1
|
Witt R, Weigand A, Boos AM, Cai A, Dippold D, Boccaccini AR, Schubert DW, Hardt M, Lange C, Arkudas A, Horch RE, Beier JP. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol 2017; 18:15. [PMID: 28245809 PMCID: PMC5331627 DOI: 10.1186/s12860-017-0131-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Results Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation compared with two-dimensional experiments. Cultivation on poly-ε-caprolacton-collagen-I nanofibers induced parallel alignment of cells and positive expression of desmin. Conclusions In this study, we were able to myogenically differentiate MSC upon mono- and co-cultivation with myoblasts. The addition of HGF/IGF-1 might not be essential for achieving successful myogenic differentiation. Furthermore, with the development of a biocompatible nanofiber scaffold we established the basis for further experiments aiming at the generation of functional muscle tissue. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0131-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Witt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A Weigand
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A M Boos
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - A Cai
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - D Dippold
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Cauerstraße 6, 91058, Erlangen, Germany.,Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nürnberg (FAU), Cauerstraße 6, 91058, Erlangen, Germany
| | - D W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen- Nürnberg (FAU), Martensstrasse 7, 91058, Erlangen, Germany
| | - M Hardt
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - C Lange
- Interdisciplinary Clinic for Stem Cell Transplantation, University Cancer Center Hamburg (UCCH), 20246, Hamburg, Germany
| | - A Arkudas
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - R E Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany
| | - J P Beier
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Krankenhausstraße 12, 91054, Erlangen, Germany.
| |
Collapse
|
2
|
Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F. Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol 2011; 300:C1122-38. [PMID: 21248078 DOI: 10.1152/ajpcell.00214.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Expression of Wnt proteins is known to be important for developmental processes such as embryonic pattern formation and determination of cell fate. Previous studies have shown that Wn4 was involved in the myogenic fate of somites, in the myogenic proliferation, and differentiation of skeletal muscle. However, the function of this factor in adult muscle homeostasis remains not well understood. Here, we focus on the roles of Wnt4 during C2C12 myoblasts and satellite cells differentiation. We analyzed its myogenic activity, its mechanism of action, and its interaction with the anti-myogenic factor myostatin during differentiation. Established expression profiles indicate clearly that both types of cells express a few Wnts, and among these, only Wnt4 was not or barely detected during proliferation and was strongly induced during differentiation. As attested by myogenic factors expression pattern analysis and fusion index determination, overexpression of Wnt4 protein caused a strong increase in satellite cells and C2C12 myoblast differentiation leading to hypertrophic myotubes. By contrast, exposure of satellite and C2C12 cells to small interfering RNA against Wnt4 strongly diminished this process, confirming the myogenic activity of Wnt4. Moreover, we reported that Wnt4, which is usually described as a noncanonical Wnt, activates the canonical β-catenin pathway during myogenic differentiation in both cell types and that this factor regulates negatively the expression of myostatin and the regulating pathways associated with myostatin. Interestingly, we found that recombinant myostatin was sufficient to antagonize the differentiation-promoting activities of Wnt4. Reciprocally, we also found that the genetic deletion of myostatin renders the satellite cells refractory to the hypertrophic effect of Wnt4. These results suggest that the Wnt4-induced decrease of myostatin plays a functional role during hypertrophy. We propose that Wnt4 protein may be a key factor that regulates the extent of differentiation in satellite and C2C12 cells.
Collapse
Affiliation(s)
- Henri Bernardi
- Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Laboratoire Dynamique Musculaire et Métabolisme, INRA, 2 place Viala, Montpellier Cedex, France.
| | | | | | | | | | | |
Collapse
|
3
|
Quinn LS, Anderson BG, Plymate SR. Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling. Am J Physiol Endocrinol Metab 2007; 293:E1538-51. [PMID: 17940216 DOI: 10.1152/ajpendo.00160.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-like growth factors (IGF-I and IGF-II), working through the type 1 IGF receptor (IGF-1R), are key mediators of skeletal muscle fiber growth and hypertrophy. These processes are largely dependent on stimulation of proliferation and differentiation of muscle precursor cells, termed myoblasts. It has not been rigorously determined whether the IGFs can also mediate skeletal muscle hypertrophy in a myoblast-independent fashion. Similarly, although the phosphatidylinositol 3-kinase (PI3K) and calcineurin signaling pathways have been implicated in skeletal muscle hypertrophy, these pathways are also involved in skeletal myoblast differentiation. To determine whether the IGFs can stimulate skeletal muscle hypertrophy in a myoblast-independent fashion, we developed and validated a retroviral expression vector that mediated overexpression of the human IGF-1R in rat L6 skeletal myotubes (immature muscle fibers), but not in myoblasts. L6 myotubes transduced with this vector accumulated significantly higher amounts of myofibrillar proteins, in a ligand- and receptor-dependent manner, than controls and demonstrated significantly increased rates of protein synthesis. Stimulation of myotube hypertrophy was independent of myoblast contributions, inasmuch as these cultures did not exhibit increased levels of myoblast proliferation or differentiation. Experiments with PI3K and calcineurin inhibitors indicated that myoblast-independent myotube hypertrophy was mediated by PI3K, but not calcineurin, signaling. This study demonstrates that IGF can mediate skeletal muscle hypertrophy in a myoblast-independent fashion and suggests that muscle-specific overexpression of the IGF-1R or stimulation of its signaling pathways could be used to develop strategies to ameliorate muscle wasting without stimulating proliferative pathways leading to carcinogenesis or other pathological sequelae.
