1
|
Zhu Z, Bo-Ran Ho B, Chen A, Amrhein J, Apetrei A, Carpenter TO, Lazaretti-Castro M, Colazo JM, McCrystal Dahir K, Geßner M, Gurevich E, Heier CA, Simmons JH, Hunley TE, Hoppe B, Jacobsen C, Kouri A, Ma N, Majumdar S, Molin A, Nokoff N, Ott SM, Peña HG, Santos F, Tebben P, Topor LS, Deng Y, Bergwitz C. An update on clinical presentation and responses to therapy of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Kidney Int 2024; 105:1058-1076. [PMID: 38364990 PMCID: PMC11106756 DOI: 10.1016/j.kint.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bryan Bo-Ran Ho
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Alyssa Chen
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Amrhein
- Pediatric Endocrinology and Diabetes, School of Medicine Greenville Campus, University of South Carolina, Greenville, South Carolina, USA
| | - Andreea Apetrei
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Thomas Oliver Carpenter
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Escola Paulista de Medicina-Universidade Federal de Sao Paulo (EPM-UNIFESP), Sao Paulo, Brazil
| | - Juan Manuel Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kathryn McCrystal Dahir
- Division of Endocrinology, Program for Metabolic Bone Disorders, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michaela Geßner
- Pediatric Nephrology, Children's and Adolescents' Hospital, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Evgenia Gurevich
- Schneider Children's Medical Center of Israel, Pediatric Nephrology Institute, Petach Tikva, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Jill Hickman Simmons
- Department of Pediatrics, Division of Endocrinology and Diabetes, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Tracy Earl Hunley
- Division of Pediatric Nephrology, Vanderbilt University Medical Center, Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Bernd Hoppe
- Division of Pediatric Nephrology, Department of Pediatrics, University of Bonn, Bonn, Germany
| | - Christina Jacobsen
- Division of Endocrinology, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne Kouri
- Pediatric Nephrology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nina Ma
- Section of Pediatric Endocrinology, Children's Hospital Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sachin Majumdar
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arnaud Molin
- Caen University Hospital, Department of Genetics, UR7450 Biotargen, Reference Center for Rare Diseases of Calcium and Phosphate Metabolism, OSCAR Network, Caen, France
| | - Natalie Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan M Ott
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Helena Gil Peña
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Fernando Santos
- Department of Pediatrics, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Peter Tebben
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Endocrinology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Swartz Topor
- Division of Pediatric Endocrinology, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Yanhong Deng
- Yale School of Public Health, New Haven, Connecticut, USA
| | - Clemens Bergwitz
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
2
|
Abstract
Phosphorus plays a vital role in diverse biological processes including intracellular signaling, membrane integrity, and skeletal biomineralization; therefore, the regulation of phosphorus homeostasis is essential to the well-being of the organism. Cells and whole organisms respond to changes in inorganic phosphorus (Pi) concentrations in their environment by adjusting Pi uptake and altering biochemical processes in cells (local effects) and distant organs (endocrine effects). Unicellular organisms, such as bacteria and yeast, express specific Pi-binding proteins on the plasma membrane that respond to changes in ambient Pi availability and transduce intracellular signals that regulate the expression of genes involved in cellular Pi uptake. Multicellular organisms, including humans, respond at a cellular level to adapt to changes in extracellular Pi concentrations and also have endocrine pathways which integrate signals from various organs (e.g., intestine, kidneys, parathyroid glands, bone) to regulate serum Pi concentrations and whole-body phosphorus balance. In mammals, alterations in the concentrations of extracellular Pi modulate type III sodium-phosphate cotransporter activity on the plasma membrane, and trigger changes in cellular function. In addition, elevated extracellular Pi induces activation of fibroblast growth factor receptor, Raf/mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) and Akt pathways, which modulate gene expression in various mammalian cell types. Excessive Pi exposure, especially in patients with chronic kidney disease, leads to endothelial dysfunction, accelerated vascular calcification, and impaired insulin secretion.
Collapse
Affiliation(s)
- Kittrawee Kritmetapak
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA
| | - Rajiv Kumar
- Division of Nephrology and Hypertension, Departments of Medicine, Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55902, USA.
- Nephrology Research, Medical Sciences 1-120, 200 First Street Southwest, Rochester, MN, 55902, USA.
| |
Collapse
|
3
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
4
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2018; 471:149-163. [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Section Endocrinology and Metabolism, Yale University School of Medicine, Anlyan Center, Office S117, Lab S110, 1 Gilbert Street, New Haven, CT 06519, USA.
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
6
|
Rajagopal A, Braslavsky D, Lu JT, Kleppe S, Clément F, Cassinelli H, Liu DS, Liern JM, Vallejo G, Bergadá I, Gibbs RA, Campeau PM, Lee BH. Exome sequencing identifies a novel homozygous mutation in the phosphate transporter SLC34A1 in hypophosphatemia and nephrocalcinosis. J Clin Endocrinol Metab 2014; 99:E2451-6. [PMID: 25050900 PMCID: PMC4223446 DOI: 10.1210/jc.2014-1517] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. OBJECTIVE The goal of this study was to identify genetic causes of the clinical findings in the two siblings. DESIGN Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. PATIENTS AND OTHER PARTICIPANTS Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. RESULTS A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. CONCLUSIONS The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition.
