1
|
Eldin AS, Fawzy O, Mahmoud E, Elaziz OHA, Enayet AEA, Khidr EG. Serum neuregulin 1 in relation to ventricular function and subclinical atherosclerosis in type 2 diabetes patients. ENDOCRINOL DIAB NUTR 2023; 70:619-627. [PMID: 38065627 DOI: 10.1016/j.endien.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND AND AIMS Neuregulin 1 (NRG-1) is one of the members of the epidermal growth factors proteins. The present study provides novel insights into the relationship between serum levels of NRG-1 and insulin resistance, subclinical atherosclerosis and cardiac dysfunction that occur in type 2 diabetes (T2D). METHODS The study included 50 patients with T2D and 40 healthy age- and gender-matched controls. Serum NRG-1 was measured using ELISA. Glycemic parameters, lipid profile and insulin resistance were assessed. Trans-thoracic echocardiography and carotid intima media thickness (CIMT) were studied for all study subjects. RESULTS T2D patients had significantly lower serum NRG-1 levels than controls. Serum NRG-1 was negatively correlated with age, fasting blood glucose, HbA1c, insulin resistance, blood urea, serum creatinine and LDL-C, and positively correlated with HDL-C, eGFR and CIMT. Regarding echocardiographic variables, serum NRG-1 was found to correlate positively with left ventricular global longitudinal strain and negatively with E/Ea ratio. NRG-1 was found to predict subclinical atherosclerosis in type 2 diabetes patients at a cut-off value<108.5pg/ml with 78% sensitivity and 80% specificity. CONCLUSIONS A robust relationship was found between serum NRG-1 levels and hyperglycemia, insulin resistance, subclinical atherosclerosis, and cardiac dysfunction in patients with type 2 diabetes. These results shed light on a possible role of NRG-1 as a potential noninvasive biomarker for detection of cardiometabolic risk in T2D.
Collapse
Affiliation(s)
- Aya Saad Eldin
- Department of Endocrinology and Metabolism, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Olfat Fawzy
- Department of Endocrinology and Metabolism, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eman Mahmoud
- Department of Endocrinology and Metabolism, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Ola H Abd Elaziz
- Department of Cardiology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Alshimaa Ezzat A Enayet
- Department of Radio Diagnosis, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Emad Gamil Khidr
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Boys, Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
2
|
Ennequin G, Caillaud K, Chavanelle V, Teixeira A, Etienne M, Li X, Boisseau N, Sirvent P. Neuregulin 1 treatment improves glucose tolerance in diabetic db/db mice, but not in healthy mice. Arch Physiol Biochem 2020; 126:320-325. [PMID: 30449185 DOI: 10.1080/13813455.2018.1534243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Context: Neuregulin 1 (NRG1) and ErbB receptors are involved in glucose homeostasis. However, the effects of the neuregulin 1-ErbB pathway activation on glucose metabolism in liver are controversial.Objective: Assess NRG1 and ErbB signalling in liver and the effects of 8-week treatment with NRG1 on glucose homeostasis in diabetic db/db mice and in control healthy mice.Results: NRG1 improved glucose, insulin and insulin sensitivity index during OGTT in db/db mice, but not in control mice. Compared with healthy mice, phosphorylation of p38, ErbB-1 and ErbB-3 was increased in diabetic mice, and neuregulin 1 treatment increased phosphorylation of p38 and ErbB-4. Conversely, the AKT/FOXO1 pathway was not affected by the 8-week treatment with NRG1.Conclusion: Diabetic mice showed altered NRG1-ErbB pathway in the liver compared with healthy mice. Moreover, chronic NRG1 treatment increased p38 phosphorylation in liver and improved glucose tolerance in diabetic mice, but not in control mice.
Collapse
Affiliation(s)
- Gaël Ennequin
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
- PEPITE EA4267, and Exercise Performance Health Innovation Platform Univ. Bourgogne Franche-Comté, Besançon, France
| | - Kevin Caillaud
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
| | - Vivien Chavanelle
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
| | - Allison Teixeira
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
| | - Monique Etienne
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
| | - Xinyan Li
- Zensun Sci & Tech Ltd, Shanghai, China
| | - Nathalie Boisseau
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
| | - Pascal Sirvent
- Clermont Auvergne University, EA 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), Clermont-Ferrand, France
| |
Collapse
|
3
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
4
|
De Keulenaer GW, Feyen E, Dugaucquier L, Shakeri H, Shchendrygina A, Belenkov YN, Brink M, Vermeulen Z, Segers VFM. Mechanisms of the Multitasking Endothelial Protein NRG-1 as a Compensatory Factor During Chronic Heart Failure. Circ Heart Fail 2019; 12:e006288. [DOI: 10.1161/circheartfailure.119.006288] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a complex syndrome whose phenotypic presentation and disease progression depends on a complex network of adaptive and maladaptive responses. One of these responses is the endothelial release of NRG (neuregulin)-1—a paracrine growth factor activating ErbB2 (erythroblastic leukemia viral oncogene homolog B2), ErbB3, and ErbB4 receptor tyrosine kinases on various targets cells. NRG-1 features a multitasking profile tuning regenerative, inflammatory, fibrotic, and metabolic processes. Here, we review the activities of NRG-1 on different cell types and organs and their implication for heart failure progression and its comorbidities. Although, in general, effects of NRG-1 in heart failure are compensatory and beneficial, translation into therapies remains unaccomplished both because of the complexity of the underlying pathways and because of the challenges in the development of therapeutics (proteins, peptides, small molecules, and RNA-based therapies) for tyrosine kinase receptors. Here, we give an overview of the complexity to be faced and how it may be tackled.