Collapse
Affiliation(s)
- Lebris S Quinn
- Department of Gerontology, University of Washington, Seattle, WA 98493, USA.
| | | | | |
Collapse
|
4
|
Shi B, Prisco M, Calin G, Liu CG, Russo G, Giordano A, Baserga R. Expression profiles of micro RNA in proliferating and differentiating 32D murine myeloid cells. J Cell Physiol 2006; 207:706-10. [PMID: 16482530 DOI: 10.1002/jcp.20613] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
32D cells are murine myeloid cells that grow indefinitely in Interleukin-3 (IL-3). In these cells, the type 1 insulin-like growth factor (IGF-I) and granulocytic-colony stimulating factor (G-CSF) induce differentiation to granulocytes. 32D cells do not express insulin receptor substrate-1 (IRS-1) or IRS-2, docking proteins of the IGF-I receptor. Ectopic expression of IRS-1 in these cells inhibits differentiation, the cells become IL-3 independent and IGF-1 dependent and can form tumors in mice. 32D and 32D-derived cells offer a good model in which to study the expression profiles of Micro Rna (miR) related to sustained proliferation or differentiation. We present here the data obtained with miR micro-arrays and identify the miR that are regulated by IGF-1 or G-CSF and are associated with either differentiation or indefinite cell proliferation of 32D murine myeloid cells.
Collapse
Affiliation(s)
- Bin Shi
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Matsumoto T, Akutsu S, Wakana N, Morito M, Shimada A, Yamane A. The expressions of insulin-like growth factors, their receptors, and binding proteins are related to the mechanism regulating masseter muscle mass in the rat. Arch Oral Biol 2006; 51:603-11. [PMID: 16513081 DOI: 10.1016/j.archoralbio.2006.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 01/08/2006] [Accepted: 01/11/2006] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The mechanism regulating skeletal muscle mass is unclear. The purpose of the present study was to investigate the extent to which insulin-like growth factors (IGFs), their receptors (IGFRs), and binding proteins (IGFBPs) are involved in the regulation of skeletal muscle mass. DESIGN We measured the mRNA expression levels for IGFs, IGFRs, and IGFBPs in the rat masseter muscle hypertrophied by oral administration of clenbuterol for 3 weeks and determined the correlations between the weight of masseter muscle and the mRNA expression levels. RESULTS The mRNA expression levels for IGF-I and II, IGFR1 and 2, and IGFBP4 and 6 showed clenbuterol-induced elevations and positive correlations with the weight of masseter muscle. That for IGFBP3 only exhibited a clenbuterol-induced decrease and a strong negative correlation with the weight of masseter muscle. The mRNA expression levels for IGFBP2 and 5 showed no significant changes between the control and clenbuterol groups, and no significant correlations. IGFBP1 mRNA was not detectable. CONCLUSION These results suggest that IGF-I, II, IGFR1 and 2, and IGFBP3, 4 and 6 are related to the mechanism regulating masseter muscle mass in the rat.
Collapse
Affiliation(s)
- T Matsumoto
- Department of Geriatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Liu M, Prisco M, Drakas R, Searles D, Baserga R. 24p3 in differentiation of myeloid cells. J Cell Physiol 2005; 205:302-9. [PMID: 15895393 DOI: 10.1002/jcp.20400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
24p3 is a secreted lipocalin that has been variously related to apoptosis, proliferation, and the neutrophil lineage of blood cells. We have investigated the expression of 24p3 mRNA and protein in myeloid cell lines induced to differentiate by insulin-like growth factor 1 (IGF-1) and the granulocytic-colony simulating factor (G-CSF). Both these growth factors, which cause myeloid cells to differentiate into granulocytes, induced a marked increase in the expression of both 24p3 protein and mRNA. The mRNA especially appeared early after the cells were induced with either IGF-1 or G-CSF, at a time when the cells were still proliferating and are morphologically undifferentiated. 24p3 can be considered an early marker of granulocytic differentiation.