Collapse
Affiliation(s)
- Abbhirami Rajagopal
- Department of Molecular and Human Genetics (A.R., D.L., R.G., P.C., B.L.), Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030; Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) (D.B., F.C., H.C., I.B.), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425FD Buenos Aires, Argentina; Human Genome Sequencing Center (J.T.L., R.G.), Department of Structural and Computational Biology and Molecular Biophysics (J.T.L.), Baylor College of Medicine, Houston, Texas 77030; Unidad de Metabolismo (S.K.), Hospital de Niños Ricardo Gutiérrez, C1425FD Buenos Aires, Argentina; Unidad de Nefrología (J.M.L., G.V.), Hospital de Niños Ricardo Gutiérrez, C1425FD Buenos Aires, Argentina; Howard Hughes Medical Institute (B.L.), Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Inactivation of a novel FGF23 regulator, FAM20C, leads to hypophosphatemic rickets in mice. PLoS Genet 2012; 8:e1002708. [PMID: 22615579 PMCID: PMC3355082 DOI: 10.1371/journal.pgen.1002708] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 03/28/2012] [Indexed: 12/11/2022] Open
Abstract
Family with sequence similarity 20,-member C (FAM20C) is highly expressed in the mineralized tissues of mammals. Genetic studies showed that the loss-of-function mutations in FAM20C were associated with human lethal osteosclerotic bone dysplasia (Raine Syndrome), implying an inhibitory role of this molecule in bone formation. However, in vitro gain- and loss-of-function studies suggested that FAM20C promotes the differentiation and mineralization of mouse mesenchymal cells and odontoblasts. Recently, we generated Fam20c conditional knockout (cKO) mice in which Fam20c was globally inactivated (by crossbreeding with Sox2-Cre mice) or inactivated specifically in the mineralized tissues (by crossbreeding with 3.6 kb Col 1a1-Cre mice). Fam20c transgenic mice were also generated and crossbred with Fam20c cKO mice to introduce the transgene in the knockout background. In vitro gain- and loss-of-function were examined by adding recombinant FAM20C to MC3T3-E1 cells and by lentiviral shRNA–mediated knockdown of FAM20C in human and mouse osteogenic cell lines. Surprisingly, both the global and mineralized tissue-specific cKO mice developed hypophosphatemic rickets (but not osteosclerosis), along with a significant downregulation of osteoblast differentiation markers and a dramatic elevation of fibroblast growth factor 23 (FGF23) in the serum and bone. The mice expressing the Fam20c transgene in the wild-type background showed no abnormalities, while the expression of the Fam20c transgene fully rescued the skeletal defects in the cKO mice. Recombinant FAM20C promoted the differentiation and mineralization of MC3T3-E1 cells. Knockdown of FAM20C led to a remarkable downregulation of DMP1, along with a significant upregulation of FGF23 in both human and mouse osteogenic cell lines. These results indicate that FAM20C is a bone formation “promoter” but not an “inhibitor” in mouse osteogenesis. We conclude that FAM20C may regulate osteogenesis through its direct role in facilitating osteoblast differentiation and its systemic regulation of phosphate homeostasis via the mediation of FGF23. A recent study demonstrated that the inactivating mutations in the FAM20C gene were associated with lethal osteosclerotic bone dysplasia characterized by a generalized hardening of all bones; this observation implied an inhibitory role of FAM20C during bone formation. However, in vitro studies revealed a contradictory finding that FAM20C accelerated the differentiation of cells forming the mineralized tissues. Here we generated Fam20c conditional knockout (cKO) mice, in which the gene was inactivated either in all tissues or specifically in the mineralized tissues. We also generated recombinant FAM20C protein and Fam20c transgenic mice. The cKO mice did not mimic the human skeleton abnormalities of osteosclerotic bone dysplasia, but exhibited rickets (softer bone) along with a significant reduction of serum phosphate level and a remarkable elevation of serum FGF23, a hormone known to promote phosphate wasting. A number of differentiation markers of the bone-forming cells were downregulated in the cKO mice. Recombinant FAM20C promoted the differentiation of mouse preosteoblasts. Introducing the Fam20c transgene did not lead to any abnormalities but rescued the bone defects of the cKO mice. Taken together, we conclude that FAM20C promotes the differentiation of osteoblast lineages and regulates phosphate homeostasis via the mediation of FGF23.
