1
|
Jin Y, Li K, Vik JO, Hillestad M, Olsen RE. Effect of Dietary Cholesterol, Phytosterol, and Docosahexaenoic Acid on Astaxanthin Absorption and Retention in Rainbow Trout. AQUACULTURE NUTRITION 2024; 2024:8265746. [PMID: 39555545 PMCID: PMC11496587 DOI: 10.1155/2024/8265746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 11/19/2024]
Abstract
Astaxanthin (Ax) determines the flesh redness of a salmonid fish which is the most desirable quality indicator by consumers. Fish cannot synthesize Ax de novo, therefore, the only way to increase flesh redness is to increase dietary input or improve the absorption and retention rate of dietary Ax. As a hydrophobic carotenoid, the absorption of Ax can be modulated by other lipid molecules in the diet. The present study explored the effect of three lipids, cholesterol (CH), phytosterol (PS), and docosahexaenoic acid (DHA) on Ax absorption, transport, and retention in rainbow trout. Dietary CH significantly improved Ax absorption by elevating plasma Ax levels (p < 0.05); however, it had no effect on the whole body Ax or flesh color. Dietary PS appears to inhibit Ax absorption since fish had significantly (p < 0.05) reduced whole body Ax. Dietary DHA appeared to have no effect on Ax absorption or retention. By comparing intestinal transcriptomes, a low density lipoprotein receptor (ldlr) gene was significantly downregulated in fish fed the CH diet as compared to the control diet. Since LDLR protein plays a major role in plasma lipoprotein turnover, we hypothesized that the inhibition of ldlr gene by high dietary CH resulted in higher retention of plasma Ax. The elevation of plasma Ax was not reflected in higher flesh coloration, which suggested other limiting factors governing Ax retention in the muscle. On the other hand, the transcriptomic and proteomic analyses found no changes of genes or proteins involved in Ax absorption, transport, or excretion in fish fed PS or DHA diets as compared to the control diet. In conclusion, this study has suggested that CH promotes Ax absorption by regulating lipoprotein retention and provide evidence for improving Ax absorption via dietary modulation.
Collapse
Affiliation(s)
- Yang Jin
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | - Rolf Erik Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
2
|
Miller AP, Monroy WC, Soria G, Amengual J. The low-density lipoprotein receptor contributes to carotenoid homeostasis by regulating tissue uptake and fecal elimination. Mol Metab 2024; 88:102007. [PMID: 39134303 PMCID: PMC11382122 DOI: 10.1016/j.molmet.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
OBJECTIVE Carotenoids are lipophilic plant molecules with antioxidant properties. Some carotenoids such as β-carotene also serve as vitamin A precursors, playing a key role in human health. Carotenoids are transported in lipoproteins with other lipids such as cholesterol, however, the mechanisms responsible for carotenoid storage in tissues and their non-enzymatic elimination remain relatively unexplored. The goal of this study was to examine the contribution of the low-density lipoprotein receptor (LDLR) in the bodily distribution and disposal of carotenoids. METHODS We employed mice lacking one or both carotenoid-cleaving enzymes as suitable models for carotenoid accumulation. We examined the contribution of LDLR in carotenoid distribution by crossbreeding these mice with Ldlr-/- mice or overexpressing LDLR in the liver. RESULTS Our results show that LDLR plays a dual role in carotenoid homeostasis by simultaneously favoring carotenoid storage in the liver and adipose tissue while facilitating their fecal elimination. CONCLUSIONS Our results highlight a novel role of the LDLR in carotenoid homeostasis, and unveil a previously unrecognized disposal pathway for these important bioactive molecules.
