1
|
Eng PC, Phylactou M, Qayum A, Woods C, Lee H, Aziz S, Moore B, Miras AD, Comninos AN, Tan T, Franks S, Dhillo WS, Abbara A. Obesity-Related Hypogonadism in Women. Endocr Rev 2024; 45:171-189. [PMID: 37559411 PMCID: PMC10911953 DOI: 10.1210/endrev/bnad027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/02/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Obesity-related hypogonadotropic hypogonadism is a well-characterized condition in men (termed male obesity-related secondary hypogonadism; MOSH); however, an equivalent condition has not been as clearly described in women. The prevalence of polycystic ovary syndrome (PCOS) is known to increase with obesity, but PCOS is more typically characterized by increased gonadotropin-releasing hormone (GnRH) (and by proxy luteinizing hormone; LH) pulsatility, rather than by the reduced gonadotropin levels observed in MOSH. Notably, LH levels and LH pulse amplitude are reduced with obesity, both in women with and without PCOS, suggesting that an obesity-related secondary hypogonadism may also exist in women akin to MOSH in men. Herein, we examine the evidence for the existence of a putative non-PCOS "female obesity-related secondary hypogonadism" (FOSH). We précis possible underlying mechanisms for the occurrence of hypogonadism in this context and consider how such mechanisms differ from MOSH in men, and from PCOS in women without obesity. In this review, we consider relevant etiological factors that are altered in obesity and that could impact on GnRH pulsatility to ascertain whether they could contribute to obesity-related secondary hypogonadism including: anti-Müllerian hormone, androgen, insulin, fatty acid, adiponectin, and leptin. More precise phenotyping of hypogonadism in women with obesity could provide further validation for non-PCOS FOSH and preface the ability to define/investigate such a condition.
Collapse
Affiliation(s)
- Pei Chia Eng
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, National University of Singapore, Singapore 117549
| | - Maria Phylactou
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ambreen Qayum
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Casper Woods
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Hayoung Lee
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Sara Aziz
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Benedict Moore
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
| | - Alexander D Miras
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Tricia Tan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Steve Franks
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London W12 0NN, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London W12 0NN, UK
| |
Collapse
|
2
|
Garcia C, Velez LM, Ujagar N, Del Mundo Z, Nguyen T, Fox C, Mark A, Fisch KM, Lawson MA, Duleba AJ, Seldin MM, Nicholas DA. Lipopolysaccharide-induced chronic inflammation increases female serum gonadotropins and shifts the pituitary transcriptomic landscape. Front Endocrinol (Lausanne) 2024; 14:1279878. [PMID: 38260148 PMCID: PMC10801245 DOI: 10.3389/fendo.2023.1279878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Female reproductive function depends on a choreographed sequence of hormonal secretion and action, where specific stresses such as inflammation exert profound disruptions. Specifically, acute LPS-induced inflammation inhibits gonadotropin production and secretion from the pituitary, thereby impacting the downstream production of sex hormones. These outcomes have only been observed in acute inflammatory stress and little is known about the mechanisms by which chronic inflammation affects reproduction. In this study we seek to understand the chronic effects of LPS on pituitary function and consequent luteinizing and follicle stimulating hormone secretion. Methods A chronic inflammatory state was induced in female mice by twice weekly injections with LPS over 6 weeks. Serum gonadotropins were measured and bulk RNAseq was performed on the pituitaries from these mice, along with basic measurements of reproductive biology. Results Surprisingly, serum luteinizing and follicle stimulating hormone was not inhibited and instead we found it was increased with repeated LPS treatments. Discussion Analysis of bulk RNA-sequencing of murine pituitary revealed paracrine activation of TGFβ pathways as a potential mechanism regulating FSH secretion in response to chronic LPS. These results provide a framework with which to begin dissecting the impacts of chronic inflammation on reproductive physiology.