Collapse
Affiliation(s)
- Gilles W. De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, ZNA Hospital, Antwerp, Belgium (G.W.D.K.)
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Anastasia Shchendrygina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Yury N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Marijke Brink
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland (M.B.)
| | - Zarha Vermeulen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Vincent F. M. Segers
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium (V.F.M.S.)
| |
Collapse
|
5
|
Abstract
Neuregulin-1 (NRG1) has been shown to be associated with the regulation of inflammation and ovulation. The aim of this study was to investigate the relationship between serum NRG1 levels and various clinical and metabolic parameters in women with polycystic ovary syndrome (PCOS). This case-controlled study included 38 women with PCOS and 46 age and body mass index (BMI)-matched controls without PCOS. The serum NRG1 levels of the women with PCOS were found to be significantly lower compared to the control group. The high sensitivity C-reactive protein (hs-CRP) levels of the PCOS subjects were significantly higher than in the control group. The circulating NRG1 levels were negatively correlated with a homeostasis model assessment of insulin resistance (HOMA-IR) and the hs-CRP in the PCOS group. There is no significant correlation between the circulating NRG1 levels and the serum insulin in the PCOS group. There was a trend toward high NRG1 levels in the PCOS subjects with high BMI, but the difference failed to reach a statistical significance. Decreased NRG1 levels in PCOS subjects may be associated with insulin resistance and a low-grade chronic inflammation. Impact statement What is already known on this subject? Although there have been many studies related to NRG1, we could not find any study explaining the relationship between NRG1 and PCOS. This study provides first and novel insights into the relationship between serum NRG1 levels and the insulin resistance in women with PCOS. What do the results of this study add? A decline in the NRG1 levels in PCOS may be associated with insulin resistance and a low-grade chronic inflammation. What are the implications of these findings for clinical practice and/or further research? Decreased NRG1 levels may play an important role in the reproductive and endocrine properties of PCOS. We think that NRG1 research may be contribute to the clarification of PCOS pathophysiology. Future research investigating NRG1 levels in obese and non-obese cases, as well as in ovulatory and anovulatory PCOS patients, will make a significant contribution to the resolution of the mystery under PCOS aetiology.
Collapse
Affiliation(s)
- Haldun Arpacı
- a Department of Obstetrics and Gynecology, School of Medicine , Kafkas University , Kars , Turkey
| |
Collapse
|
6
|
Huang Z, Sawyer DB, Troy EL, McEwen C, Cleator JH, Murphy A, Caggiano AO, Eisen A, Parry TJ. Species-specific effects of neuregulin-1β (cimaglermin alfa) on glucose handling in animal models and humans with heart failure. Toxicol Appl Pharmacol 2017; 332:92-99. [PMID: 28780372 DOI: 10.1016/j.taap.2017.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/05/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Neuregulin-1β is a member of the neuregulin family of growth factors and is critically important for normal development and functioning of the heart and brain. A recombinant version of neuregulin-1β, cimaglermin alfa (also known as glial growth factor 2 or GGF2) is being investigated as a possible therapy for heart failure. Previous studies suggest that neuregulin-1β stimulation of skeletal muscle increases glucose uptake and, specifically, sufficient doses of cimaglermin alfa acutely produce hypoglycemia in pigs. Since acute hypoglycemia could be a safety concern, blood glucose changes in the above pig study were further investigated. In addition, basal glucose and glucose disposal were investigated in mice. Finally, as part of standard clinical chemistry profiling in a single ascending-dose human safety study, blood glucose levels were evaluated in patients with heart failure after cimaglermin alfa treatment. A single intravenous injection of cimaglermin alfa at doses of 0.8mg/kg and 2.6mg/kg in mice resulted in a transient reduction of blood glucose concentrations of approximately 20% and 34%, respectively, at 2h after the treatment compared to pre-treatment levels. Similar results were observed in diabetic mice. Treatment with cimaglermin alfa also increased blood glucose disposal following oral challenge in mice. However, no significant alterations in blood glucose concentrations were found in human heart failure patients at 0.5 and 2h after treatment with cimaglermin alfa over an equivalent human dose range, based on body surface area. Taken together, these data indicate strong species differences in blood glucose handling after cimaglermin alfa treatment, and particularly do not indicate that this phenomenon should affect human subjects.
