adverse ripple effects of those dysregulated events in the glandless uterus result in embryo resorption and pregnancy failure. These studies provide evidence that uterine glands synchronize embryo-endometrial interactions, coordinate on-time embryo implantation, and impact stromal cell decidualization, thereby ensuring embryo viability, placental growth, and pregnancy success. The transcription factor FOXA2 is specifically expressed in uterine glands. Here, using two conditional FOXA2 knockout mouse models, the authors show that glandular epithelia of the endometrium are required for timely embryo implantation and subsequent endometrial decidualization during successful pregnancy establishment.
Collapse
|
40
|
Guo S, Li Z, Yan L, Sun Y, Feng Y. GnRH agonist improves pregnancy outcome in mice with induced adenomyosis by restoring endometrial receptivity. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1621-1631. [PMID: 29922037 PMCID: PMC5995291 DOI: 10.2147/dddt.s162541] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Purpose Adenomyosis has a negative impact on female fertility. GnRH agonist treatment can improve pregnancy outcomes in women with adenomyosis. However, the impact of GnRH agonist upon endometrium receptivity of patients with adenomyosis remains unclear. In this study, endometrial receptivity and pregnancy outcome were investigated using a mouse model of adenomyosis. Materials and methods Adenomyosis was induced in 12 female ICR mice, neonatally treated with tamoxifen, while another six female mice (control group) received solvent only. At 75 days, the induced adenomyosis group was randomly divided into two groups: an untreated group and a group treated with GnRH agonist (n = 6 each). Sixty days later, the mice were mated and pregnancy outcomes were observed and compared among the three groups (n = 6 each). In a parallel experiment using the same treatment regimes, uterus samples were collected on day 4 of pregnancy for immunohistochemistry, gene (quantitative polymerase chain reaction) and protein expression (Western blot), and scanning electron microscopy analyses. Results We found that the average live litter size was reduced in the adenomyosis compared with control group (8 ± 0.56 versus 13 ± 0.71; P = 0.03). However, the litter size was significantly increased in the treated with GnRH agonist group compared with the untreated group (12 ± 0.35 versus 8 ± 0.56; P = 0.04). The uterine expression levels of Hoxa10, Hoxa11, Lif and integrin b3 mRNA and protein were decreased in the adenomyosis group, and were significantly increased after GnRH agonist treatment. Additionally, pinopodes were reduced in number and poorly developed in mice with induced adenomyosis. However, pinopodes were abundant and well-developed in the GnRH agonist treatment group. Conclusion Adenomyosis may have an adverse impact on endometrial receptivity and reduce pregnancy outcomes in mice. However, GnRH agonist may improve the pregnancy outcome by partially restoring endometrial receptivity.
Collapse
Affiliation(s)
- Song Guo
- Department of Gynaecology and Obstetrics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zhichao Li
- Gynecology, Shanghai Ji Ai Genetics & In Vitro Fertilization Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Li Yan
- Department of Gynaecology and Obstetrics, Qianfoshan Hospital, Shandong University, Jinan, China
| | - Yijuan Sun
- Gynecology, Shanghai Ji Ai Genetics & In Vitro Fertilization Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yun Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Raheem KA. Cytokines, growth factors and macromolecules as mediators of implantation in mammalian species. Int J Vet Sci Med 2017; 6:S6-S14. [PMID: 30761315 PMCID: PMC6161864 DOI: 10.1016/j.ijvsm.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/12/2022] Open
Abstract
Implantation is one of the most critical steps in mammalian reproduction and implantation failure constitutes a major cause of infertility in both animals and humans. The mechanism of implantation is exclusively under the control of ovarian steroids progesterone and oestrogen whose actions are mediated in a complex phenomenon that involves a number of cytokines and growth factors. According to a plethora of literature on implantation in mammalian species, prominent of these cytokines and growth factor playing crucial roles in implantation include integrin, osteopontin, integrin, insulin-like growth factor and leukaemia inhibitory factor. Others are cluster domain 44, hyaluronan system and many non-adhesive molecules such as glycoprotein mucin 1. In this review, the specific roles played by these molecules are expatiated. Generally, they function as adhesive molecules that facilitate attachment of ligands/proteins on the trophectoderm to their respective receptors on endometrial luminal epithelia or vice versa. Sometimes, they also function as signalling molecules that enhance communication between implanting blastocyst and receptive endometrium. This is of particular importance in embryo culture and embryo transfer where in vitro derived blastocyst unlike the in vivo condition, is not exposed to these substances and hence, their absence may be partly responsible for the low implantation rate observed in the surrogate. Appreciation of the roles played by these cytokines, growth factors and molecules as revealed in this review will spur further research on these topics, facilitate their inclusion in embryo culture media (if positively required) and are considered as vital aspect while developing strategies to improve fertility.
Collapse
Affiliation(s)
- Kabir A Raheem
- Dept. of Theriogenology, Michael Okpara University of Agriculture, Umudike, Abia State, Nigeria
| |
Collapse
|
42
|
Affiliation(s)
- Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|