Collapse
Affiliation(s)
- Christopher Garcia
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Leandro M. Velez
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, United States
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, United States
| | - Naveena Ujagar
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Zena Del Mundo
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Thu Nguyen
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
| | - Chelsea Fox
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Prisma Health Upstate/University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | - Adam Mark
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, CA, United States
| | - Kathleen M. Fisch
- Center for Computational Biology & Bioinformatics, University of California San Diego, La Jolla, CA, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, United States
| | - Mark A. Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, United States
| | - Antoni J. Duleba
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, United States
| | - Marcus M. Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, United States
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, United States
| | - Dequina A. Nicholas
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California Irvine, Irvine, CA, United States
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
Santoro N, Kuhn K, Pretzel S, Schauer IE, Fought A, D’Alessandro A, Stephenson D, Bradford AP. A high-fat eucaloric diet induces reprometabolic syndrome of obesity in normal weight women. PNAS NEXUS 2024; 3:pgad440. [PMID: 38178979 PMCID: PMC10766410 DOI: 10.1093/pnasnexus/pgad440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024]
Abstract
We examined the effects of 1 month of a eucaloric, high-fat (48% of calories) diet (HFD) on gonadotropin secretion in normal-weight women to interrogate the role of free fatty acids and insulin in mediating the relative hypogonadotropic hypogonadism of obesity. Eighteen eumenorrheic women (body mass index [BMI] 18-25 kg/m2) were studied in the early follicular phase of the menstrual cycle before and after exposure to an HFD with frequent blood sampling for luteinizing hormone (LH) and follicle-stimulating hormone (FSH), followed by an assessment of pituitary sensitivity to gonadotropin-releasing hormone (GnRH). Mass spectrometry-based plasma metabolomic analysis was also performed. Paired testing and time-series analysis were performed as appropriate. Mean endogenous LH (unstimulated) was significantly decreased after the HFD (4.3 ± 1.0 vs. 3.8 ± 1.0, P < 0.01); mean unstimulated FSH was not changed. Both LH (10.1 ± 1.0 vs. 7.2 ± 1.0, P < 0.01) and FSH (9.5 ± 1.0 vs. 8.8 ± 1.0, P < 0.01) responses to 75 ng/kg of GnRH were reduced after the HFD. Mean LH pulse amplitude and LH interpulse interval were unaffected by the dietary exposure. Eucaloric HFD exposure did not cause weight change. Plasma metabolomics confirmed adherence with elevation of fasting free fatty acids (especially long-chain mono-, poly-, and highly unsaturated fatty acids) by the last day of the HFD. One-month exposure to an HFD successfully induced key reproductive and metabolic features of reprometabolic syndrome in normal-weight women. These data suggest that dietary factors may underlie the gonadotrope compromise seen in obesity-related subfertility and therapeutic dietary interventions, independent of weight loss, may be possible.
Collapse
Affiliation(s)
- Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katherine Kuhn
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shannon Pretzel
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Irene E Schauer
- Department of Medicine, Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela Fought
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Daniel Stephenson
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew P Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Dai R, Huang J, Cui L, Sun R, Qiu X, Wang Y, Sun Y. Gut microbiota and metabolites in estrus cycle and their changes in a menopausal transition rat model with typical neuroendocrine aging. Front Endocrinol (Lausanne) 2023; 14:1282694. [PMID: 38161977 PMCID: PMC10755682 DOI: 10.3389/fendo.2023.1282694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Background Neuroendocrine alterations in the mid-life hypothalamus coupled with reproductive decline herald the initiation of menopausal transition. The certain feature and contribution of gut microflora and metabolites to neuroendocrine changes in the menopausal transition remain largely unknown. Methods Fecal samples of rats experiencing different reproductive stages were collected and processed for 16S rRNA and liquid chromatography-mass spectrometry sequencing. The differences of gut microbiota and metabolites between young and middle-aged rats during proestrus and diestrus were analyzed, and their relationships to neuroendocrine aging were then examined. Results At the genus level, Anaeroyorax, Rikenella, Tyzzerella_3, and Atopostipes were abundant at proestrus, while Romboutsia, Turicibacter, Clostridium_sensu_stricto_1, Ruminococcaceae_NK4A214_group, CHKCI002, Ruminococcaceae_UCG-010, Staphylococcus, Family_XII_AD3011_group, Ruminococcaceae UCG-011, and Christensenellaceae_R_7_group were enriched in the diestrus of middle-aged rats. DNF00809, Phocea, and Lachnospiraceae_UCG-006 were found abundant during proestrus instead, while Bacteroides, Lactobacillus, Erysipelatoclostridium, Anaeroplasma, Anaerofustis, Parasutterella, and Enterococcus were enriched at the diestrus of young female individuals. Discriminatory metabolites were identified involving 90 metabolic pathways among the animal sets, which were enriched for steroid hormone biosynthesis, arachidonic metabolism, primary bile acid synthesis, and ovarian steroidogenesis. A total of 21 metabolites lacking in hormone-associated changes in middle-aged female individuals presented positive or negative correlations with the circulating luteinizing hormone, bile acid, fibroblast growth factor 19, and gut hormones. Moreover, close correlations were detected between the intestinal bacteria and their metabolites. Conclusion This study documents specific gut microbial composition changes and concomitant shifting trends of metabolites during menopausal transition, which may initiate the gut-brain dysfunction in neuroendocrine aging.