Collapse
Affiliation(s)
- Zhihong Huang
- Acorda Therapeutics, Inc., 420 Saw Mill River Rd, Ardsley, NY 10502, USA.
| | - Douglas B Sawyer
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Erika L Troy
- Acorda Therapeutics, Inc., 420 Saw Mill River Rd, Ardsley, NY 10502, USA
| | - Corissa McEwen
- Acorda Therapeutics, Inc., 420 Saw Mill River Rd, Ardsley, NY 10502, USA
| | - John H Cleator
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Abigail Murphy
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Anthony O Caggiano
- Acorda Therapeutics, Inc., 420 Saw Mill River Rd, Ardsley, NY 10502, USA
| | - Andrew Eisen
- Acorda Therapeutics, Inc., 420 Saw Mill River Rd, Ardsley, NY 10502, USA
| | - Tom J Parry
- Acorda Therapeutics, Inc., 420 Saw Mill River Rd, Ardsley, NY 10502, USA.
| |
Collapse
|
7
|
Neuregulin 1 improves complex 2-mediated mitochondrial respiration in skeletal muscle of healthy and diabetic mice. Sci Rep 2017; 7:1742. [PMID: 28496106 PMCID: PMC5431817 DOI: 10.1038/s41598-017-02029-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
It has been reported that neuregulin1 (NRG1) improves glucose tolerance in healthy and diabetic rodents. In vitro studies also suggest that NRG1 regulates myocyte oxidative capacity. To confirm this observation in vivo, we evaluated the effect on mitochondrial function of an 8-week treatment with NRG1 in db/db diabetic mice and C57BL/6JRJ healthy controls. NRG1 treatment improved complex 2-mediated mitochondrial respiration in the gastrocnemius of both control and diabetic mice and increased mitochondrial complex 2 subunit content by 2-fold. This effect was not associated with an increase in mitochondrial biogenesis markers. Enhanced ERBB4 phosphorylation could mediate NRG1 effects on mitochondrial function through signalling pathways, independently of ERK1/2, AKT or AMPK.
Collapse
|
8
|
Buta C, Benabou E, Lequoy M, Régnault H, Wendum D, Meratbene F, Chettouh H, Aoudjehane L, Conti F, Chrétien Y, Scatton O, Rosmorduc O, Praz F, Fartoux L, Desbois-Mouthon C. Heregulin-1ß and HER3 in hepatocellular carcinoma: status and regulation by insulin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:126. [PMID: 27514687 PMCID: PMC4982118 DOI: 10.1186/s13046-016-0402-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
Background The heregulin-1ß/HER3-driven pathway is implicated in several epithelial malignancies and its blockade is currently undergoing clinical investigation. Paradoxically, the status and the regulation of this pathway is poorly known in hepatocellular carcinoma (HCC). Methods Using 85 HCC obtained after tumour resection, heregulin-1ß and HER3 expression was evaluated by real-time RT-PCR, ELISA and/or immunohistochemistry. Statistics were performed to analyze associations between gene expression and clinicopathological parameters. The effects of insulin on the heregulin-1ß/HER3 pathway was investigated in four HCC cell lines. Results HER3 mRNA was upregulated in 52 % of tumours, while heregulin-1ß mRNA was downregulated in 82 %. Hepatitis B and C viral infections were respectively associated with high and low HER3 mRNA expression. No association was seen between neither HER3 or heregulin-1ß mRNA and prognostic factors, survival or recurrence. Immunohistochemistry showed predominant cytoplasmic staining of HER3 in tumours but the staining was nonreproducible. HER3 mRNA and protein levels were not correlated in liver tissues. In HCC cells, insulin promoted HER3 proteasomal degradation and inhibited heregulin-1ß stimulation of cell migration. HER3 and insulin receptor co-immunoprecipitated in these cells. The loss of insulin receptor expression by RNA interference sensitized cells to heregulin-1ß-induced AKT phosphorylation. Conclusions Autocrine heregulin-1ß loop is uncommon in HCC and HER3 mRNA expression is differentially influenced by hepatitis viruses. Insulin is a negative regulator of HER3 protein expression and function in HCC cells. Altogether these data may explain why HER3 and heregulin-1ß expression have no prognostic value and suggest that HCC patients are unlikely to derive benefit from HER3-targeted monotherapies. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0402-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corina Buta
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France
| | - Eva Benabou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France
| | - Marie Lequoy
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Department of Hepatology, AP-HP, Saint-Antoine Hospital, F-75012, Paris, France
| | - Hélène Régnault
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Department of Hepatology, AP-HP, Pitié-Salpétrière Hospital, F-75013, Paris, France
| | - Dominique Wendum
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Department of Pathology, AP-HP, Saint-Antoine Hospital, F-75012, Paris, France
| | - Fatiha Meratbene
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Histomorphology Platform, UMS 30 Lumic, F-75012, Paris, France
| | - Hamza Chettouh
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France
| | - Lynda Aoudjehane
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Human HepCell, Saint-Antoine Hospital, F-75012, Paris, France
| | - Filomena Conti
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Human HepCell, Saint-Antoine Hospital, F-75012, Paris, France.,Department of Hepatobiliary Surgery and Liver Transplantation, AP-HP, Pitié-Salpétrière Hospital, F-75013, Paris, France
| | - Yves Chrétien
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France
| | - Olivier Scatton
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Department of Hepatobiliary Surgery and Liver Transplantation, AP-HP, Pitié-Salpétrière Hospital, F-75013, Paris, France
| | - Olivier Rosmorduc
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Department of Hepatology, AP-HP, Pitié-Salpétrière Hospital, F-75013, Paris, France
| | - Françoise Praz
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France
| | - Laetitia Fartoux
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.,Department of Hepatology, AP-HP, Pitié-Salpétrière Hospital, F-75013, Paris, France
| | - Christèle Desbois-Mouthon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Saint-Antoine Research Center, 34 rue Crozatier, F-75012, Paris, France.
