1
|
Citterio CE, Rivolta CM, Targovnik HM. Structure and genetic variants of thyroglobulin: Pathophysiological implications. Mol Cell Endocrinol 2021; 528:111227. [PMID: 33689781 DOI: 10.1016/j.mce.2021.111227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/22/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared. Although TG deficiency is thought to be of autosomal recessive inheritance, the introduction of massive sequencing platforms led to the identification of a variety of monoallelic TG variants (combined with mutations in other thyroid gene products) opening new questions regarding the possibility of oligogenic inheritance of the disease. In this review we discuss remarkable advances in the understanding of the TG architecture and the pathophysiology of CH associated with TG defects, providing new insights for the management of congenital disorders as well as counseling benefits for families with a history of TG abnormalities. Moreover, we summarize relevant aspects of TH synthesis within TG and offer an updated analysis of animal and cellular models of TG deficiency for pathophysiological studies of thyroid dyshormonogenesis while highlighting perspectives for new investigations. All in all, even though there has been sustained progress in understanding the role of TG in thyroid pathophysiology during the past 50 years, functional characterization of TG variants remains an important area of study for future advancement in the field.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Morishita Y, Arvan P. Lessons from animal models of endocrine disorders caused by defects of protein folding in the secretory pathway. Mol Cell Endocrinol 2020; 499:110613. [PMID: 31605742 PMCID: PMC6886696 DOI: 10.1016/j.mce.2019.110613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023]
Abstract
Most peptide hormones originate from secretory protein precursors synthesized within the endoplasmic reticulum (ER). In this specialized organelle, the newly-made prohormones must fold to their native state. Completion of prohormone folding usually occurs prior to migration through the secretory pathway, as unfolded/misfolded prohormones are retained by mechanisms collectively known as ER quality control. Not only do most monomeric prohormones need to fold properly, but many also dimerize or oligomerize within the ER. If oligomerization occurs before completion of monomer folding then when a poorly folded peptide prohormone is retained by quality control mechanisms, it may confer ER retention upon its oligomerization partners. Conversely, oligomerization between well-folded and improperly folded partners might help to override ER quality control, resulting in rescue of misfolded forms. Both scenarios appear to be possible in different animal models of endocrine disorders caused by genetic defects of protein folding in the secretory pathway. In this paper, we briefly review three such conditions, including familial neurohypophyseal diabetes insipidus, insulin-deficient diabetes mellitus, and hypothyroidism with defective thyroglobulin.
Collapse
Affiliation(s)
- Yoshiaki Morishita
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan School of Medicine, Brehm Tower Room 5112, 1000, Wall St., Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Abstract
Thyroglobulin (Tg) is a vertebrate secretory protein synthesized in the thyrocyte endoplasmic reticulum (ER), where it acquires N-linked glycosylation and conformational maturation (including formation of many disulfide bonds), leading to homodimerization. Its primary functions include iodide storage and thyroid hormonogenesis. Tg consists largely of repeating domains, and many tyrosyl residues in these domains become iodinated to form monoiodo- and diiodotyrosine, whereas only a small portion of Tg structure is dedicated to hormone formation. Interestingly, evolutionary ancestors, dependent upon thyroid hormone for development, synthesize thyroid hormones without the complete Tg protein architecture. Nevertheless, in all vertebrates, Tg follows a strict pattern of region I, II-III, and the cholinesterase-like (ChEL) domain. In vertebrates, Tg first undergoes intracellular transport through the secretory pathway, which requires the assistance of thyrocyte ER chaperones and oxidoreductases, as well as coordination of distinct regions of Tg, to achieve a native conformation. Curiously, regions II-III and ChEL behave as fully independent folding units that could function as successful secretory proteins by themselves. However, the large Tg region I (bearing the primary T4-forming site) is incompetent by itself for intracellular transport, requiring the downstream regions II-III and ChEL to complete its folding. A combination of nonsense mutations, frameshift mutations, splice site mutations, and missense mutations in Tg occurs spontaneously to cause congenital hypothyroidism and thyroidal ER stress. These Tg mutants are unable to achieve a native conformation within the ER, interfering with the efficiency of Tg maturation and export to the thyroid follicle lumen for iodide storage and hormonogenesis.