Collapse
Affiliation(s)
- Ruoxi Dai
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Jianqin Huang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Liyuan Cui
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ruiqi Sun
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, China
| | - Xuemin Qiu
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Wang
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Yan Sun
- Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China
- The Academy of Integrative Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Kohn SA, Fought AJ, Kuhn K, Jones Slogett K, Bradford AP, Santoro N, Schauer I. Heparin Effects on Serum Gonadotropins. J Endocr Soc 2022; 6:bvab178. [PMID: 35024539 PMCID: PMC8739648 DOI: 10.1210/jendso/bvab178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction Studies using lipid infusions to raise fatty acid levels require heparin to release lipoprotein lipase (LPL), thus calling into question the appropriate control infusion for this type of study: saline alone or saline plus heparin. We aimed to evaluate whether the addition of heparin alone, in doses needed to release LPL, would alter circulating free fatty acids (FFAs) and/or affect gonadotropins. Materials and Methods This was a secondary analysis using combined data from eumenorrheic normal-weight women subjected to "control" conditions in 1 of 2 separate studies. In 1 study, participants received saline alone (group 1) as a control, and in the other study participants received saline alone and/or saline plus heparin (groups 2-3) as a control. Both studies performed early follicular phase, frequent blood sampling. FSH and LH were compared across groups and in conditions with and without heparin. Linear mixed models were used to analyze the data. Results LH did not differ across any of the 3 groups. Estimated means (SE) for FSH differed between groups but this difference was marginal (P = .05) after adjusting for anti-Mullerian hormone and unrelated to heparin infusion (group 1: 4.47 IU/L [SE 1.19], group 2: 8.01 IU/L [SE 1.14], group 3: 7.94 IU/L [SE 1.13]). Conclusions Heparin does not exert major effects on gonadotropins when infused in quantities sufficient to release LPL. However, because it can release other vascular membrane-bound proteins, heparin should be considered part of the control infusions in lipid infusion studies where increased FFA levels are the goal.
Collapse
Affiliation(s)
- Sarah A Kohn
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angela J Fought
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO 80045, USA
| | - Katherine Kuhn
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kelsey Jones Slogett
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrew P Bradford
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nanette Santoro
- Department of Obstetrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.,Department of Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Irene Schauer
- Department of Medicine (Endocrinology) University of Colorado School of Medicine and Department of Medicine, Aurora, CO 80045, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Santoro N, Schauer IE, Kuhn K, Fought AJ, Babcock-Gilbert S, Bradford AP. Gonadotropin response to insulin and lipid infusion reproduces the reprometabolic syndrome of obesity in eumenorrheic lean women: a randomized crossover trial. Fertil Steril 2021; 116:566-574. [PMID: 33838870 PMCID: PMC8349763 DOI: 10.1016/j.fertnstert.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To study the reprometabolic syndrome in normal-weight, eumenorrheic women by infusing a combination of insulin and lipid. Women with obesity have been shown to have reduced gonadotropins and impaired luteinizing hormone (LH) and follicle-stimulating hormone (FSH) response to gonadotropin-releasing hormone (GnRH). DESIGN Randomized crossover. SETTING Academic medical center. PARTICIPANT(S) Fifteen women, median age 32 (interquartile ranged [IQR] 26, 36) years and body mass index 21.9 (IQR 20.2, 22.9) kg/m2 were recruited. INTERVENTION(S) Early follicular phase, 6-hour infusions of insulin (20-40 mU/m2 per minute) and