| |
Collapse
|
9
|
Caillaud K, Boisseau N, Ennequin G, Chavanelle V, Etienne M, Li X, Denis P, Dardevet D, Lacampagne A, Sirvent P. Neuregulin 1 improves glucose tolerance in adult and old rats. DIABETES & METABOLISM 2016; 42:96-104. [DOI: 10.1016/j.diabet.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
|
10
|
López-Soldado I, Niisuke K, Veiga C, Adrover A, Manzano A, Martínez-Redondo V, Camps M, Bartrons R, Zorzano A, Gumà A. Neuregulin improves response to glucose tolerance test in control and diabetic rats. Am J Physiol Endocrinol Metab 2016; 310:E440-51. [PMID: 26714846 DOI: 10.1152/ajpendo.00226.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 12/20/2015] [Indexed: 12/31/2022]
Abstract
Neuregulin (NRG) is an EGF-related growth factor that binds to the tyrosine kinase receptors ErbB3 and ErbB4, thus inducing tissue development and muscle glucose utilization during contraction. Here, we analyzed whether NRG has systemic effects regulating glycemia in control and type 2 diabetic rats. To this end, recombinant NRG (rNRG) was injected into Zucker diabetic fatty (ZDF) rats and their respective lean littermates 15 min before a glucose tolerance test (GTT) was performed. rNRG enhanced glucose tolerance without promoting the activation of the insulin receptor (IR) or insulin receptor substrates (IRS) in muscle and liver. However, in control rats, rNRG induced the phosphorylation of protein kinase B (PKB) and glycogen synthase kinase-3 (GSK-3) in liver but not in muscle. In liver, rNRG increased ErbB3 tyrosine phosphorylation and its binding to phosphatidylinositol 3-kinase (PI3K), thus indicating that rNRG activates the ErbB3/PI3K/PKB signaling pathway. rNRG increased glycogen content in liver but not in muscle. rNRG also increased the content of fructose-2,6-bisphosphate (Fru-2,6-P2), an activator of hepatic glycolysis, and lactate in liver but not in muscle. Increases in lactate were abrogated by wortmannin, a PI3K inhibitor, in incubated hepatocytes. The liver of ZDF rats showed a reduced content of ErbB3 receptors, entailing a minor stimulation of the rNRG-induced PKB/GSK-3 cascade and resulting in unaltered hepatic glycogen content. Nonetheless, rNRG increased hepatic Fru-2,6-P2 and augmented lactate both in liver and in plasma of diabetic rats. As a whole, rNRG improved response to the GTT in both control and diabetic rats by enhancing hepatic glucose utilization.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain
| | - Katrin Niisuke
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Catarina Veiga
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Anna Adrover
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Anna Manzano
- Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona-IDIBELL: Bellvitge Institute for Biomedical Research, Barcelona, Spain; and
| | - Vicente Martínez-Redondo
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marta Camps
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain; Institute of Biomedicine from the University of Barcelona, Barcelona, Spain
| | - Ramon Bartrons
- Department of Physiological Sciences II, Faculty of Medicine, University of Barcelona-IDIBELL: Bellvitge Institute for Biomedical Research, Barcelona, Spain; and
| | - Antonio Zorzano
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain
| | - Anna Gumà
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Center for Biomedical Investigation in Net of Diabetes and Associated Metabolic Pathologies, Madrid, Spain; Institute of Biomedicine from the University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Ennequin G, Boisseau N, Caillaud K, Chavanelle V, Etienne M, Li X, Sirvent P. Neuregulin 1 Improves Glucose Tolerance in db/db Mice. PLoS One 2015; 10:e0130568. [PMID: 26230680 PMCID: PMC4521942 DOI: 10.1371/journal.pone.0130568] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/21/2015] [Indexed: 01/14/2023] Open
Abstract
In vitro experiments using rodent skeletal muscle cells suggest that neuregulin 1 (NRG1) is involved in glucose metabolism regulation, although no study has evaluated the role of NRG1 in systemic glucose homeostasis. The purpose of this study was to investigate the effect of chronic and acute NRG1 treatment on glucose homeostasis in db/db mice. To this aim, glucose tolerance tests were performed in 8-week-old male db/db mice after treatment with NRG1 (50μg.kg-1) or saline 3 times per week for 8 weeks. In other experiments, glucose tolerance and pyruvate tolerance tests were performed in db/db mice 15 minutes after a single NRG1 (50μg.kg-1) or saline injection. Liver, adipose tissue, hypothalamus and skeletal muscle were also collected 30 minutes after acute NRG1 (50μg.kg-1) or saline treatment, and the phosphorylation status of the ERBB receptors, AKT (on Ser473) and FOXO1 (on Ser256) was assessed by western blotting. Chronic treatment (8 weeks) with NRG1 improved glucose tolerance in db/db mice. Acute treatment also lowered glycemia and insulinemia during glucose or pyruvate tolerance tests. NRG1 acute injection induced activation of ERBB3 receptors and phosphorylation of AKT and FOXO1 only in liver. Altogether, this study shows that acute and chronic NRG1 treatments improve glucose tolerance in db/db mice. This effect could be mediated through inhibition of hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Gaël Ennequin
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Nathalie Boisseau
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Kevin Caillaud
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Vivien Chavanelle
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Monique Etienne
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
| | - Xinyan Li
- Zensun Sci & Tech Ltd., Shanghai, China
| | - Pascal Sirvent
- Université Clermont Auvergne, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171, Aubière Cedex, France
- CRNH-Auvergne, Clermont-Ferrand, F-63001, France
- * E-mail:
| |
Collapse
|
12
|
Scheving LA, Zhang X, Garcia OA, Wang RF, Stevenson MC, Threadgill DW, Russell WE. Epidermal growth factor receptor plays a role in the regulation of liver and plasma lipid levels in adult male mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G370-81. [PMID: 24407590 PMCID: PMC3949019 DOI: 10.1152/ajpgi.00116.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.