Collapse
Affiliation(s)
- Bruno Di Jeso
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| | - Peter Arvan
- Laboratorio di Patologia Generale (B.D.J.), Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, 73100 Lecce, Italy; and Division of Metabolism, Endocrinology, and Diabetes (P.A.), University of Michigan Medical School, Ann Arbor, Michigan 48105
| |
Collapse
|
4
|
Misonou Y, Kikuchi M, Sato H, Inai T, Kuroiwa T, Tanaka K, Miyakawa I. Aldehyde dehydrogenase, Ald4p, is a major component of mitochondrial fluorescent inclusion bodies in the yeast Saccharomyces cerevisiae. Biol Open 2014; 3:387-96. [PMID: 24771619 PMCID: PMC4021361 DOI: 10.1242/bio.20147138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
When Saccharomyces cerevisiae strain 3626 was cultured to the stationary phase in a medium that contained glucose, needle-like structures that emitted autofluorescence were observed in almost all cells by fluorescence microscopy under UV excitation. The needle-like structures completely overlapped with the profile of straight elongated mitochondria. Therefore, these structures were designated as mitochondrial fluorescent inclusion bodies (MFIBs). The MFIB-enriched mitochondrial fractions were successfully isolated and 2D-gel electrophoresis revealed that a protein of 54 kDa was only highly concentrated in the fractions. Determination of the N-terminal amino acid sequence of the 54-kDa protein identified it as a mitochondrial aldehyde dehydrogenase, Ald4p. Immunofluorescence microscopy showed that anti-Ald4p antibody specifically stained MFIBs. Freeze-substitution electron microscopy demonstrated that cells that retained MFIBs had electron-dense filamentous structures with a diameter of 10 nm in straight elongated mitochondria. Immunoelectron microscopy showed that Ald4p was localized to the electron-dense filamentous structures in mitochondria. These results together showed that a major component of MFIBs is Ald4p. In addition, we demonstrate that MFIBs are common features that appear in mitochondria of many species of yeast.
Collapse
Affiliation(s)
- Yoshiko Misonou
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Maiko Kikuchi
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Hiroshi Sato
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan Present address: Division of Cell Biology, Institute of Life Science, Kurume University, Hyakunen-kohen 1-1, Kurume, Fukuoka 839-0864, Japan
| | - Tomomi Inai
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Kenji Tanaka
- Laboratory of Medical Mycology, Research Institute for Disease Mechanism and Control, Nagoya University School of Medicine, Nagoya 466-8550, Japan Present address: Department of Microbiology, Aichi Gakuin University School of Dentistry, Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Isamu Miyakawa
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| |
Collapse
|
5
|
Oh-Ishi M, Kodera Y, Furudate SI, Maeda T. Disease proteomics of endocrine disorders revealed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics Clin Appl 2008; 2:327-37. [DOI: 10.1002/prca.200780026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Menon S, Lee J, Abplanalp WA, Yoo SE, Agui T, Furudate SI, Kim PS, Arvan P. Oxidoreductase interactions include a role for ERp72 engagement with mutant thyroglobulin from the rdw/rdw rat dwarf. J Biol Chem 2007; 282:6183-91. [PMID: 17200118 PMCID: PMC2542443 DOI: 10.1074/jbc.m608863200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Newly synthesized thyroglobulin (Tg), the secretory glycoprotein that serves as precursor in thyroid hormone synthesis, normally forms transient covalent protein complexes with oxidoreductases of the endoplasmic reticulum (ER). The Tg-G2320R mutation is responsible for congenital hypothyroidism in rdw/rdw rats, in which a lack of secondary thyroid enlargement (goiter) implicates death of thyrocytes as part of disease pathogenesis. We found that mutant Tg-G2320R was retained within the ER with no detectable synthesis of thyroxine, had persistent exposure of free cysteine thiols, and was associated with activated ER stress response but incomplete ER-associated degradation (ERAD). Tg-G2320R associated with multiple ER resident proteins, most notably ERp72, including covalent Tg-ERp72 interactions. In PC Cl3 thyrocytes, inducible overexpression of ERp72 increased the ability of cells to maintain Tg cysteines in a reduced state. Noncovalent interactions of several ER chaperones with newly synthesized Tg-G2320R diminished over time in parallel with ERAD of the mutant protein, yet a small ERAD-resistant Tg fraction remained engaged in covalent association with ERp72 even 2 days post-synthesis. Such covalent protein aggregates may set the stage for apoptotic thyrocyte cell death, preventing thyroid goiter formation in rdw/rdw rats.