lipid (Intralipid)-insulin/lipid infusion; or saline infusion (controls). The first 4 hours of each study assessed endogenous gonadotropins; at 4 hours, GnRH (75 ng/kg) bolus was administered and sampling continued until 6 hours. MAIN OUTCOME MEASURE(S) Linear mixed model analysis was used to determine differences between insulin/lipid and saline influence on endogenous LH pulse amplitude (primary outcome), mean FSH, and area under the curve (AUC) response to GnRH (secondary outcomes). RESULT(S) Twelve women completed both intended studies and an additional 3 women completed only 1 of the 2 studies. LH pulse amplitude, mean FSH, and both AUC responses to GnRH were reduced by insulin/lipid, mean FSH and AUC for LH were at or near statistical significance. LH response to GnRH was significantly reduced when 1 participant with very high LH and antimullerian hormone levels was excluded. CONCLUSION(S) Acute infusion of insulin/lipid to eumenorrheic, normal-weight women recapitulated the reprometabolic syndrome of obesity. These findings imply that specific circulating factors in obese women contribute to their subfertility and thus may be amenable to discovery and treatment. CLINICAL TRIAL REGISTRATION NUMBER NCT02653092.
Collapse
Affiliation(s)
- Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado.
| | - Irene E Schauer
- Department of Medicine (Endocrinology), University of Colorado School of Medicine, Aurora, Colorado; Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Katherine Kuhn
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Angela J Fought
- Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado
| | - Sara Babcock-Gilbert
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Andrew P Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
7
|
Tannous A, Bradford AP, Kuhn K, Fought A, Schauer I, Santoro N. A randomised trial examining inflammatory signaling in acutely induced hyperinsulinemia and hyperlipidemia in normal weight women-the reprometabolic syndrome. PLoS One 2021; 16:e0247638. [PMID: 33764994 PMCID: PMC7993783 DOI: 10.1371/journal.pone.0247638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/05/2021] [Indexed: 01/20/2023] Open
Abstract
Context Obesity, is a state of chronic inflammation, characterized by elevated lipids, insulin resistance and relative hypogonadotropic hypogonadism. We have defined the accompanying decreased Luteinizing Hormone (LH), Follicle-Stimulating Hormone (FSH), ovarian steroids and reduced pituitary response to Gonadotropin-releasing Hormone (GnRH) as Reprometabolic syndrome, a phenotype that can be induced in healthy normal weight women (NWW) by acute infusion of free fatty acids and insulin. Objective To identify potential mediators of insulin and lipid-related reproductive endocrine dysfunction. Design, setting, participants Secondary analysis of crossover study of eumenorrheic reproductive aged women of normal Body Mass Index (BMI) (<25 kg/m2) at an academic medical center. Intervention Participants underwent 6-hour infusions of either saline/heparin or insulin plus fatty acids (Intralipid plus heparin), in the early follicular phase of sequential menstrual cycles, in random order. Euglycemia was maintained by glucose infusion. Frequent blood samples were obtained. Main outcome measures Pooled serum from each woman was analyzed for cytokines, interleukins, chemokines, adipokines, Fibroblast Growth Factor-21 (FGF-21) and markers of endoplasmic reticulum (ER) stress (CHOP and GRP78). Wilcoxon signed-rank tests were used to compare results across experimental conditions. Results Except for Macrophage Inflammatory Protein-1β (MIP-1β), no significant differences were observed in serum levels of any of the inflammatory signaling or ER stress markers tested. Conclusion Acute infusion of lipid and insulin, to mimic the metabolic syndrome of obesity, was not associated with an increase in inflammatory markers. These results imply that the endocrine disruption and adverse reproductive outcomes of obesity are not a consequence of the ambient inflammatory environment but may be mediated by direct lipotoxic effects on the hypothalamic-pituitary-ovarian (HPO) axis.
