1
|
Robinson JL, Roff AJ, Hammond SJ, Darby JRT, Meakin AS, Holman SL, Tai A, Moss TJM, Dimasi CG, Jesse SM, Wiese MD, Davies AN, Muhlhausler BS, Bischof RJ, Wallace MJ, Clifton VL, Morrison JL, Stark MJ, Gatford KL. Betamethasone improved near-term neonatal lamb lung maturation in experimental maternal asthma. Exp Physiol 2024; 109:1967-1979. [PMID: 39436639 PMCID: PMC11522833 DOI: 10.1113/ep091997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 10/23/2024]
Abstract
Maternal asthma is associated with increased rates of neonatal lung disease, and fetuses from asthmatic ewes have fewer surfactant-producing cells and lower surfactant-protein B gene (SFTPB) expression than controls. Antenatal betamethasone increases lung surfactant production in preterm babies, and we therefore tested this therapy in experimental maternal asthma. Ewes were sensitised to house dust mite allergen, and an asthmatic phenotype induced by fortnightly allergen lung challenges; controls received saline. Pregnant asthmatic ewes were randomised to receive antenatal saline (asthma) or 12 mg intramuscular betamethasone (asthma+beta) at 138 and 139 days of gestation (term = 150 days). Lambs were delivered by Caesarean section at 140 days of gestation and ventilated for 45 min before tissue collection. Lung function and structure were similar in control lambs (n = 16, 11 ewes) and lambs from asthma ewes (n = 14, 9 ewes). Dynamic lung compliance was higher in lambs from asthma+beta ewes (n = 12, 8 ewes) compared to those from controls (P = 0.003) or asthma ewes (P = 0.008). Lung expression of surfactant protein genes SFTPA (P = 0.048) and SFTPB (P < 0.001), but not SFTPC (P = 0.177) or SFTPD (P = 0.285), was higher in lambs from asthma+beta than those from asthma ewes. Female lambs had higher tidal volume (P = 0.007), dynamic lung compliance (P < 0.001), and SFTPA (P = 0.037) and SFTPB gene expression (P = 0.030) than males. These data suggest that betamethasone stimulates lung maturation and function of near-term neonates, even in the absence of impairment by maternal asthma.
Collapse
Affiliation(s)
- Joshua L. Robinson
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrea J. Roff
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Sarah J. Hammond
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrew Tai
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Respiratory and Sleep MedicineWomen's & Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Tim J. M. Moss
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
| | - Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sarah M. Jesse
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Michael D. Wiese
- Centre for Pharmaceutical Innovation, Clinical & Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrew N. Davies
- Biomedicine Discovery InstituteMonash UniversityFrankstonVictoriaAustralia
| | - Beverly S. Muhlhausler
- Health and BiosecurityCommonwealth Scientific and Industrial Research OrganisationAdelaideSouth AustraliaAustralia
| | - Robert J. Bischof
- Institute of Innovation, Science, and SustainabilityFederation University AustraliaBerwickVictoriaAustralia
| | - Megan J. Wallace
- Department of Obstetrics and GynaecologyMonash UniversityClaytonVictoriaAustralia
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
| | - Vicki L. Clifton
- Mater Medical Research InstituteUniversity of QueenslandSouth BrisbaneQueenslandAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Michael J. Stark
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Adelaide Medical SchoolUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Neonatal MedicineWomen's & Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Kathryn L. Gatford
- Robinson Research InstituteUniversity of AdelaideAdelaideSouth AustraliaAustralia
- School of BiomedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Amatya S, Tietje-Mckinney D, Mueller S, Petrillo MG, Woolard MD, Bharrhan S, Orr AW, Kevil CG, Cidlowski JA, Cruz-Topete D. Adipocyte Glucocorticoid Receptor Inhibits Immune Regulatory Genes to Maintain Immune Cell Homeostasis in Adipose Tissue. Endocrinology 2023; 164:bqad143. [PMID: 37738419 PMCID: PMC10558062 DOI: 10.1210/endocr/bqad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Glucocorticoids acting via the glucocorticoid receptors (GR) are key regulators of metabolism and the stress response. However, uncontrolled or excessive GR signaling adversely affects adipose tissue, including endocrine, immune, and metabolic functions. Inflammation of the adipose tissue promotes systemic metabolic dysfunction; however, the molecular mechanisms underlying the role of adipocyte GR in regulating genes associated with adipose tissue inflammation are poorly understood. We performed in vivo studies using adipocyte-specific GR knockout mice in conjunction with in vitro studies to understand the contribution of adipocyte GR in regulating adipose tissue immune homeostasis. Our findings show that adipocyte-specific GR signaling regulates adipokines at both mRNA and plasma levels and immune regulatory (Coch, Pdcd1, Cemip, and Cxcr2) mRNA gene expression, which affects myeloid immune cell presence in white adipose tissue. We found that, in adipocytes, GR directly influences Cxcr2. This chemokine receptor promotes immune cell migration, indirectly affecting Pdcd1 and Cemip gene expression in nonadipocyte or stromal cells. Our findings suggest that GR adipocyte signaling suppresses inflammatory signals, maintaining immune homeostasis. We also found that GR signaling in adipose tissue in response to stress is sexually dimorphic. Understanding the molecular relationship between GR signaling and adipose tissue inflammation could help develop potential targets to improve local and systemic inflammation, insulin sensitivity, and metabolic health.