Collapse
|
8
|
Vervloet MG, van Ittersum FJ, Büttler RM, Heijboer AC, Blankenstein MA, ter Wee PM. Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin J Am Soc Nephrol 2011; 6:383-9. [PMID: 21030580 PMCID: PMC3052230 DOI: 10.2215/cjn.04730510] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 10/04/2010] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Little is known about the influence of dietary phosphate intake on fibroblast growth factor-23 (FGF23) and its subsequent effects on vitamin D levels. This study addresses changes in intact FGF23 (iFGF23) and C-terminal FGF23 (cFGF23), phosphaturia, and levels of vitamin D on high and low phosphate and calcium intake. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Ten healthy subjects adhered to a diet low or high in phosphate and calcium content for 36 hours each with a 1-week interval during which subjects adhered to their usual diet. Serum phosphate, calcium, vitamin D metabolites, parathyroid hormone (PTH), and FGF23 levels (cFGF23 and iFGF23) were measured several times a day. Phosphate, calcium, and creatinine excretion was measured in 24-hour urine on all study days. RESULTS Serum phosphate levels and urinary phosphate increased during high dietary phosphate intake (from 1.11 to 1.32 mmol/L, P<0.0001 and 21.6 to 28.8 mmol/d, P=0.0005, respectively). FGF23 serum levels increased during high dietary phosphate/calcium intake (cFGF23 from 60 to 72 RU/ml, P<0.001; iFGF23 from 33 to 37 ng/L, P=0.003), whereas PTH declined. 1,25-dihydroxyvitamin D (1,25D) showed an inverse relation with FGF23. CONCLUSIONS Variation in dietary phosphate and calcium intake induces changes in FGF23 (on top of a circadian rhythm) and 1,25D blood levels as well as in urinary phosphate excretion. These changes are detectable the day after the change in the phosphate content of meals. Higher FGF23 levels are associated with phosphaturia and a decline in 1,25D levels.
Collapse
Affiliation(s)
- Marc G Vervloet
- VU University Medical Center, Department of Nephrology and Clinical Chemistry, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Chang-Quan H, Bi-Rong D, Ping H, Zhen-Chan L. Insufficient renal 1-alpha hydroxylase and bone homeostasis in aged rats with insulin resistance or type 2 diabetes mellitus. J Bone Miner Metab 2008; 26:561-8. [PMID: 18979155 DOI: 10.1007/s00774-008-0867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 02/21/2008] [Indexed: 11/29/2022]
Abstract
This study aimed to explore the relationship between insufficient renal 1-alpha hydroxylase (IRH) and bone homeostasis in type 2 diabetes mellitus (T2DM) or insulin resistance (IR) and to investigate whether IR plays a major role in the pathogenesis of both IRH and bone loss in T2DM. The experimental animal models of T2DM, IR, IR treated with vitamin D (VD), IR treated with 1-alpha hydroxyvitamin D (1alpha(OH) D, the product of renal 1-alpha hydroxylase), T2DM treated with VD, and T2DM treated with 1alpha(OH) D were established on 18-month-old male Wistar rats. For rats in each animal model and normal control rats, IR was detected by euglycemic insulin clamp technique (EICT) and glucose infusion rate (GIR, an index of IR) was calculated. Levels of serum 25-hydroxyvitamin D (25(OH)D) and serum active vitamin D (1,25(OH)(2)D) were determined by radioimmunoassay (RIA), and 1,25(OH)(2)D/25(OH)D ratio (1,25-25-R, an index of renal 1-alpha hydroxylase activity in vivo) was calculated; and bone mineral density (BMD) in femoral bone and lumbar vertebrae was measured by dual-energy X-ray absorption (DEXA). No significant difference was observed among the levels of 25(OH)D in all the rats. In IR rats, 1,25(OH)(2)D level, 1,25-25-R, and BMD level were significantly higher than those in T2DM rats and were lower than those in normal control rats. In the aged rats with T2DM or IR, administration of VD had no effect on 25(OH)D level, 1,25(OH)(2)D level, 1,25-25-R, and BMD level. Administration of 1alpha(OH) D had also no effect on 25(OH)D level but increased 1,25(OH)(2)D level, 1,25-25-R, and BMD level. For the aged rats with T2DM or IR, GIR positively correlated with both levels of 1,25(OH)(2)D and BMD, and 1,25-25-R positively and significantly correlated with levels of BMD. In T2DM or IR, IRH is a precipitating factor for bone loss. IR seems to play a major role in the pathogenesis of both IRH and bone loss in T2DM.
Collapse
Affiliation(s)
- Huang Chang-Quan
- Geriatrics Department, West China Hospital of Sichuan University, Guoxuexiang 37, Chengdu, Sichuan, 610041, China
| | | | | | | |
Collapse
|
10
|
Abstract
Inorganic phosphate (Pi) is fundamental to cellular metabolism and skeletal mineralization. Ingested Pi is absorbed by the small intestine, deposited in bone, and filtered by the kidney where it is reabsorbed and excreted in amounts determined by the specific needs of the organism. Two distinct renal Na-dependent Pi transporters, type IIa (NPT2a, SLC34A1) and type IIc (NPT2c, SLC34A3), are expressed in brush border membrane of proximal tubular cells where the bulk of filtered Pi is reabsorbed. Both are regulated by dietary Pi intake and parathyroid hormone. Regulation is achieved by changes in transporter protein abundance in the brush border membrane and requires the interaction of the transporter with scaffolding and signaling proteins. The demonstration of hypophosphatemia secondary to decreased renal Pi reabsorption in mice homozygous for the disrupted type IIa gene underscores its crucial role in the maintenance of Pi homeostasis. Moreover, the recent identification of mutations in the type IIc gene in patients with hereditary hypophosphatemic rickets with hypercalciuria attests to the importance of this transporter in Pi conservation and subsequent skeletal mineralization. Two novel Pi regulating genes, PHEX and FGF23, play a role in the pathophysiology of inherited and acquired hypophosphatemic skeletal disorders and studies are underway to define their mechanism of action on renal Pi handling in health and disease.