Collapse
Affiliation(s)
- Shekar Menon
- Program in Cell and Molecular Biology and Division of Endocrinology, University of Cincinnati, Ohio 45267
| | - Jaemin Lee
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - William A. Abplanalp
- Program in Cell and Molecular Biology and Division of Endocrinology, University of Cincinnati, Ohio 45267
| | - Sung-Eun Yoo
- Program in Cell and Molecular Biology and Division of Endocrinology, University of Cincinnati, Ohio 45267
| | - Takashi Agui
- Laboratory of Experimental Animal Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido 060-0818, Japan
| | - Sen-ichi Furudate
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | - Paul S. Kim
- Program in Cell and Molecular Biology and Division of Endocrinology, University of Cincinnati, Ohio 45267
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48109
- To whom correspondence should be addressed: Div. of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, 5560 MSRB2, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0678. Tel.: 734-936-5505; Fax: 718-936-6684; E-mail:
| |
Collapse
|
7
|
Satoh M, Haruta-Satoh E, Omori A, Oh-Ishi M, Kodera Y, Furudate SI, Maeda T. Effect of thyroxine on abnormal pancreatic proteomes of the hypothyroid rdw rat. Proteomics 2005; 5:1113-24. [PMID: 15712237 DOI: 10.1002/pmic.200401117] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mutation in the thyroglobulin (Tg) gene is the primary cause of hereditary dwarfism and hypothyroidism in the rdw rat. Despite the Tg mutation that causes a Tg shortage, rdw rats survive. The present study examines the influences of this condition on the pancreatic proteome. Normal control (group 1; n = 19) and rdw rats that did not receive L-thyroxine (T4) (group 2; n = 27) were sacrificed from 4 to 56 weeks after birth. The rdw rats were supplemented either with daily intraperitoneal injections of T4 from 3 to 28 days after birth (group 3; n = 4) or with normal thyroid tissues grafted at 4 weeks of age (group 4; n = 3). Groups 3 and 4 were sacrificed 12 weeks after birth. Pancreatic proteomes analyzed by two-dimensional gel electrophoresis showed that levels of at least four pancreatic proteins were higher in group 2 than in group 1, and that those of four were lower. Cluster decomposition and principal component analysis of the eight protein contents showed that groups 1 and 2 were separated into two clusters and that pancreatic proteomes of group 4 were better normalized than those of group 3. Injecting T4 into group 3 was temporarily effective, whereas the thyroid graft to group 4 provided a continuous positive effect, which concurred with the increased body weight of the other two groups of rdw rats that received grafts of normal thyroids.
Collapse
Affiliation(s)
- Mamoru Satoh
- Department of Physics, Kitasato University School of Science, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Furudate SI, Ono M, Shibayama K, Ohyama Y, Kuwada M, Kimura T, Kameya T. Rescue from Dwarfism by Thyroid Function Compensation in rdw Rats. Exp Anim 2005; 54:455-60. [PMID: 16365524 DOI: 10.1538/expanim.54.455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The rdw rat was initially reported as having hereditary dwarfism caused by pituitary dysfunction. Subsequent studies on the rdw rat, however, have demonstrated that the primary cause of rdw dwarfism is present in the thyroid gland but not in the pituitary gland. The primary cause of rdw rat disorders is a missense mutation of the thyroglobulin (Tg) gene by a one-point mutation. In the present study, we attempted to rescue the dwarfism of the rdw rats using a diet supplemented with thyroid powder (T-powder) and a thyroid graft (T-graft). The infants of the rdw rat were successfully raised to a mature stage body weight, accompanied by elevation of serum growth hormone (GH) and prolactin (PRL), by the T-powder. Furthermore, the T-graft successfully increased the body weight with fertility. The serum GH and PRL levels in the T-graft rdw rat significantly increased. The serum thyroid-stimulating hormone (TSH) levels in the T-graft rdw rat were significantly decreased but were significantly higher than those in the control rat. The GH and PRL mRNA expression in the rdw rat with the T-graft was virtually the same as that of the control, but the TSH beta mRNA differed from that of the control rats. Thus, the dwarfism in the rdw rat is rescued by thyroid function compensation, such as that afforded by T-powder and T-graft.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Body Weight/drug effects
- Body Weight/genetics
- Disease Models, Animal
- Dwarfism, Pituitary/genetics
- Dwarfism, Pituitary/metabolism
- Dwarfism, Pituitary/therapy
- Gene Expression/drug effects
- Growth Hormone/blood
- Growth Hormone/genetics
- Prolactin/blood
- Prolactin/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Mutant Strains
- Rats, Wistar
- Thyroid (USP)/therapeutic use
- Thyroid Gland/metabolism
- Thyroid Gland/transplantation
- Thyrotropin, beta Subunit/blood
- Thyrotropin, beta Subunit/genetics
- Transplants
Collapse
Affiliation(s)
- Sen-ichi Furudate