Collapse
Affiliation(s)
- Anthony P Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Walter C Monroy
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Gema Soria
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Jaume Amengual
- Department of Food Science and Human Nutrition, University of Illinois Urbana Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Lichtenstein L, Cheng CW, Bajarwan M, Evans EL, Gaunt HJ, Bartoli F, Chuntharpursat-Bon E, Patel S, Konstantinou C, Futers TS, Reay M, Parsonage G, Moore JB, Bertrand-Michel J, Sukumar P, Roberts LD, Beech DJ. Endothelial force sensing signals to parenchymal cells to regulate bile and plasma lipids. SCIENCE ADVANCES 2024; 10:eadq3075. [PMID: 39331703 PMCID: PMC11430402 DOI: 10.1126/sciadv.adq3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024]
Abstract
How cardiovascular activity interacts with lipid homeostasis is incompletely understood. We postulated a role for blood flow acting at endothelium in lipid regulatory organs. Transcriptome analysis was performed on livers from mice engineered for deletion of the flow-sensing PIEZO1 channel in endothelium. This revealed unique up-regulation of Cyp7a1, which encodes the rate-limiting enzyme for bile synthesis from cholesterol in hepatocytes. Consistent with this effect were increased gallbladder and plasma bile acids and lowered hepatic and plasma cholesterol. Elevated portal fluid flow acting via endothelial PIEZO1 and genetically enhanced PIEZO1 conversely suppressed Cyp7a1. Activation of hepatic endothelial PIEZO1 channels promoted phosphorylation of nitric oxide synthase 3, and portal flow-mediated suppression of Cyp7a1 depended on nitric oxide synthesis, suggesting endothelium-to-hepatocyte coupling via nitric oxide. PIEZO1 variants in people were associated with hepatobiliary disease and dyslipidemia. The data suggest an endothelial force sensing mechanism that controls lipid regulation in parenchymal cells to modulate whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Chew W. Cheng
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Muath Bajarwan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Fiona Bartoli
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Shaili Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | - Charalampos Konstantinou
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | | | - Melanie Reay
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - J. Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Justine Bertrand-Michel
- MetaToul-Lipidomics Facility, INSERM UMR1048, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1297/I2MC, INSERM, Toulouse, France
| | | | - Lee D. Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - David J. Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Cai T, Xu X, Dong L, Liang S, Xin M, Wang T, Li T, Wang X, Zheng W, Wang C, Xu Z, Wang M, Song X, Li L, Li J, Sun W. Oroxin A from Oroxylum indicum improves disordered lipid metabolism by inhibiting SREBPs in oleic acid-induced HepG2 cells and high-fat diet-fed non-insulin-resistant rats. Heliyon 2024; 10:e29168. [PMID: 38617966 PMCID: PMC11015455 DOI: 10.1016/j.heliyon.2024.e29168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Background Lipid metabolism disorders have become a major global public health issue. Due to the complexity of these diseases, additional research and drugs are needed. Oroxin A, the major component of Oroxylum indicum (L.) Kurz (Bignoniaceae), can improve the lipid profiles of diabetic and insulin-resistant (IR) rats. Because insulin resistance is strongly correlated with lipid metabolism, improving insulin resistance may also constitute an effective strategy for improving lipid metabolism. Thus, additional research on the efficacy and mechanism of oroxin An under non-IR conditions is needed. Methods In this study, we established lipid metabolism disorder model rats by high-fat diet feeding and fatty HepG2 cell lines by treatment with oleic acid and evaluated the therapeutic effect and mechanism of oroxin A in vitro and in vivo through biochemical indicator analysis, pathological staining, immunoblotting, and immunofluorescence staining. Results Oroxin A improved disordered lipid metabolism under non-IR conditions, improved the plasma and hepatic lipid profiles, and enhanced the lipid-lowering action of atorvastatin. Additionally, oroxin A reduced the total triglyceride (TG) levels by inhibiting sterol regulatory element-binding protein 1 (SREBP1) expression and reducing the expression of acetyl coenzyme A carboxylase (ACC) and fatty acid synthase (FASN) in vivo and in vitro. Oroxin A also reduced the total cholesterol (TC) levels by inhibiting SREBP2 expression and reducing HMGCR expression in vivo and in vitro. In addition, oroxin A bound to low-density lipoprotein receptor (LDLR) and increased AMPK phosphorylation. Conclusions Our results suggested that oroxin A may modulate the nuclear transcriptional activity of SREBPs by binding to LDLR proteins and increasing AMPK phosphorylation. Oroxin A may thus reduce lipid synthesis and could be used for the treatment and prevention of lipid metabolism disorders.