Collapse
|
11
|
Perwad F, Azam N, Zhang MYH, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 2005; 146:5358-64. [PMID: 16123154 DOI: 10.1210/en.2005-0777] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fibroblast growth factor-23 (FGF-23) is a novel circulating peptide that regulates phosphorus (Pi) and vitamin D metabolism, but the mechanisms by which circulating FGF-23 itself is regulated are unknown. To determine whether the serum FGF-23 concentration is regulated by dietary intake of Pi, we fed wild-type (WT), Npt2a gene-ablated (Npt2a(-/-)), and Hyp mice diets containing varying Pi contents (0.02-1.65%). In WT mice, increases in dietary Pi intake from 0.02-1.65% induced a 7-fold increase in serum FGF-23 and a 3-fold increase in serum Pi concentrations. Across the range of dietary Pi, serum FGF-23 concentrations varied directly with serum Pi concentrations (r(2) = 0.72; P < 0.001). In Npt2a(-/-) mice, serum FGF-23 concentrations were significantly lower than in WT mice, and these differences could be accounted for by the lower serum Pi levels in Npt2a(-/-) mice. The serum concentrations of FGF-23 in Hyp mice were 5- to 25-fold higher than values in WT mice, and the values varied with dietary Pi intake. Fgf-23 mRNA abundance in calvaria was significantly higher in Hyp mice than in WT mice on the 1% Pi diet; in both groups of mice, fgf-23 mRNA abundance in calvarial bone was suppressed by 85% on the low (0.02%) Pi diet. In WT mice fed the low (0.02%) Pi diet, renal mitochondrial 1alpha-hydroxylase activity and renal 1alpha-hydroxylase (P450c1alpha) mRNA abundance were significantly higher than in mice fed the higher Pi diets and varied inversely with serum FGF-23 concentrations (r(2) = 0.86 and r(2) = 0.64; P < 0.001, respectively). The present data demonstrate that dietary Pi regulates the serum FGF-23 concentration in mice, and such regulation is independent of phex function. The data suggest that genotype-dependent and dietary Pi-induced changes in the serum FGF-23 concentration reflect changes in fgf-23 gene expression in bone.
Collapse
Affiliation(s)
- Farzana Perwad
- Department of Pediatrics, University of California, San Francisco, 94143-0748, USA
| | | | | | | | | | | |
Collapse
|
12
|
Chau TS, Lai WP, Cheung PY, Favus MJ, Wong MS. Age-related alteration of vitamin D metabolism in response to low-phosphate diet in rats. Br J Nutr 2005; 93:299-307. [PMID: 15877868 DOI: 10.1079/bjn20041325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The responses of renal vitamin D metabolism to its major stimuli alter with age. Previous studies showed that the increase in circulating 1,25-dihydroxyvitamin D (1,25(OH)2D3) as well as renal 25-hydroxyvitamin D3 1-alpha hydroxylase (1-OHase) activity in response to dietary Ca or P restriction reduced with age in rats. We hypothesized that the mechanism involved in increasing circulating 1,25(OH)2D3 in response to mineral deficiency alters with age. In the present study, we tested the hypothesis by studying the expression of genes involved in renal vitamin D metabolism (renal 1-OHase, 25-hydroxyvitamin D 24-hydroxylase (24-OHase) and vitamin D receptor (VDR)) in young (1-month-old) and adult (6-month-old) rats in response to low-phosphate diet (LPD). As expected, serum 1,25(OH)2D3 increased in both young and adult rats upon LPD treatment and the increase was much higher in younger rats. In young rats, LPD treatment decreased renal 24-OHase (days 1-7, P<0.01) and increased renal 1-OHase mRNA expression (days 1-5, P<0.01). LPD treatment failed to increase renal 1-OHase but did suppress 24-OHase mRNA expression (P<0.01) within 7 d of LPD treatment in adult rats. Renal expression of VDR mRNA decreased with age (P<0.001) and was suppressed by LPD treatment in both age groups (P<0.05). Feeding of adult rats with 10 d of LPD increased 1-OHase (P<0.05) and suppressed 24-OHase (P<0.001) as well as VDR (P<0.05) mRNA expression. These results indicate that the increase in serum 1,25(OH)2D3 level in adult rats during short-term LPD treatment is likely to be mediated by a decrease in metabolic clearance via the down-regulation of both renal 24-OHase and VDR expression. The induction of renal 1-OHase mRNA expression in adult rats requires longer duration of LPD treatment than in younger rats.