Collapse
Affiliation(s)
| | | | | | | | | | - David W. Threadgill
- 6Department of Genetics, North Carolina State University, Raleigh, North Carolina
| | - William E. Russell
- 1Departments of Pediatrics, ,2Cell and Developmental Biology, ,3Digestive Disease Research Center, ,4Vanderbilt Diabetes Center, ,5Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee;
| |
Collapse
|
13
|
Ødegård J, Aasrum M, Tveteraas IH, Bharath SP, Sandnes D, Christoffersen T. Role of ErbB2 in the prostaglandin E₂-induced enhancement of the mitogenic response to epidermal growth factor in cultured hepatocytes. Biochem Biophys Res Commun 2012; 421:255-60. [PMID: 22503980 DOI: 10.1016/j.bbrc.2012.03.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 01/20/2023]
Abstract
Prostaglandin E(2) (PGE(2)) enhances the mitogenic response to epidermal growth factor (EGF) in hepatocytes, but the underlying mechanisms are not clear. We previously observed that PGE(2) upregulates EGF-induced signalling in the MEK/ERK and PI3K/Akt pathways in hepatocytes. Other investigations have indicated that ErbB2 enhances the mitogenic effect of EGF in these cells. In the present study we found that treatment with PGE(2) increased ErbB2 and decreased ErbB3 expression at both the mRNA and protein level in cultured rat hepatocytes. Silencing of the ErbB2 expression with specific siRNA blocked the stimulation by PGE(2) and EGF of cyclin D1 expression and DNA synthesis. Both EGF and PGE(2) increased the expression of ERK and Akt, but while the effect of EGF was inhibited by ErbB2-directed siRNA, this did not affect the PGE(2)-induced upregulation of ERK and Akt. These data suggest that PGE(2) can enhance the mitogenic effect of EGF both by increasing ErbB2 expression and by ErbB2-independent mechanisms.
Collapse
Affiliation(s)
- John Ødegård
- Department of Pharmacology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
14
|
Keene KL, Quinlan AR, Hou X, Hall IM, Mychaleckyj JC, Onengut-Gumuscu S, Concannon P. Evidence for two independent associations with type 1 diabetes at the 12q13 locus. Genes Immun 2011; 13:66-70. [PMID: 21850031 PMCID: PMC3285513 DOI: 10.1038/gene.2011.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome-wide association studies have identified associations between type 1 diabetes and single nucleotide polymorphisms (SNPs) at chromosome 12q13, surrounding the gene ERBB3. Our objective was to fine map this region to further localize causative variants. Re-sequencing identified more than 100 putative SNPs in an 80 kb region at 12q13. By genotyping 42 SNPs, spanning approximately 214 kb, in 382 affected sibling pair type 1 diabetes families, we were able to genotype or tag 67 common SNPs (MAF ≥ 0.05) identified from HapMap CEU data and CEU data from the 1000 Genomes Project, plus additional rare coding variants identified from our re-sequencing efforts. Fifteen SNPs provided nominal evidence for association (P≤ 0.05) with type 1 diabetes. The most significant associations were observed with rs2271189 (P = 4.22×10−5), located in exon 27 of the ERBB3 gene, and an intergenic SNP rs11171747 (P= 1.70×10−4). Follow-up genotyping of these SNPs in 2 740 multiplex type 1 diabetes families validated these findings. After analyzing variants spanning more than 200 kb, we have replicated associations from previous GWAS and provide evidence for novel associations with type 1 diabetes. The associations across this region could be entirely accounted for by two common SNPs, rs2271189 and rs11171747.
Collapse
Affiliation(s)
- K L Keene
- Department of Biochemistry and Molecular Genetics, UVA School of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Sithanandam G, Anderson LM. The ERBB3 receptor in cancer and cancer gene therapy. Cancer Gene Ther 2008; 15:413-48. [PMID: 18404164 DOI: 10.1038/cgt.2008.15] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ERBB3, a member of the epidermal growth factor receptor (EGFR) family, is unique in that its tyrosine kinase domain is functionally defective. It is activated by neuregulins, by other ERBB and nonERBB receptors as well as by other kinases, and by novel mechanisms. Downstream it interacts prominently with the phosphoinositol 3-kinase/AKT survival/mitogenic pathway, but also with GRB, SHC, SRC, ABL, rasGAP, SYK and the transcription regulator EBP1. There are likely important but poorly understood roles for nuclear localization and for secreted isoforms. Studies of ERBB3 expression in primary cancers and of its mechanistic contributions in cultured cells have implicated it, with varying degrees of certainty, with causation or sustenance of cancers of the breast, ovary, prostate, certain brain cells, retina, melanocytes, colon, pancreas, stomach, oral cavity and lung. Recent results link high ERBB3 activity with escape from therapy targeting other ERBBs in lung and breast cancers. Thus a wide and centrally important role for ERBB3 in cancer is becoming increasingly apparent. Several approaches for targeting ERBB3 in cancers have been tested or proposed. Small inhibitory RNA (siRNA) to ERBB3 or AKT is showing promise as a therapeutic approach to treatment of lung adenocarcinoma.