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Kitasato, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Vono-Toniolo J, Kopp P. Thyroglobulin gene mutations and other genetic defects associated with congenital hypothyroidism. ACTA ACUST UNITED AC 2004; 48:70-82. [PMID: 15611820 DOI: 10.1590/s0004-27302004000100009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Congenital hypothyroidism affects about 1:3000-1:4000 infants. Screening programs now permit early recognition and treatment, thus avoiding the disastrous consequences of thyroid hormone deficiency on brain development. In about 85%, congenital hypothyroidism is associated with developmental defects referred to as thyroid dysgenesis. They include thyroid (hemi)agenesis, ectopic tissue and thyroid hypoplasia. Thyroid dysgenesis is usually sporadic; in only 2% it occurs in a familial fashion. It can be caused by mutations in transcription factors that are essential for the development and function of thyroid follicular cells. Thyroid hypoplasia can also result from resistance to TSH at the level of the thyrocytes. Defects in the steps required for thyroid hormone synthesis within thyroid follicular cells are referred to as dyshormonogenesis and account for about 10-15% of congenital hypothyroidism. In contrast to thyroid dysgenesis, affected patients typically present with goitrous enlargement of the thyroid. The defects leading to dyshormonogenesis typically display a recessive mode of inheritance. Careful clinical, biochemical and molecular analyses of patients with syndromic and non-syndromic forms of thyroid dysgenesis and dyshormonogenesis have significantly enhanced our understanding of the wide spectrum of pathogenetic mechanisms underlying congenital hypothyroidism and provide unique insights into the (patho)physiology of thyroid development and hormone synthesis.
Collapse
Affiliation(s)
- Jussara Vono-Toniolo
- Division of Endocrinology, Metabolism & Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
| | | |
Collapse
|
10
|
Ikezono T, Omori A, Ichinose S, Pawankar R, Watanabe A, Yagi T. Identification of the protein product of the Coch gene (hereditary deafness gene) as the major component of bovine inner ear protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1535:258-65. [PMID: 11278165 DOI: 10.1016/s0925-4439(00)00101-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In order to better understand the cause of hereditary hearing impairment, we have performed a proteomic analysis of the inner ear proteins using two-dimensional gel electrophoresis. In the process of analysis, we have found very unique properties of the bovine homologue of the human COCH gene product. The COCH gene is responsible for one of the hereditary hearing impairments, DFNA9, and was recently suggested to be a possible genetic factor contributing to Ménière's disease. The Coch protein constitutes 70% of bovine inner ear proteins and is composed of 16 different protein spots, with charge and size heterogeneity. Heterogeneity of this protein suggests that the Coch gene is processed in several ways, at the transcriptional and/or posttranslational level. Much knowledge has accumulated about the hereditary hearing impairment genes; however, little research has been done regarding the protein products of those genes. This is the first report to characterize the Coch protein. Study of the Coch protein might provide more information on the mechanism of hearing and vestibular disorders.
Collapse
Affiliation(s)
- T Ikezono
- Department of Otorhinolaryngology, Nippon Medical School, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Jiang JY, Umezu M, Sato E. Characteristics of infertility and the improvement of fertility by thyroxine treatment in adult male hypothyroid rdw rats. Biol Reprod 2000; 63:1637-41. [PMID: 11090430 DOI: 10.1095/biolreprod63.6.1637] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We previously reported that rdw rats were infertile in both sexes. The present study was conducted to determine whether hypothyroidism in adult male rdw rats induced infertility by impairing sexual behavior or testicular function, whether the infertility could be reversed by thyroxine (T(4)) treatment, and whether the mutant could be produced by infertile rdw rats via in vitro fertilization. The sexual behavior was analyzed by pairing with normal female rats. The fertility of epididymal sperm was determined by in vitro fertilization. The results indicated that the infertility resulted from both defective sexual behavior and testicular function. No untreated rdw rats mated. The weights of epididymides were significantly low, whereas those of testes were not different from those of untreated normal rats. Epididymal sperm with cytoplasmic droplets were observed at a significantly high frequency. No fertilization was detected either in vivo or in vitro. Thyroxine treatment markedly increased serum T(4) levels and the weights of both epididymides and testes. Partial reversion of the impaired sexual behavior was observed, and the percentage of epididymal sperm with cytoplasmic droplets was markedly decreased after T(4) treatment. Fertility of epididymal sperm was completely reversed when determined both in vivo and in vitro, and homozygous embryos developed to term after transfer without loss of viability.