Collapse
Affiliation(s)
- Shripa Amatya
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Dylan Tietje-Mckinney
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Schaefer Mueller
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Maria G Petrillo
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Matthew D Woolard
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Sushma Bharrhan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Anthony Wayne Orr
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - Christopher G Kevil
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| | - John A Cidlowski
- Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Diana Cruz-Topete
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
- Center for Cardiovascular Diseases and Sciences and Center for Redox Biology and Cardiovascular Disease, Louisiana State University Health Sciences Center—Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
3
|
Zhang Z, Chen H, Yu P, Ge C, Fang M, Zhao X, Geng Q, Wang H. Inducible factors and interaction of pulmonary fibrosis induced by prenatal dexamethasone exposure in offspring rats. Toxicol Lett 2022; 359:65-72. [PMID: 35143883 DOI: 10.1016/j.toxlet.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to investigate the correlation between prenatal dexamethasone exposure (PDE) and susceptibility to pulmonary fibrosis in offspring. Healthy female Wistar rats were given dexamethasone (0.2 mg/kg.d) or an equal volume of normal saline subcutaneously from 9 to 20 days after conception. Some of their female offspring underwent ovariectomy (OV) at 22 weeks after birth. All animals were euthanized at 28 weeks after birth. The morphological changes related to pulmonary fibrosis and extracellular matrix-related gene expression were detected, and Two-way ANOVA analyzed the interaction between PDE and OV. The results showed that adult offspring rats in FD group (female rats with PDE treatment) had early pulmonary fibrosis changes, such as pulmonary interstitial thickening, and increased expression of type IV collagen (COL4), α -smooth muscle actin (α-SMA) and fibronectin (FN) in lung tissues compared with those in FC group (female rats with saline treatment). In addition, adult offspring rats in FDO group (female rats with PDE and OV treatment) showed signs of pulmonary fibrosis, including apparent extracellular matrix deposition, increased lung injury scores (P<0.01, P<0.05), and extracellular matrix related gene expression (P<0.01, P<0.05), compared with rats in FDS (female rats with PDE treatment alone) or rats in FCO group (female rats with OV treatment alone). Moreover, PDE and OV had an interactive effect on the development of pulmonary fibrosis in female adult offspring. This study first reported the correlation between PDE and susceptibility to pulmonary fibrosis in female offspring rats, as well as the synergistic effect of PDE and OV in this pathological event, which provided a basis for further understanding of the pathogenesis of fetal originated pulmonary fibrosis.
Collapse
Affiliation(s)
- Ziyao Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Rd, Wuhan, 430060, Hubei, China
| | - Huijun Chen
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xiaoqi Zhao
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, No.238 Jiefang Rd, Wuhan, 430060, Hubei, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
4
|
Melkonian AV, Loppinet E, Martin R, Porteus M, Khosla C. An Unusual "OR" Gate for Allosteric Regulation of Mammalian Transglutaminase 2 in the Extracellular Matrix. J Am Chem Soc 2021; 143:10537-10540. [PMID: 34232639 DOI: 10.1021/jacs.1c04616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is a highly expressed mammalian enzyme whose biological function is unclear, although its catalytic activity in the small intestine appears necessary for celiac disease (CeD) pathogenesis. While TG2 activity is reversibly regulated by multiple allosteric mechanisms, their roles under fluctuating physiological conditions are not well understood. Here, we demonstrate that extracellular TG2 activity is competitively controlled by the mutually exclusive binding of a high-affinity Ca2+ ion or the formation of a strained disulfide bond. Binding of Ca2+ at the high-affinity site does not activate TG2 per se, but it protects against oxidative enzyme deactivation while preserving the ability of Ca2+ ions to occupy weaker binding sites capable of allosteric TG2 activation. In contrast, disulfide bond formation competitively occludes the high-affinity Ca2+ site while resulting in complete TG2 inactivation. Because both outcomes are comparably favorable under typical extracellular conditions, subtle changes in the availability of redox catalysts or promoters in the extracellular matrix can dramatically alter steady-state TG2 activity. Thus, TG2 harbors a molecular "OR" gate that determines its catalytic fate upon export from cells.
Collapse
|
5
|
Highly selective organ distribution and cellular uptake of inorganic-organic hybrid nanoparticles customized for the targeted delivery of glucocorticoids. J Control Release 2020; 319:360-370. [DOI: 10.1016/j.jconrel.2020.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/11/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
|
6
|
Abstract
Steroids are complex lipophilic molecules that have many actions in the body to regulate cellular, tissue and organ functions across the life-span. Steroid hormones such as cortisol, aldosterone, estradiol and testosterone are synthesised from cholesterol in specialised endocrine cells in the adrenal gland, ovary and testis, and released into the circulation when required. Steroid hormones move freely into cells to activate intracellular nuclear receptors that function as multi-domain ligand-dependent transcriptional regulators in the cell nucleus. Activated nuclear receptors modify expression of hundreds to thousands of specific target genes in the genome. Steroid hormone actions in the fetus include developmental roles in the respiratory system, brain, and cardiovascular system. The synthetic glucocorticoid steroid betamethasone is used antenatally to reduce the complications of preterm birth. Development of novel selective partial glucocorticoid receptor agonists may provide improved therapies to treat the respiratory complications of preterm birth and spare the deleterious effects of postnatal glucocorticoids in other organs.
Collapse
Affiliation(s)
- Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic, 3800, Australia; Division of Endocrinology & Metabolism, Hudson Institute, Monash Medical Centre, Clayton, Vic, Australia.
| | - Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic, 3800, Australia
| | - Stuart B Hooper
- The Richie Centre, Hudson Institute, Monash Medical Centre, Clayton, Vic, Australia; Department of Obstetrics & Gynaecology, Monash Medical Centre, Clayton, Vic, Australia
| |
Collapse
|