Collapse
Affiliation(s)
- Tsui-Shan Chau
- Central Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PRC
| | | | | | | | | |
Collapse
|
13
|
Anderson PH, O'Loughlin PD, May BK, Morris HA. Modulation of CYP27B1 and CYP24 mRNA expression in bone is independent of circulating 1,25(OH)2D3 levels. Bone 2005; 36:654-62. [PMID: 15781002 DOI: 10.1016/j.bone.2005.01.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Revised: 01/10/2005] [Accepted: 01/24/2005] [Indexed: 11/23/2022]
Abstract
Circulating levels of 1,25-dihydroxyvitamin D (1,25D) are determined by bioactivation catalyzed by the renal 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1) and degradation through the action of the renal 25-hydroxyvitamin D 24-hydroxylase (CYP24). CYP27B1 and CYP24 are also present in bone cells, but little is known of their physiological role. The purpose of this study was to determine the changes that occur with aging on the expression of CYP27B1 and CYP24 mRNA in whole kidney and femora of female Sprague-Dawley rats. Real-time RT-PCR was used to measure CYP27B1, CYP24 and vitamin D receptor (VDR) mRNA levels in the kidneys and bones of animals aged between 3 weeks and 2 years. Circulating 1,25D levels decreased exponentially with age which was correlated with both reduced kidney CYP27B1 mRNA (R(2) = 0.72) and increased CYP24 mRNA levels (R(2) = 0.71). In the bone, CYP27B1 mRNA levels were maintained at their highest level throughout the ages of 3 to 15 weeks before decreasing in adult animals (P < 0.05). Bone CYP24 mRNA levels were positively correlated with bone CYP27B1 mRNA and not circulating 1,25D levels (R(2) = 0.74). Levels of bone CYP27B1 mRNA were positively correlated with distal femoral epiphyseal trabecular number (Tb.N) (R(2) = 0.74) and negatively with the trabecular thickness (Tb.Th) (R(2) = 0.56) in animals aged between 12 weeks and 2 years. These findings indicate that the regulation of CYP27B1 and CYP24 mRNA expression in the bone is unique from that in the kidney. The synthesis of 1,25D in bone tissue regulates bone CYP24 expression and is associated with bone mineralization suggesting that vitamin D metabolism has an autocrine or paracrine function.
Collapse
Affiliation(s)
- Paul H Anderson
- Endocrine Bone Research Laboratory, Hanson Institute, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
14
|
Ebert R, Jovanovic M, Ulmer M, Schneider D, Meissner-Weigl J, Adamski J, Jakob F. Down-regulation by nuclear factor kappaB of human 25-hydroxyvitamin D3 1alpha-hydroxylase promoter. Mol Endocrinol 2004; 18:2440-50. [PMID: 15243130 DOI: 10.1210/me.2002-0441] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
1,25-(OH)(2) vitamin D(3) is important for calcium homeostasis and cell differentiation. The key enzyme for the activation of liver-derived 25(OH) vitamin D(3) is 25-hydroxyvitamin D(3) 1alpha-hydroxylase. It is expressed mainly in the kidney but also in peripheral tissues. A 1413-bp fragment of the 1alpha-hydroxylase promoter was cloned into luciferase vectors pGL2basic and pGL3basic. Sequence analyses revealed four base exchanges and three base deletions compared with the published sequence which were identically found in five control persons. In silico promoter analyses revealed 17 putative nuclear factor (NF)kappaB sites, 10 of which were found to bind NFkappaB in EMSA experiments. Cotransfection of NFkappaB p50 and p65 subunits resulted in dramatic reduction of the promoter activity of the full-length construct as well as a series of 5'-deletion constructs. Deletion of the farmost 3'-situated NFkappaB-responsive element almost abolished NFkappaB responsiveness. Treatment of human embryonic kidney 293 cells with sulfasalazine, a NFkappaB inhibitor, resulted in enhanced 1alpha-hydroxylase mRNA production. Down-regulation of 1alpha-hydroxylase promoter through NFkappaB signaling may contribute to the pathogenesis of inflammation-associated osteopenia/osteoporosis.
Collapse
Affiliation(s)
- Regina Ebert
- Orthopedic Department, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Tenenhouse HS, Gauthier C, Chau H, St-Arnaud R. 1α-Hydroxylase gene ablation and Pisupplementation inhibit renal calcification in mice homozygous for the disruptedNpt2agene. Am J Physiol Renal Physiol 2004; 286:F675-81. [PMID: 14656762 DOI: 10.1152/ajprenal.00362.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Disruption of the major renal Na-phosphate (Pi) cotransporter gene Npt2a in mice leads to a substantial decrease in renal brush-border membrane Na-Picotransport, hypophosphatemia, and appropriate adaptive increases in renal 25-hydroxyvitamin D3-1α-hydroxylase (1αOHase) activity and the serum concentration of 1,25-dihydroxyvitamin D3[1,25(OH)2D]. The latter is associated with increased intestinal Ca absorption, hypercalcemia, hypercalciuria, and renal calcification in Npt2-/-mice. To determine the contribution of elevated serum 1,25(OH)2D levels to the development of hypercalciuria and nephrocalcinosis in Npt2-/-mice, we examined the effects of 1α OHase gene ablation and long-term Pisupplementation on urinary Ca excretion and renal calcification by microcomputed tomography. We show that the urinary Ca/creatinine ratio is significantly decreased in Npt2-/-/1α OHase-/-mice compared with Npt2-/-mice. In addition, renal calcification, determined by estimating the calcified volume to total renal volume (CV/TV), is reduced by ∼80% in Npt2-/-/1α OHase-/-mice compared with that in Npt2-/-mice. In Npt2-/-mice derived from dams fed a 1% Pidiet and maintained on the same diet, we observed a significant decrease in urinary Ca/creatinine that was also associated with ∼80% reduction in CV/TV when compared with counterparts fed a 0.6% diet. Taken together, the present data demonstrate that both 1α OHase gene ablation and Pisupplementation inhibit renal calcification in Npt2-/-mice and that 1,25(OH)2D is essential for the development of hypercalciuria and nephrocalcinosis in the mutant strain.