Collapse
Affiliation(s)
- Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Tianqi Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434000, People's Republic of China
| | - Tianxing Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Xudong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310000, People's Republic of China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, 317700, People's Republic of China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Zhengbao Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434000, People's Republic of China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, People's Republic of China
| |
Collapse
|
5
|
Frey S, Ayer A, Sotin T, Lorant V, Louis-Gaubert C, Arnaud L, Billon-Crossouard S, Croyal M, Prieur X, Hadjadj S, Cariou B, Blanchard C, Le May C. Single-anastomosis duodeno-ileal bypass with sleeve gastrectomy improves lipid and glucose homeostasis in ob/ob mice. Obesity (Silver Spring) 2024; 32:91-106. [PMID: 37875256 DOI: 10.1002/oby.23916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 10/26/2023]
Abstract
OBJECTIVE The objective of this study was to compare the general and metabolic impact of single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) with Roux-en-Y gastric bypass (RYGB) in an obese (ob/ob) mouse model. METHODS 10-week-old male ob/ob mice underwent either SADI-S, RYGB, or laparotomy surgery (Sham group). General and metabolic parameters were assessed during a 5-week period thereafter. RESULTS SADI-S induced a deeper weight loss ([mean ± SEM] -41.2% ± 3.3%) than RYGB (-5.6% ± 3.5%, p < 0.001) compared with the Sham group (+6.3% ± 1.0%, p < 0.05). A significant food restriction was observed after SADI-S only (-31%, 117.4 ± 10.3 g vs. 170.2 ± 5.2 g of food at day 35 in Sham group mice, p < 0.001). Random-fed glycemia and glucose tolerance were more improved after SADI-S than RYGB. SADI-S decreased plasma cholesterol concentration by 60% (0.49 ± 0.04 g/L vs. 1.40 ± 0.10 g/L in the Sham group at day 35, p < 0.01), significantly more than RYGB (1.04 ± 0.14 g/L, p = 0.018). Plasma sitosterol/cholesterol and campesterol/cholesterol ratios were decreased after SADI-S, suggesting a reduced intestinal cholesterol absorption. SADI-S increased exogenous plasma cholesterol-D7 clearance and fecal elimination, also indicating an increased plasma cholesterol excretion. Studying a pair-fed group demonstrated that calorie restriction alone did not explain the beneficial impact of SADI-S. CONCLUSIONS SADI-S is associated with a greater improvement in lipid and glucose homeostasis than RYGB in ob/ob mice.
Collapse
Affiliation(s)
- Samuel Frey
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Chirurgie Cancérologique, Digestive et Endocrinienne, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Audrey Ayer
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| | - Thibaud Sotin
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| | - Victoria Lorant
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| | - Clément Louis-Gaubert
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Chirurgie Cancérologique, Digestive et Endocrinienne, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Lucie Arnaud
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| | - Stéphanie Billon-Crossouard
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Mikael Croyal
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes, France
- CRNH-Ouest Mass Spectrometry Core Facility, Nantes, France
| | - Xavier Prieur
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| | - Samy Hadjadj
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| | - Bertrand Cariou
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| | - Claire Blanchard
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
- Nantes Université, CHU Nantes, Chirurgie Cancérologique, Digestive et Endocrinienne, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Cédric Le May
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du thorax, Nantes, France
| |
Collapse
|
6
|
Lalloyer F, Mogilenko DA, Verrijken A, Haas JT, Lamazière A, Kouach M, Descat A, Caron S, Vallez E, Derudas B, Gheeraert C, Baugé E, Despres G, Dirinck E, Tailleux A, Dombrowicz D, Van Gaal L, Eeckhoute J, Lefebvre P, Goossens JF, Francque S, Staels B. Roux-en-Y gastric bypass induces hepatic transcriptomic signatures and plasma metabolite changes indicative of improved cholesterol homeostasis. J Hepatol 2023; 79:898-909. [PMID: 37230231 DOI: 10.1016/j.jhep.2023.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND & AIMS Roux-en-Y gastric bypass (RYGB), the most effective surgical procedure for weight loss, decreases obesity and ameliorates comorbidities, such as non-alcoholic fatty liver (NAFLD) and cardiovascular (CVD) diseases. Cholesterol is a major CVD risk factor and modulator of NAFLD development, and the liver tightly controls its metabolism. How RYGB surgery modulates systemic and hepatic cholesterol metabolism is still unclear. METHODS We studied the hepatic transcriptome of 26 patients with obesity but not diabetes before and 1 year after undergoing RYGB. In parallel, we measured quantitative changes in plasma cholesterol metabolites and bile acids (BAs). RESULTS RYGB surgery improved systemic cholesterol metabolism and increased plasma total and primary BA levels. Transcriptomic analysis revealed specific alterations in the liver after RYGB, with the downregulation of a module of genes implicated in inflammation and the upregulation of three modules, one associated with BA metabolism. A