Collapse
|
16
|
Scheving LA, Buchanan R, Krause MA, Zhang X, Stevenson MC, Russell WE. Dexamethasone modulates ErbB tyrosine kinase expression and signaling through multiple and redundant mechanisms in cultured rat hepatocytes. Am J Physiol Gastrointest Liver Physiol 2007; 293:G552-9. [PMID: 17585012 DOI: 10.1152/ajpgi.00140.2007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glucocorticoids paradoxically exert both stimulatory and inhibitory effects on the proliferation of cultured rat hepatocytes. We studied the effects of dexamethasone, a synthetic glucocorticoid, on the proliferation of cultured rat hepatocytes. The timing of growth factor addition modified the action of high-dose dexamethasone (10(-6) M) on DNA synthesis. When we added transforming growth factor-alpha at the time of plating, 10(-6) M dexamethasone weakly stimulated DNA synthesis by 26% relative to cells cultured in dexamethasone-free media. When we delayed growth factor addition until 24-48 h after plating, 10(-6) M dexamethasone inhibited DNA synthesis by 50%. Using immunological methods, we analyzed the expression and signaling patterns of the ErbB kinases in dexamethasone-treated cells. High-dose dexamethasone stabilized the expression of epidermal growth factor receptor (EGFr) and ErbB3, and it suppressed the de novo expression of ErbB2 that occurs during the third and fourth day of culture in 10(-8) M dexamethasone. High-dose dexamethasone by 72 h suppressed basal and EGF-associated phosphorylation of ERK and Akt. The reduction in ERK1/2 phosphorylation correlated with suppression of a culture-dependent increase in Son-of sevenless 1 (Sos1) and ERK1/2 expression. High-dose dexamethasone in hepatocytes stabilized or upregulated several inhibitory effectors of EGFr/ErbB2 and ERK, including receptor-associated late transducer (RALT) and MKP-1, respectively. Thus 10(-6) M dexamethasone exerts a time-dependent and redundant inhibitory effect on EGFr-mediated proliferative signaling in hepatocytes, targeting not only the ErbB proteins but also their various positive and negative effectors.
Collapse
Affiliation(s)
- Lawrence A Scheving
- Division of Pediatric Endocrinology, 1055 Medical Research Bldg. 4, Vanderbilt University Medical Center, Nashville, TN 37232-0710, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Vairaktaris E, Goutzanis L, Vassiliou S, Spyridonidou S, Nkenke E, Papageorgiou G, Strantzias P, Lazaris A, Yapijakis C, Patsouris E. Enhancement of erbB2 and erbB3 expression during oral oncogenesis in diabetic rats. J Cancer Res Clin Oncol 2007; 134:337-44. [PMID: 17704947 DOI: 10.1007/s00432-007-0289-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 07/17/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE The expression of erbB2 and erbB3 receptors was investigated in an experimental model of chemically induced oral carcinogenesis in normal and diabetic (type I) Sprague-Dawley rats. METHODS Thirteen diabetic and twelve normal rats developed precancerous and cancerous lesions after 4-nitroquinoline-N-oxide treatment, while six diabetic and six normal animals were used as controls. Sections of biopsies from all animals were classified histologically in the following categories: normal mucosa, hyperplasia, dysplasia, early invasion, well- and moderately-differentiated squamous cell carcinoma. Each section was studied immunohistochemically using monoclonal antibodies against erbB2 and erbB3 proteins and six representative histological regions in each section were analysed. RESULTS The erbB2 was expressed at very low levels in normal rats, while in diabetic animals its expression was significantly increased during early invasion (P = 0.04). The erbB3 expression was significantly elevated in well-differentiated carcinoma in normal animals (P = 0.01), while in diabetic animals it was significantly increased during oral mucosal hyperplasia and dysplasia (P = 0.03 and 0.0007, respectively). The comparison of erbB2 expression between diabetic and normal rats revealed significant differences in all stages except for the tumor stage of moderately differentiated carcinoma (P = 0.01, 0.00001, 0.00001, 0.003, and 0.00001). In regard to erbB3 expression, significant differences between diabetic and normal rats existed only in normal, non-cancerous and precancerous stages (P = 0.007, 0.0001, 0.0003). CONCLUSIONS It seems that diabetes enhances the expression of both erbB2 and erbB3 in certain stages of oral oncogenesis possibly resulting in promotion of cell proliferation and inhibition of apoptosis.