Collapse
Affiliation(s)
- Harriet S Tenenhouse
- McGill Univ.-Montreal Children's Hospital Research Institute, 4060 Ste-Cathe ine St. West, Montreal, Quebec, Canada H3Z 2Z3.
| | | | | | | |
Collapse
|
16
|
Abstract
Serum phosphate concentrations are maintained within a defined range by processes that regulate the intestinal absorption and renal excretion of inorganic phosphate. The hormones currently believed to influence these processes are parathyroid hormone (PTH) and the active metabolite of vitamin D, 1alpha,25-dihydroxyvitamin D (1alpha,25(OH)2D). A new class of phosphate-regulating factors, collectively known as the phosphatonins, have been shown to be associated with the hypophosphatemic diseases, tumor-induced osteomalacia (TIO), X-linked hypophosphatemic rickets (XLH), and autosomal-dominant hypophosphatemic rickets (ADHR). These factors, which include fibroblast growth factor 23 (FGF23) and secreted frizzled-related protein 4 (FRP4), decrease extracellular fluid phosphate concentrations by directly reducing renal phosphate reabsorption and by suppressing 1alpha,25(OH)2D formation through the inhibition of 25-hydroxyvitamin D 1alpha-hydroxylase. The role of these substances under normal or pathologic conditions is not yet clear. For example, it is unknown whether any of the phosphatonins are directly responsible for the decreased concentrations of 1alpha,25(OH)2D observed in chronic and end-stage kidney disease or whether they are induced in an attempt to correct the hyperphosphatemia seen in late stages of chronic renal failure. Future experiments should clarify their physiologic and pathologic roles in phosphate metabolism.
Collapse
Affiliation(s)
- Susan C Schiavi
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA.
| | | |
Collapse
|
17
|
Tenenhouse HS, Martel J, Gauthier C, Segawa H, Miyamoto KI. Differential effects of Npt2a gene ablation and X-linked Hyp mutation on renal expression of Npt2c. Am J Physiol Renal Physiol 2003; 285:F1271-8. [PMID: 12952859 DOI: 10.1152/ajprenal.00252.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was undertaken to define the mechanisms governing the regulation of the novel renal brush-border membrane (BBM) Na-phosphate (Pi) cotransporter designated type IIc (Npt2c). To address this issue, the renal expression of Npt2c was compared in two hypophosphatemic mouse models with impaired renal BBM Na-Pi cotransport. In mice homozygous for the disrupted Npt2a gene (Npt2-/-), BBM Npt2c protein abundance, relative to actin, was increased 2.8-fold compared with Npt2+/+ littermates, whereas a corresponding increase in renal Npt2c mRNA abundance, relative to beta-actin, was not evident. In contrast, in X-linked Hyp mice, which harbor a large deletion in the Phex gene, the renal abundance of both Npt2c protein and mRNA was significantly decreased by 80 and 50%, respectively, relative to normal littermates. Pi deprivation elicited a 2.5-fold increase in BBM Npt2c protein abundance in Npt2+/+ mice but failed to elicit a further increase in Npt2c protein in Npt2-/- mice. Pi restriction led to an increase in BBM Npt2c protein abundance in both normal and Hyp mice without correcting its renal expression in the mutants. In summary, we report that BBM Npt2c protein expression is differentially regulated in Npt2-/- mice and Hyp mice and that the Npt2c response to low-Pi challenge differs in both hypophosphatemic mouse strains. We demonstrate that Npt2c protein is maximally upregulated in Npt2-/- mice and suggest that Npt2c likely accounts for residual BBM Na-Pi cotransport in the knockout model. Finally, our data indicate that loss of Phex function abrogates renal Npt2c protein expression.
Collapse
|
18
|
Lai WP, Chau TS, Cheung PY, Chen WF, Lo SCL, Favus MJ, Wong MS. Adaptive responses of 25-hydroxyvitamin D3 1-alpha hydroxylase expression to dietary phosphate restriction in young and adult rats. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1639:34-42. [PMID: 12943966 DOI: 10.1016/s0925-4439(03)00123-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regulation of vitamin D metabolism alters with age. The present study is undertaken to investigate if the loss of renal 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) production in response to dietary phosphate (P) restriction in adult rats is due to an alteration in the renal expression of 25-hydroxyvitamin D(3) 1-alpha hydroxylase (1-OHase). Young (4-6 weeks old) and adult (12-14 weeks old) male Sprague Dawley rats were fed either normal P (NPD) or low P diet (LPD) for 0-5 days. Basal expression of 1-OHase protein was higher in adult rats. Young rats, but not adult rats, significantly increased 1-OHase protein and mRNA expressions in response to LPD in a time-dependent manner. To determine if the stability of renal 1-OHase protein changes with LPD feeding, young and adult rats fed either NPD or LPD for 5 days were injected intravenously with cycloheximide (CHX), a protein synthesis inhibitor. CHX decreased 1-OHase protein expression in young rats fed NPD. However, CHX did not alter 1-OHase protein expression in young rats fed LPD nor in adult rats fed either diet. The results indicate that the stability of renal 1-OHase protein increased with age and that LPD increased its stability only in young rats.