Collapse
Affiliation(s)
- Mingli Liu
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
7
|
Broussard SR, McCusker RH, Novakofski JE, Strle K, Shen WH, Johnson RW, Freund GG, Dantzer R, Kelley KW. Cytokine-hormone interactions: tumor necrosis factor alpha impairs biologic activity and downstream activation signals of the insulin-like growth factor I receptor in myoblasts. Endocrinology 2003; 144:2988-96. [PMID: 12810554 DOI: 10.1210/en.2003-0087] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNFalpha is elevated following damage to skeletal muscle. Here we provide evidence that TNFalpha acts on muscle cells to induce a state of IGF-I receptor resistance. We establish that TNFalpha inhibits IGF-I-stimulated protein synthesis in primary porcine myoblasts. Similar results were observed in C(2)C(12) murine myoblasts, where as little as 0.01 ng/ml TNFalpha significantly inhibits protein synthesis induced by IGF-I. TNFalpha also impairs the ability of IGF-I to induce expression of a key myogenic transcription factor, myogenin. The inhibition by TNFalpha of IGF-I-induced protein synthesis and expression of myogenin is not due to direct killing of myoblasts by TNFalpha. Although IGF-I induces an approximately 19-fold induction in tyrosine phosphorylation of the beta-chains of its receptor, TNFalpha does not inhibit this autophosphorylation. Instead, TNFalpha significantly reduces by approximately 50% IGF-I-stimulated tyrosine phosphorylation of two of the major downstream receptor docking molecules, insulin receptor substrate (IRS)-1 and IRS-2. These results establish that low picogram concentrations of TNFalpha acts on both porcine and murine myoblasts to impair tyrosine phosphorylation of both IRS-1 and IRS-2, but not the receptor itself. These data are consistent with the notion that very low physiological concentrations of TNFalpha interfere with both protein synthesis and muscle cell development by inducing a state of IGF-I receptor resistance.
Collapse
Affiliation(s)
- Suzanne R Broussard
- Laboratory of Immunophysiology, Department of Animal Sciences and Pathology, College of Medicine, University of Illinois at Urbana-Champaign, 207 Edward R. Madigan Laboratory, 1201 West Gregory Drive, Urbana, IL 61801, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
In recent years, the type 1 insulin-like growth factor receptor (IGF-IR) has emerged as a receptor that plays a very important role in the growth of cells, both in vivo and in vitro. The ability of the IGF-IR to induce mitogenesis and to promote survival of cells against a variety of apoptotic agents is well documented. Somewhat less known are other functions of the IGF-IR, like its ability to induce differentiation, to regulate cell size and to affect the organization of the cytoskeleton of cells. This review will focus on these lesser known functions of the IGF-IR. At the same time, we will emphasize how the IGF-IR can send contradictory signals, which depend on different domains of the receptor and the availability of downstream transducing molecules.
Collapse
Affiliation(s)
- R Baserga
- Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, 624 BLSB, Philadelphia, Pennsylvania, PA 19107, USA
| |
Collapse
|
9
|
Abstract
Growth factors and their receptors are known to send at times contradictory signals, such as proliferation or differentiation. Recent developments in our knowledge of growth factor receptors and their signaling pathways have clarified the basis for this puzzling behavior. Separate domains of a receptor and/or the availability of specific substrates determine the fate of a cell stimulated by the same growth factor. In some models, the difference between malignant transformation and differentiation (leading to cell death) may depend on the presence or absence of a single agonist or antagonist molecule. The type 1 insulin-like growth factor receptor will serve as the paradigm for this review. J. Cell. Biochem. Suppls. 32/33:68-75, 1999.
Collapse
Affiliation(s)
- R Baserga
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | |
Collapse
|
10
|
Gruber PJ, Kubalak SW, Chien KR. Downregulation of atrial markers during cardiac chamber morphogenesis is irreversible in murine embryos. Development 1998; 125:4427-38. [PMID: 9778502 DOI: 10.1242/dev.125.22.4427] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate cardiogenesis is a complex process involving multiple, distinct tissue types which interact to form a four-chambered heart. Molecules have been identified whose expression patterns co-segregate with the maturation of the atrial and ventricular muscle cell lineages. It is not currently known what role intrinsic events versus external influences play in cardiac chamber morphogenesis. We developed novel, fluorescent-based, myocardial, cellular transplantation systems in order to study these questions in murine embryos and report the irreversible nature of chamber specification with respect to the downregulation of atrial myosin light chain 2 (MLC-2a) and alpha myosin heavy chain (alpha-MHC). Grafting ventricular cells into the atrial chamber does not result in upregulation of MLC-2a expression in ventricular cells. Additionally, wild-type ventricular muscle cells grafted into the wild-type background appropriately downregulate MLC-2a and alpha-MHC. Finally, grafting of RXRalpha gene-deficient ventricular muscle cells into the ventricular chambers of wild-type embryos does not rescue the persistent expression of MLC-2a, providing further evidence that ventricular chamber maturation is an early event. These studies provide a new approach for the mechanistic dissection of critical signaling events during cardiac chamber growth, maturation and morphogenesis in the mouse, and should find utility with other approaches of cellular transplantation in murine embryos. These experiments document the irreversible nature of the downregulation of atrial markers after the onset of cardiogenesis during ventricular chamber morphogenesis and temporally define the response of cardiac muscle cells to signals regulating chamber specification.
Collapse
Affiliation(s)
- P J Gruber
- Department of Medicine, Center for Molecular Genetics, and the American Heart Association-Bugher Foundation Center for Molecular Biology, University of California, San Diego, La Jolla, California 92093-0613, USA
| | | | | |
Collapse
|