Collapse
Affiliation(s)
- Andrew Tannous
- Department of Obstetrics & Gynecology, Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Andrew P. Bradford
- Department of Obstetrics & Gynecology, Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Katherine Kuhn
- Department of Obstetrics & Gynecology, Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Angela Fought
- Department of Obstetrics & Gynecology, Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Irene Schauer
- Department of Medicine, Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
- Endocrinology Section, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States of America
| | - Nanette Santoro
- Department of Obstetrics & Gynecology, Division of Endocrinology Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO, United States of America
- * E-mail:
| |
Collapse
|
8
|
Nicholas DA, Knight VS, Tonsfeldt KJ, Terasaka T, Molinar-Inglis O, Stephens SBZ, Trejo J, Kauffman AS, Mellon PL, Lawson MA. GLUT1-mediated glycolysis supports GnRH-induced secretion of luteinizing hormone from female gonadotropes. Sci Rep 2020; 10:13063. [PMID: 32747664 PMCID: PMC7400764 DOI: 10.1038/s41598-020-69913-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 12/03/2022] Open
Abstract
The mechanisms mediating suppression of reproduction in response to decreased nutrient availability remain undefined, with studies suggesting regulation occurs within the hypothalamus, pituitary, or gonads. By manipulating glucose utilization and GLUT1 expression in a pituitary gonadotrope cell model and in primary gonadotropes, we show GLUT1-dependent stimulation of glycolysis, but not mitochondrial respiration, by the reproductive neuropeptide GnRH. GnRH stimulation increases gonadotrope GLUT1 expression and translocation to the extracellular membrane. Maximal secretion of the gonadotropin Luteinizing Hormone is supported by GLUT1 expression and activity, and GnRH-induced glycolysis is recapitulated in primary gonadotropes. GLUT1 expression increases in vivo during the GnRH-induced ovulatory LH surge and correlates with GnRHR. We conclude that the gonadotropes of the anterior pituitary sense glucose availability and integrate this status with input from the hypothalamus via GnRH receptor signaling to regulate reproductive hormone synthesis and secretion.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Vashti S Knight
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Karen J Tonsfeldt
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Shannon B Z Stephens
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - JoAnn Trejo
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mark A Lawson
- Department of Obstetrics, Gynecology and Reproductive Sciences, and Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Nakamura S, Noda K, Miwa M, Minabe S, Hagiwara T, Hirasawa A, Matsuyama S, Moriyama R. Colocalization of GPR120 and anterior pituitary hormone-producing cells in female Japanese Black cattle. J Reprod Dev 2019; 66:135-141. [PMID: 31902805 PMCID: PMC7175391 DOI: 10.1262/jrd.2019-111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Negative energy balance in domestic animals suppresses their reproductive function. These animals commonly use long-chain fatty acids (LCFAs) from adipocytes as an energy source under
states of malnutrition. The G-protein coupled receptor, GPR120, is a specific receptor for LCFAs, but its role in reproductive function remains unknown in domestic animals. The purpose of
this study was to examine whether GPR120 is involved in the reproductive system of cattle. GPR120 mRNA expression was evaluated in brain, pituitary, and ovarian tissue
samples by RT-PCR. GPR120 gene expression was detected with high intensity only in the anterior pituitary sample, and GPR120-immunoreactive cells were found in the anterior
pituitary gland. Double immunohistochemistry of GPR120 in the anterior pituitary hormone-producing cells, such as gonadotropes, thyrotropes, lactotropes, somatotropes, and corticotropes, was
performed to clarify the distribution of GPR120 in the anterior pituitary gland of ovariectomized heifers. Luteinizing hormone β subunit (LHβ)- and follicle-stimulating hormone β subunit
(FSHβ)-immunoreactive cells demonstrated GPR120 immunoreactivity at 80.7% and 85.9%, respectively. Thyrotropes, lactotropes, somatotropes, and corticotropes coexpressed GPR120 at 21.1%,
5.4%, 13.6%, and 14.5%, respectively. In conclusion, the present study suggests that GPR120 in the anterior pituitary gland might mediate LCFA signaling to regulate gonadotrope functions,
such as hormone secretion or production, in cattle.