Collapse
Affiliation(s)
- Wan-Ping Lai
- Central Laboratory of the Institute of Molecular Technology for Drug Discovery and Synthesis, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Azam N, Zhang MYH, Wang X, Tenenhouse HS, Portale AA. Disordered regulation of renal 25-hydroxyvitamin D-1alpha-hydroxylase gene expression by phosphorus in X-linked hypophosphatemic (hyp) mice. Endocrinology 2003; 144:3463-8. [PMID: 12865326 DOI: 10.1210/en.2003-0255] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
X-linked hypophosphatemic (Hyp) mice exhibit hypophosphatemia, impaired renal phosphate reabsorption, defective skeletal mineralization, and disordered regulation of vitamin D metabolism: In Hyp mice, restriction of dietary phosphorus induces a decrease in serum concentration of 1,25-dihydroxyvitamin D and renal activity of 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase), and induces an increase in renal activity of 25-hydroxyvitamin D-24-hydroxylase (24-hydroxylase). In contrast, in wild-type mice, phosphorus restriction stimulates renal 1alpha-hydroxylase gene expression and suppresses that of 24-hydroxylase. To determine the molecular basis for the disordered regulation of vitamin D metabolism in Hyp mice, we determined renal mitochondrial 1alpha-hydroxylase activity and the renal abundance of p450c1alpha and p450c24 mRNA in wild-type and Hyp mice fed either control, low-, or high-phosphorus diets for 5 d. In wild-type mice, phosphorus restriction increased 1alpha-hydroxylase activity and p450c1alpha mRNA expression by 6-fold and 3-fold, respectively, whereas in the Hyp strain the same diet induced changes of similar magnitude but opposite in direction. Phosphorus supplementation was without effect in wild-type mice, whereas in Hyp mice the same diet induced 3-fold and 2-fold increases, respectively, in enzyme activity and p450c1alpha mRNA abundance. In wild-type mice, both renal 1alpha-hydroxylase activity and p450c1alpha mRNA abundance varied inversely and significantly with serum phosphorus concentrations, whereas in Hyp mice the relationship between both renal parameters and serum phosphorus concentration was direct. In Hyp mice, phosphorus restriction induced a significant increase in renal p450c24 mRNA abundance, in contrast to the lack of effect observed in wild-type mice. The present findings demonstrate that regulation of both the p450c1alpha and p45024 genes by phosphorus is disordered in Hyp mice at the level of renal 1alpha-hydroxylase activity and renal p450c1alpha and p450c24 mRNA expression.
Collapse
Affiliation(s)
- Nasreen Azam
- Department of Pediatrics, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
20
|
Chau H, El-Maadawy S, McKee MD, Tenenhouse HS. Renal calcification in mice homozygous for the disrupted type IIa Na/Pi cotransporter gene Npt2. J Bone Miner Res 2003; 18:644-57. [PMID: 12674325 DOI: 10.1359/jbmr.2003.18.4.644] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mice homozygous for the disrupted renal type IIa sodium/phosphate (Na/Pi) cotransporter gene (Npt2-/-) exhibit renal Pi wasting, hypophosphatemia, and an adaptive increase in the serum concentration of 1,25-dihydroxyvitamin D with associated hypercalcemia and hypercalciuria. Because hypercalciuria is a risk factor for nephrocalcinosis, we determined whether Npt2-/- mice form renal stones. Analysis of renal sections by von Kossa staining and intact kidneys by microcomputed tomography revealed renal calcification in adult Npt2-/- mice but not in Npt2+/+ littermates. Energy-dispersive spectroscopy and selected-area electron diffraction indicated that the calcifications are comprised of calcium and Pi with an apatitic mineral phase. To determine the age of onset of nephrocalcinosis, we examined renal sections of newborn and weanling mice. At both ages, mutant but not wild-type mice display renal calcification, which is associated with renal Pi wasting and hypercalciuria. Immunohistochemistry revealed that osteopontin co-localizes with the calcifications. Furthermore, renal osteopontin messenger RNA abundance is significantly elevated in Npt2-/- mice compared with Npt2+/+ mice. The onset of renal stones correlated developmentally with the absence of Npt2 expression and the expression of the genes responsible for the renal production (1alpha-hydroxylase) and catabolism (24-hydroxylase) of 1,25-dihydroxyvitamin D. In summary, we show that Npt2 gene ablation is associated with renal calcification and suggest that mutations in the NPT2 gene may contribute to nephrocalcinosis in a subset of patients with familial hypercalciuria.