dedicated analysis of hepatic genes related to cholesterol homeostasis pointed towards increased biliary cholesterol elimination after RYGB, associated with enhancement of the alternate, but not the classical, BA synthesis pathway. In parallel, alterations in the expression of genes involved in cholesterol uptake and intracellular trafficking indicate improved hepatic free cholesterol handling. Finally, RYGB decreased plasma markers of cholesterol synthesis, which correlated with an improvement in liver disease status after surgery. CONCLUSIONS Our results identify specific regulatory effects of RYGB on inflammation and cholesterol metabolism. RYGB alters the hepatic transcriptome signature, likely improving liver cholesterol homeostasis. These gene regulatory effects are reflected by systemic post-surgery changes of cholesterol-related metabolites, corroborating the beneficial effects of RYGB on both hepatic and systemic cholesterol homeostasis. IMPACT AND IMPLICATIONS Roux-en-Y gastric bypass (RYGB) is a widely used bariatric surgery procedure with proven efficacy in body weight management, combatting cardiovascular disease (CVD) and non-alcoholic fatty liver disease (NAFLD). RYGB exerts many beneficial metabolic effects, by lowering plasma cholesterol and improving atherogenic dyslipidemia. Using a cohort of patients undergoing RYGB, studied before and 1 year after surgery, we analyzed how RYGB modulates hepatic and systemic cholesterol and bile acid metabolism. The results of our study provide important insights on the regulation of cholesterol homeostasis after RYGB and open avenues that could guide future monitoring and treatment strategies targeting CVD and NAFLD in obesity.
Collapse
Affiliation(s)
- Fanny Lalloyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Denis A Mogilenko
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France; Department of Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ann Verrijken
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Joel T Haas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Antonin Lamazière
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Mostafa Kouach
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Amandine Descat
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sandrine Caron
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Emmanuelle Vallez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Bruno Derudas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Céline Gheeraert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Eric Baugé
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Gaëtan Despres
- Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Clinical Metabolomic Department, Sorbonne Université, Inserm, F-75012, Paris, France
| | - Eveline Dirinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Anne Tailleux
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - David Dombrowicz
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Luc Van Gaal
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Endocrinology, Diabetology and Metabolism, Antwerp University Hospital, 2650, Edegem, Antwerp, Belgium
| | - Jerôme Eeckhoute
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Philippe Lefebvre
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France
| | - Jean-François Goossens
- University of Lille, CHU Lille, EA 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, 2610, Wilrijk, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, ERN RARE-LIVER, 2650, Edegem, Antwerp, Belgium
| | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000, Lille, France.
| |
Collapse
|
7
|
Nissim-Eliraz E, Nir E, Marsiano N, Yagel S, Shpigel NY. NF-kappa-B activation unveils the presence of inflammatory hotspots in human gut xenografts. PLoS One 2021; 16:e0243010. [PMID: 33939711 PMCID: PMC8092666 DOI: 10.1371/journal.pone.0243010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
The single-epithelial cell layer of the gut mucosa serves as an essential barrier between the host and luminal microflora and plays a major role in innate immunity against invading pathogens. Nuclear factor kB (NF-κB), a central component of the cellular signaling machinery, regulates immune response and inflammation. NF-κB proteins are activated by signaling pathways downstream to microbial recognition receptors and cytokines receptors. Highly regulated NF-κB activity in intestinal epithelial cells (IEC) is essential for normal gut homeostasis; dysregulated activity has been linked to a number of disease states, including inflammatory bowel diseases (IBD) such as Crohn's Disease (CD). Our aim was to visualize and quantify spatial and temporal dynamics of NF-κB activity in steady state and inflamed human gut. Lentivirus technology was used to transduce the IEC of human gut xenografts in SCID mice with a NF-κB luminescence reporter system. NF-κB signaling was visualized and quantified using low resolution, intravital imaging of the whole body and high resolution, immunofluorescence microscopic imaging of the tissues. We show that NF-κB is activated in select subset of IEC with low "leaky" NF-κB activity. These unique inflammatory epithelial cells are clustered in the gut into discrete hotspots of NF-κB activity that are visible in steady state and selectively activated by systemic LPS and human TNFα or luminal bacteria. The presence of inflammatory hotspots in the normal and inflamed gut might explain the patchy mucosal lesions characterizing CD and thus could have important implications for diagnosis and therapy.