Collapse
Affiliation(s)
- Sho Nakamura
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Faculty of Veterinary Medicine, Okayama University of Science, Ehime 794-8555, Japan
| | - Kohei Noda
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Masafumi Miwa
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan
| | - Shiori Minabe
- Laboratory of Theriogenology, Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Teruki Hagiwara
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Shuichi Matsuyama
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO-ILGS), Tochigi 329-2793, Japan.,Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Ryutaro Moriyama
- Laboratory of Environmental physiology, Department of Life Science, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
10
|
Kim T, Li D, Terasaka T, Nicholas DA, Knight VS, Yang JJ, Lawson MA. SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression. Endocrinology 2019; 160:2543-2555. [PMID: 31504396 PMCID: PMC6779075 DOI: 10.1210/en.2019-00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
A defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression. Therefore, proper decoding of GnRH signals is essential for appropriate gonadotropin synthesis and secretion. The GnRH receptor robustly activates downstream signaling cascades to facilitate exocytosis and stimulate gene expression and protein synthesis. It is necessary to rapidly quench signaling to preserve sensitivity and adaptability to changing pulse patterns. Reactive oxygen species (ROS) generated by receptor-activated oxidases fulfill the role of rapid signaling intermediates that facilitate robust and transient signaling. However, excess ROS can be detrimental and, unchecked, can confuse signal interpretation. We demonstrate that sulfiredoxin (SRXN1), an ATP-dependent reductase, is essential for normal responses to GnRH receptor signaling and plays a central role in resolution of ROS induced by GnRH stimulation. SRXN1 expression is mitogen-activated protein kinase dependent, and knockdown reduces Lhb and Fshb glycoprotein hormone subunit mRNA and promoter activity. Loss of SRXN1 leads to increased basal and GnRH-stimulated ROS levels. We conclude that SRXN1 is essential for normal responses to GnRH stimulation and plays an important role in ROS management.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Danmei Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Dequina A Nicholas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Vashti S Knight
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Joyce J Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Mark A Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
- Correspondence: Mark A. Lawson, PhD, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego Mail Code 0674, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
11
|
Bauer JL, Kuhn K, Bradford AP, Al-Safi ZA, Harris MA, Eckel RH, Robledo CY, Malkhasyan A, Johnson J, Gee NR, Polotsky AJ. Reduction in FSH Throughout the Menstrual Cycle After Omega-3 Fatty Acid Supplementation in Young Normal Weight but not Obese Women. Reprod Sci 2019; 26:1025-1033. [PMID: 30773100 DOI: 10.1177/1933719119828099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dietary fish oil restores ovarian function in subfertile rats, which is thought to be associated with decreased transcription of follicle-stimulating hormone (FSH) β-subunit. We have previously demonstrated a reduction in early follicular serum FSH levels in normal weight but not obese women after treatment with omega-3 polyunsaturated fatty acids (PUFA). Herein, we report the effect of supplementation with omega-3 PUFA on urinary reproductive hormones across the whole menstrual cycle. This interventional study included 17 eumenorrheic women, aged 24-41 years. One month of daily morning urine was collected before and after 1 month of omega-3 PUFA supplementation with 4 g of eicosapentaenoic acid and docosahexaenoic acid daily. Measurements included urinary FSH, luteinizing hormone (LH) and estrogen and progesterone metabolites, plasma fatty acid composition, and markers of endoplasmic reticulum stress. Compliance with dietary supplementation was verified by significantly reduced ratios of omega-6 to omega-3 PUFA for all subjects after treatment (P < .01). After 1 month of omega-3 PUFA supplementation, urinary FSH was significantly decreased in normal weight, but not obese women, in both follicular and luteal phases (-28.4% and -12.6%, respectively, both P = .04). No significant changes were seen in LH or sex steroids for either weight group. The selective and specific decrease in FSH suggests that omega-3 PUFA supplementation merits further investigation in normal weight women with decreased fertility and/or diminished ovarian reserve.
Collapse
Affiliation(s)
- Jessica L Bauer
- 1 Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katherine Kuhn
- 1 Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew P Bradford
- 1 Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Zain A Al-Safi
- 2 Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA, USA
| | - Mary A Harris
- 3 Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Robert H Eckel
- 4 Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Celeste Y Robledo
- 1 Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anahit Malkhasyan
- 1 Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua Johnson
- 1 Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nancy R Gee
- 5 Center for Health and The Environment, University of California Davis, Davis, CA, USA
| | - Alex J Polotsky
- 1 Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|