Collapse
Affiliation(s)
- J Y Jiang
- Laboratory of Animal Reproduction, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | |
Collapse
|
12
|
Hishinuma A, Furudate S, Oh-Ishi M, Nagakubo N, Namatame T, Ieiri T. A novel missense mutation (G2320R) in thyroglobulin causes hypothyroidism in rdw rats. Endocrinology 2000; 141:4050-5. [PMID: 11089535 DOI: 10.1210/endo.141.11.7794] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rdw rat is a hereditary hypothyroid variant initially derived from the Wistar-Imamichi strain. Proteome analysis by two-dimensional gelelectrophoresis showed that molecular chaperones accumulated in the thyroid glands, suggesting retention of abnormal proteins in the endoplasmic reticulum (ER). Anatomical studies indicated that thyroglobulin (Tg) was not secreted into the follicular lumina, but retained in the dilated ER. Sequencing of the entire Tg complementary DNA from the rdw rat revealed a missense mutation (G2320R) in the acetylcholinesterase-like domain at the 2320th amino acid residue. Carbohydrate residues of the G2320R Tg mutant were of the high-mannose ER type, as shown by sensitivity to the treatment with endoglycosidase H. Molecular chaperones, GRP94, GRP78, and calreticulin, were all accumulated in the rdw rat thyroid glands. Computer analysis of protein secondary structure predicted that the mutation would cause extension of the helix where beta-sheet and turns were formed in the normal Tg. Altered folding of Tg might account for the impaired intracellular transport of Tg and activated premature degradation by the same mechanism as in ER storage diseases.
Collapse
Affiliation(s)
- A Hishinuma
- Department of Clinical Laboratory Medicine, Dokkyo University School of Medicine, Mibu, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
Sakai Y, Yamashina S, Furudate SI. Missing secretory granules, dilated endoplasmic reticulum, and nuclear dislocation in the thyroid gland of rdw rats with hereditary dwarfism. THE ANATOMICAL RECORD 2000; 259:60-6. [PMID: 10760744 DOI: 10.1002/(sici)1097-0185(20000501)259:1<60::aid-ar7>3.0.co;2-f] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies on the rdw rat have suggested that its dwarfism is caused primarily by dysfunction of the thyroid gland. In this study, rat thyroid glands were analyzed endocrinologically and morphologically to clarify the primary cause of dwarfism in the rdw rat. The rdw rat showed lowered thyroid hormone (T4 and T3) levels but elevated TSH in serum. The rdw thyroid gland was almost proportional in size and it was not goiter in gross inspection. Our histological investigation produced three results that may lend important evidence in understanding the problem in the thyroid gland of rdw rats. First of all, secretory granules could not be detected in the follicular epithelial cells of the rdw. Secondly, thyroglobulin was found at very low levels in the follicular lumen by immunohistochemical analysis. In contrast, it could be detected in a substantial quantity inside the dilated rER and in the huge vacuoles that are formed by swelling of the rough endoplasmic reticulum (rER) at the basal side of the follicular epithelial cells. Additionally, the nucleus of the follicular epithelial cells was pressed to the luminal side by the enlarged rER. These morphological changes would indicate that the transport of thyroglobulin is stopped at or before the formation of the secretory granules and thyroglobulin is not secreted into the follicular lumen. The rdw characterization strongly supports that rdw dwarfism is induced by hypothyroidism due to some defect(s) in the thyroid gland.