Collapse
Affiliation(s)
- Hien Chau
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
21
|
Fujiwara I, Aravindan R, Horst RL, Drezner MK. Abnormal regulation of renal 25-hydroxyvitamin D-1alpha-hydroxylase activity in X-linked hypophosphatemia: a translational or post-translational defect. J Bone Miner Res 2003; 18:434-42. [PMID: 12619927 DOI: 10.1359/jbmr.2003.18.3.434] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hyp mouse exhibits abnormal metabolic/hormonal regulation of renal 25(OH)D-1alpha-hydroxylase activity. Whether this results from aberrant transcriptional regulation of the 1alpha-hydroxylase gene, CYP27B1, remains unknown. To investigate this possibility, we compared phosphate and parathyroid hormone effects on renal proximal convoluted tubule and thyrocalcitonin effects on proximal straight tubule enzyme activity and mRNA expression in normal and hyp mice. We assayed 25(OH)D-1alpha-hydroxylase activity by measuring 1,25(OH)2D production and mRNA by ribonuclease protection. Phosphate-depleted mice exhibited a 3-fold increment of 25(OH)D-1alpha-hydroxylase activity compared with normals, whereas hyp mice displayed no enhanced enzyme function. Phosphate-depleted mice concurrently displayed a 2-fold increase in mRNA transcripts; in contrast, despite failure to alter enzyme activity, hyp mice exhibited a similar increment in mRNA transcripts. Parathyroid hormone stimulation of normal mice increased 25(OH)D-1alpha-hydroxylase activity 10-fold, while eliciting only a 2-fold increment in hyp mouse enzyme function. This disparity occurred despite increments of mRNA transcripts to comparable levels (22.2 +/- 3.5- vs. 19.9 +/- 1.8-fold). The dissociation between phosphate- and parathyroid hormone-mediated transcriptional activity and protein function was not universal. Thus, thyrocalcitonin stimulation of normal and hyp mice resulted in comparable enhancement of mRNA transcripts and enzyme activity. These observations indicate that abnormal regulation of vitamin D metabolism in hyp mice occurs in the proximal convoluted tubule and results, not from aberrant transcriptional regulation, but from a defect in translational or post-translational activity.
Collapse
Affiliation(s)
- Ikuma Fujiwara
- Department of Pediatrics, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
22
|
Zhang MYH, Wang X, Wang JT, Compagnone NA, Mellon SH, Olson JL, Tenenhouse HS, Miller WL, Portale AA. Dietary phosphorus transcriptionally regulates 25-hydroxyvitamin D-1alpha-hydroxylase gene expression in the proximal renal tubule. Endocrinology 2002; 143:587-95. [PMID: 11796514 DOI: 10.1210/endo.143.2.8627] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Synthesis of the hormone 1,25-dihydroxyvitamin D, the biologically active form of vitamin D, occurs in the kidney and is catalyzed by the mitochondrial cytochrome P450 enzyme, 25-hydroxyvitamin D-1alpha-hydroxylase (1alpha-hydroxylase). We sought to characterize the effects of changes in dietary phosphorus on the kinetics of renal mitochondrial 1alpha-hydroxylase activity and the renal expression of P450c1alpha and P450c24 mRNA, to localize the nephron segments involved in such regulation, and to determine whether transcriptional mechanisms are involved. In intact mice, restriction of dietary phosphorus induced rapid, sustained, approximately 6- to 8-fold increases in renal mitochondrial 1alpha-hydroxylase activity and renal P450c1alpha mRNA abundance. Immunohistochemical analysis of renal sections from mice fed the control diet revealed the expression of 1alpha-hydroxylase protein in the proximal convoluted and straight tubules, epithelial cells of Bowman's capsule, thick ascending limb of Henle's loop, distal tubule, and collecting duct. In mice fed a phosphorus-restricted diet, immunoreactivity was significantly increased in the proximal convoluted and proximal straight tubules and epithelial cells of Bowman's capsule, but not in the distal nephron. Dietary phosphorus restriction induced a 2-fold increase in P450c1alpha gene transcription, as shown by nuclear run-on assays. Thus, the increase in renal synthesis of 1,25-dihydroxyvitamin D induced in normal mice by restricting dietary phosphorus can be attributed to an increase in the renal abundance of P450c1alpha mRNA and protein. The increase in P450c1alpha gene expression, which occurs exclusively in the proximal renal tubule, is due at least in part to increased transcription of the P450c1alpha gene.
Collapse
Affiliation(s)
- Martin Y H Zhang
- Department of Pediatrics, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The principal hormone regulator of bone mineralization is vitamin D, which must be activated by a metabolic pathway consisting of a 25-hydroxylase and a 1alpha-hydroxylase to yield 1,25 (OH)(2)D. The hormonal regulation of vitamin D activation is at the level of the 1alpha-hydroxylase. We review the biology of vitamin D, the biochemistry of its activation and the molecular biology of the vitamin D-metabolizing enzymes. Recent advances have resulted in the cloning of the human vitamin D 1alpha-hydroxylase and the identification of mutations in its gene that cause Vitamin D Dependent Rickets type I.
Collapse
Affiliation(s)
- W L Miller
- Department of Pediatrics and the Metabolic Research Unit, University of California, San Francisco, CA 94143-0978, USA
| | | |
Collapse
|