Collapse
Affiliation(s)
- Eleftherios Vairaktaris
- Department of Oral and Maxillofacial Surgery, University of Athens Medical School, Vas. Sofias 93 and Dim. Soutsou 1, Athens 11521, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Koumakpayi IH, Diallo JS, Le Page C, Lessard L, Gleave M, Bégin LR, Mes-Masson AM, Saad F. Expression and nuclear localization of ErbB3 in prostate cancer. Clin Cancer Res 2006; 12:2730-7. [PMID: 16675564 DOI: 10.1158/1078-0432.ccr-05-2242] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The ErbB1 and ErbB2 receptors have been implicated in prostate cancer progression, but less is known about the role and biology of other ErbB receptor family members in prostate cancer. The aim of this study was to analyze the expression and localization of ErbB3 in prostate tissues and prostate cancer cell lines. EXPERIMENTAL DESIGN Immunohistochemistry of ErbB3 was done on prostate cancer tissue sections from 143 patients and on a tissue microarray containing 390 cores of radical prostatectomy-derived specimens representing normal, prostatic intraepithelial neoplasia, and malignant tissues from 81 patients. ErbB3 subcellular localization was studied by Western blot analysis in LNCaP, 22Rv1, PC-3, and DU145 prostate cancer cell lines. RESULTS Immunohistochemistry analysis of prostate cancer tissues revealed that >90% of prostate cancer tissues displayed cytoplasmic ErbB3 staining. Minimal ErbB3 nuclear staining was observed in normal prostate tissues and benign prostatic hyperplasia tissues; in contrast, ErbB3 was frequently localized in the nucleus of cancerous tissues. This nuclear localization was more frequent (P < 0.001) in hormone-refractory tissues (17 of 17, 100%) compared with hormone-sensitive samples (37 of 92, 40.2%). Additionally, in the tissue microarray, increased nuclear ErbB3 was associated with increasing Gleason grade. Interestingly, Western blot analysis of cytoplasmic and nuclear subcellular fractions showed that ErbB3 nuclear localization was more prevalent in hormone-sensitive prostate cancer cell lines (LNCaP and 22Rv1) compared with hormone-insensitive cell lines (PC-3 and DU145). CONCLUSIONS ErbB3 nuclear localization discriminates normal from malignant prostate tissues and between tumors from hormone-sensitive versus hormone-refractory prostate cancer. ErbB3 nuclear staining seems to be associated with risk of disease progression. The high frequency of ErbB3 nuclear localization in hormone-refractory tissues indicates that ErbB3 warrants further study to understand its association with prostate cancer disease progression.
Collapse
Affiliation(s)
- Ismaël Hervé Koumakpayi
- Centre de recherche du Centre hospitalier de l'Université de Montréal and Institut du cancer de Montréal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Scheving LA, Zhang L, Stevenson MC, Kwak ES, Russell WE. The emergence of ErbB2 expression in cultured rat hepatocytes correlates with enhanced and diversified EGF-mediated signaling. Am J Physiol Gastrointest Liver Physiol 2006; 291:G16-25. [PMID: 16769812 DOI: 10.1152/ajpgi.00328.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The proliferative effects of EGF in liver have been extensively investigated in cultured hepatocytes. We studied the effects of EGF, insulin, and other growth regulators on the expression, interaction, and signaling of ErbB receptors in primary cultures of adult rat hepatocytes. Using immunological methods and ErbB tyrosine kinase inhibitors, we analyzed the expression and signaling patterns of the ErbB kinases over 120 h of culture. Basal and EGF-stimulated protein tyrosine phosphorylation increased as cells adapted in vitro. EGF receptor (EGFr) expression declined in the first 24 h, whereas ErbB3 expression rose. Although ErbB2 was not present in freshly isolated hepatocytes, EGF and insulin independently induced ErbB2 while suppressing ErbB3 expression. Low concentrations of EGF and insulin synergistically stimulated ErbB2 expression and DNA synthesis. The greatest increase in ErbB2, which is normally expressed by fetal and neonatal hepatocytes, occurred shortly before the onset of DNA synthesis (> 40 h). EGF promoted EGFr and ErbB2 coassociation, stimulating tyrosine phosphorylation of both proteins. In contrast, heregulin beta1 (HRG-beta1) did not promote ErbB2 and ErbB3 coassociation. A selective tyrphostin inhibitor of ErbB2 suppressed EGF-stimulated DNA synthesis, but maximum suppression required the blockade of the EGFr kinase as well. Maximal EGF stimulation of DNA synthesis in vitro depends on the induction of ErbB2 and involves an EGFr-ErbB2 heterodimer. The ability of insulin to induce ErbB2 suggests both a mechanism for the synergy between insulin and EGF and a possible metabolic control of ErbB2 in vivo.
Collapse
Affiliation(s)
- Lawrence A Scheving
- Division of Endocrinology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-0710, USA.
| | | | | | | | | |
Collapse
|
20
|
Carver RS, Stevenson MC, Scheving LA, Russell WE. Diverse expression of ErbB receptor proteins during rat liver development and regeneration. Gastroenterology 2002; 123:2017-27. [PMID: 12454858 DOI: 10.1053/gast.2002.37060] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS The protein expression and interactions of the ErbB receptors were examined in different liver proliferation models in vivo and in vitro, including ontogeny and regeneration following partial hepatectomy. METHODS Expression and tyrosine phosphorylation status of specific ErbB proteins were studied by immunologic methods. RESULTS The epidermal growth factor receptor, ErbB2, and ErbB3 were the only ErbB proteins detected in the liver parenchyma on embryonic day 19. ErbB2 disappeared by the third week after birth and could not be appreciably induced in the adult animal by partial hepatectomy. ErbB2 was also detected in multipotent stem (RLE) and hepatoma (H4IIe) cell lines as well as in fetal, but not adult, hepatocyte cultures. Only epidermal growth factor receptor and ErbB3 were detected in adult liver, and both showed circadian variation in protein expression. ErbB4 was not detected in any model. Patterns of ligand-induced ErbB phosphorylation differed between fetal and adult hepatocytes. CONCLUSIONS Complex and independent programs regulate the ErbB receptors, with implications for differential cell signaling in hepatic development and regeneration.