Collapse
Affiliation(s)
- Y Sakai
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara-shi, Kanagawa 228-8555, Japan.
| | | | | |
Collapse
|
14
|
Oh-Ishi M, Satoh M, Maeda T. Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins. Electrophoresis 2000; 21:1653-69. [PMID: 10870952 DOI: 10.1002/(sici)1522-2683(20000501)21:9<1653::aid-elps1653>3.0.co;2-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A two-dimensional gel electrophoresis (2-DE) method that uses an agarose isoelectric focusing (IEF) gel in the first dimension (agarose 2-DE) was compared with an immobilized pH gradient 2-DE method (IPG-Dalt). The former method was shown to produce significant improvements in the 2-D electrophoretic separation of high molecular mass proteins larger than 150 kDa, up to 500 kDa, and to have a higher loading capacity, as much as 1.5 mg proteins in total for micropreparative runs. The extraction medium found best in this study for agarose 2-DE of mammal tissues was 6 M urea, 1 M thiourea, 0.5% 2-mercaptoethanol, protease inhibitor cocktail (Complete Mini EDTA-free), 1% Triton X-100 and 3% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Trichloroacetic acid (TCA) treatment of the agarose gel after IEF is to be carefully weighed beforehand, because some high molecular mass proteins were less likely to enter the second-dimensional polyacrylamide gel after TCA fixation, and proteins such as mouse skeletal muscle actin gave pseudospots in the agarose 2-DE patterns without TCA fixation. As a good compromise we suggest fixation of proteins in the agarose gel with TCA for one hour or less. The first-dimensional agarose IEF gel containing Pharmalyte as a carrier ampholyte was 180 mm in length and 2.5-4.8 mm in diameter. The gel diameter was shown to determine the loading capacity of the agarose 2-DE, and 1.5 mg liver proteins in total were successfully separated by the use of a 4.8 mm diameter agarose gel.
Collapse
Affiliation(s)
- M Oh-Ishi
- Department of Physics, Kitasato University School of Science, Kanagawa, Japan.
| | | | | |
Collapse
|
15
|
Hishinuma A, Takamatsu J, Ohyama Y, Yokozawa T, Kanno Y, Kuma K, Yoshida S, Matsuura N, Ieiri T. Two novel cysteine substitutions (C1263R and C1995S) of thyroglobulin cause a defect in intracellular transport of thyroglobulin in patients with congenital goiter and the variant type of adenomatous goiter. J Clin Endocrinol Metab 1999; 84:1438-44. [PMID: 10199792 DOI: 10.1210/jcem.84.4.5633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We analyzed the thyroglobulin (Tg) gene of 2 unrelated patients with congenital goiter and the Tg gene of 2 siblings with the variant type of adenomatous goiter. The clinical characteristics of the patients with congenital goiter and the variant type of adenomatous goiter were very similar, except for serum Tg levels, which were less than 15 pmol/L in the patients with congenital goiter, but 117-181 pmol/L in the patients with the variant type of adenomatous goiter (normal, 15-50 pmol/L). The tissue content of Tg in the thyroid glands of all 4 patients was reduced at 0.9-3.8% of total protein (normal, 19-40%). The missense mutation C1263R was detected in the 2 unrelated patients with congenital goiter; the pedigree study showed an autosomal recessive pattern of inheritance. In the 2 siblings with the variant type of adenomatous goiter, the missense mutation C1995S was homozygously detected. In the Tg complementary DNA of 110 normal subjects, the allelic frequencies of the C1263R and C1995S mutations were each less than 0.5%. Also in the normal subjects were detected 35 nucleotide polymorphisms, the insertion of 3 nucleotides, and 1 alternative splicing, each of which was not associated with any specific thyroid disease. From these data, the molecular mechanism of the C1263R and C1995S mutations was elucidated. We first analyzed the carbohydrate residues of C1263R Tg and C1995S Tg. Sensitivity to treatment by endoglycosidase H suggests that C1263R Tg and C1995S Tg were retained in the endoplasmic reticulum (ER). Also, the presence of endoglycosidase H-resistant Tg as well as endoglycosidase H-sensitive Tg in the patients with the variant type of adenomatous goiter suggests that a fraction of C1995S Tg was transported to the Golgi and associated with the mildly increased serum Tg levels. Native PAGE and Western blot analysis with anti-Tg antibody showed that C1263R Tg and C1995S Tg form high mol wt aggregates in the ER. Our results suggest that missense mutations that replace cysteine with either arginine or serine cause an abnormal three-dimensional structure of Tg. Such misfolded Tg polypeptides are retained in the ER as high mol wt aggregates.
Collapse
Affiliation(s)
- A Hishinuma
- Department of Clinical Pathology, Dokkyo University School of Medicine, Mibu, Tochigi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|