Collapse
Affiliation(s)
- Einat Nissim-Eliraz
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Eilam Nir
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Marsiano
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Simcha Yagel
- Department of Obstetrics and Gynecology, Hadassah University Hospital, Jerusalem, Israel
| | - Nahum Y. Shpigel
- Department of Basic Sciences, Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
8
|
Ye S, Matthan NR, Lamon-Fava S, Aguilar GS, Turner JR, Walker ME, Chai Z, Lakshman S, Urban JF, Lichtenstein AH. Western and heart healthy dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling and inflammation in the jejunum of Ossabaw pigs. J Nutr Biochem 2020; 90:108577. [PMID: 33388349 PMCID: PMC8982565 DOI: 10.1016/j.jnutbio.2020.108577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Diet quality and statin therapy are established modulators of coronary artery disease (CAD) progression, but their effect on the gastrointestinal tract and subsequent sequelae that could affect CAD progression are relatively unexplored. To address this gap, Ossabaw pigs (N = 32) were randomly assigned to receive isocaloric amounts of a Western-type diet (WD; high in saturated fat, refined carbohydrate, and cholesterol, and low in fiber) or a heart healthy-type diet (HHD; high in unsaturated fat, whole grains, fruits and vegetables, supplemented with fish oil, and low in cholesterol), with or without atorvastatin, for 6 months. At the end of the study, RNA sequencing with 100 base pair single end reads on NextSeq 500 platform was conducted in isolated pig jejunal mucosa. A two-factor edgeR analysis revealed that the dietary patterns resulted in three differentially expressed genes related to lipid metabolism (SCD, FADS1, and SQLE). The expression of these genes was associated with cardiometabolic risk factors and atherosclerotic lesion severity. Subsequent gene enrichment analysis indicated the WD, compared to the HHD, resulted in higher interferon signaling and inflammation, with some of these genes being significantly associated with serum TNF-α and/or hsCRP concentrations, but not atherosclerotic lesion severity. No significant effect of atorvastatin therapy on gene expression, nor its interaction with dietary patterns, was identified. In conclusion, Western and heart healthy-type dietary patterns differentially affect the expression of genes associated with lipid metabolism, interferon signaling, and inflammation in the jejunum of Ossabaw pigs.
Collapse
Affiliation(s)
- Shumao Ye
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gloria Solano Aguilar
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Woman's Hospital and Harvard Medical School, Boston, MA, USA
| | - Maura E Walker
- Section of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Chai
- Intercollege Graduate Degree Program in Physiology, Department of Nutritional Science, Pennsylvania State University, University Park, PA, USA
| | - Sukla Lakshman
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Joseph F Urban
- USDA, ARS, Beltsville Human Nutrition Research Center, Diet Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
9
|
van Loon NM, van Wouw SA, Ottenhoff R, Nelson JK, Kingma J, Scheij S, Moeton M, Zelcer N. Regulation of intestinal LDLR by the LXR-IDOL axis. Atherosclerosis 2020; 315:1-9. [DOI: 10.1016/j.atherosclerosis.2020.10.898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
|
10
|
Recent advances in the mechanisms underlying the beneficial effects of bariatric and metabolic surgery. Surg Obes Relat Dis 2020; 17:231-238. [PMID: 33036939 DOI: 10.1016/j.soard.2020.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023]
Abstract
Bariatric and metabolic surgery (BMS) is the most effective treatment for obesity, type 2 diabetes and co-morbidities, including nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. The beneficial effects of BMS are beyond the primary goal of gastric restriction and nutrients malabsorption. Roux-en-Y gastric bypass and vertical sleeve gastrectomy are the 2 most commonly performed procedures of BMS. Both surgeries lead to physiologic changes in gastrointestinal tract; subsequently alter bile acids pool and composition, gut microbial activities, gut hormones, and circulating exosomes; and ultimately contribute to the improved glycemic control, insulin sensitivity, lipid metabolism, energy expenditure, and weight loss. The mechanisms underlying the benefits of BMS likely involve the bile acid-signaling pathway mediated mainly by nuclear farnesoid X receptor and the membrane Takeda G protein-coupled receptor, bile acids-gut microbiota interaction, and exosomes. In this review, we focus on recent advances in potential mechanisms and aim to learn novel insights into the molecular mechanisms underlying metabolic disorders.
Collapse
|