Collapse
Affiliation(s)
- Robert S Carver
- Department of Cell Biology, the Digestive Disease Research Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
21
|
Scheving LA, Stevenson MC, Taylormoore JM, Traxler P, Russell WE. Integral role of the EGF receptor in HGF-mediated hepatocyte proliferation. Biochem Biophys Res Commun 2002; 290:197-203. [PMID: 11779153 DOI: 10.1006/bbrc.2001.6157] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocyte growth factor (HGF), insulin, and TGF-alpha stimulate DNA synthesis in cultured hepatocytes. Each ligand activates a distinct tyrosine kinase receptor, although receptor cross-talk modulates signaling. In rat hepatocytes, HGF can stimulate TGF-alpha production while TGF-alpha antibodies or antisense oligonucleotides suppress HGF-stimulated DNA synthesis. We report that the epidermal growth factor receptor (EGFR) kinase inhibitor PKI166 blocked both basal and ligand-induced tyrosine phosphorylation of the EGFR (IC(50) = 60 nM), but not of the insulin receptor or c-met. Pharmacologic inhibition of the EGFR kinase abolished the proliferative actions of HGF and EGF, but not insulin, whereas PI-3 kinase inhibition blocked both EGF and insulin actions. We conclude that in cultured hepatocytes (i) PI-3 kinase is required for EGF- and insulin-induced proliferation and (ii) EGFR mediates both the basal rate of DNA synthesis and that induced by EGF and HGF, but not insulin. The mitogenic effect of HGF may be secondary to increased synthesis or processing of EGFR ligands such as TGF-alpha.
Collapse
Affiliation(s)
- Lawrence A Scheving
- Department of Pediatrics, Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | |
Collapse
|
22
|
Scheving LA, Russell WE. Insulin and heregulin-beta1 upregulate guanylyl cyclase C expression in rat hepatocytes: reversal by phosphodiesterase-3 inhibition. Cell Signal 2001; 13:665-72. [PMID: 11495724 DOI: 10.1016/s0898-6568(01)00179-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Guanylyl cyclase C (GC-C) is the receptor for the hormones guanylin and uroguanylin. Although primarily expressed in the rat intestine, GC-C is also expressed in the liver during neonatal or regenerative growth or during the acute phase response. Little is known about the hepatic regulation of GC-C expression. The influence of various hepatic growth or acute phase regulators on GC-C expression was evaluated by immunoblot analysis of protein from primary rat hepatocytes grown in a serum-free medium. Insulin and heregulin-beta1 strongly stimulated GC-C expression by 24 h of cell culture. Several different hormones and agents suppressed this action, including transforming growth factor beta (TGF-beta), as well as inhibitors of phosphatidylinositol 3-kinase (PI-3-kinase) and phosphodiesterase 3 (PDE-3, an insulin- and PI-3-kinase-dependent enzyme). The compartmental downregulation of cAMP levels by PDE-3 may be a critical step in the hormonal action that culminates in GC-C synthesis.
Collapse
Affiliation(s)
- L A Scheving
- Division of Pediatric Gastroenterology and Nutrition, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
23
|
Kholodenko BN, Demin OV, Moehren G, Hoek JB. Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 1999; 274:30169-81. [PMID: 10514507 DOI: 10.1074/jbc.274.42.30169] [Citation(s) in RCA: 397] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the past decade, our knowledge of molecular mechanisms involved in growth factor signaling has proliferated almost explosively. However, the kinetics and control of information transfer through signaling networks remain poorly understood. This paper combines experimental kinetic analysis and computational modeling of the short term pattern of cellular responses to epidermal growth factor (EGF) in isolated hepatocytes. The experimental data show transient tyrosine phosphorylation of the EGF receptor (EGFR) and transient or sustained response patterns in multiple signaling proteins targeted by EGFR. Transient responses exhibit pronounced maxima, reached within 15-30 s of EGF stimulation and followed by a decline to relatively low (quasi-steady-state) levels. In contrast to earlier suggestions, we demonstrate that the experimentally observed transients can be accounted for without requiring receptor-mediated activation of specific tyrosine phosphatases, following EGF stimulation. The kinetic model predicts how the cellular response is controlled by the relative levels and activity states of signaling proteins and under what conditions activation patterns are transient or sustained. EGFR signaling patterns appear to be robust with respect to variations in many elemental rate constants within the range of experimentally measured values. On the other hand, we specify which changes in the kinetic scheme, rate constants, and total amounts of molecular factors involved are incompatible with the experimentally observed kinetics of signal transfer. Quantitation of signaling network responses to growth factors allows us to assess how cells process information controlling their growth and differentiation.
Collapse
Affiliation(s)
- B N Kholodenko
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|