1
|
Geng Q, Cao X, Fan D, Wang Q, Wang X, Zhang M, Zhao L, Jiao Y, Deng T, Liu H, Zhou J, Lou Y, Liang J, Xiao C. Potential medicinal value of N6-methyladenosine in autoimmune diseases and tumours. Br J Pharmacol 2023. [PMID: 36624563 DOI: 10.1111/bph.16030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autoimmune diseases (ADs) are closely related to malignant tumours. On the one hand, ADs can increase the incidence of tumours; on the other hand, malignant tumours can cause rheumatic disease-like manifestations. With the increasing depth of analysis into the mechanism of N6 -methyladenosine (m6A) modification, it has been found that changes in m6A-related modification enzymes are closely related to the occurrence and development of ADs and malignant tumours. In this review, we explore the pathogenesis of ADs and tumours based on m6A modification. According to systematic assessment of the similarities between ADs and tumours, m6A may represent a common target of both diseases. At present, most of the drugs targeting m6A are in the research and development stage, not in clinical trials. Therefore, advancing the development of drugs targeting m6A is of great significance for both the combined treatment of ADs and malignant tumours and improving the quality of life and prognosis of patients.
Collapse
Affiliation(s)
- Qishun Geng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Danping Fan
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiong Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Wang
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Lu Zhao
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Jiao
- China-Japan Friendship Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Honglin Liu
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Zhou
- Department of Physiology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yanni Lou
- Oncology Department of Integrated Traditional Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Liang
- Department of Obstetrics and Gynecology, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
2
|
Cardoso HJ, Figueira MI, Vaz CV, Carvalho TMA, Brás LA, Madureira PA, Oliveira PJ, Sardão VA, Socorro S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell Oncol (Dordr) 2021; 44:385-403. [PMID: 33464483 DOI: 10.1007/s13402-020-00575-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Resistance to androgen-deprivation therapies and progression to so-called castrate-resistant prostate cancer (CRPC) remain challenges in prostate cancer (PCa) management and treatment. Among other alterations, CRPC has been associated with metabolic reprogramming driven by androgens. Here, we investigated the role of androgens in regulating glutaminolysis in PCa cells and determined the relevance of this metabolic route in controlling the survival and growth of androgen-sensitive (LNCaP) and CRPC (DU145 and PC3) cells. METHODS PCa cells (LNCaP, DU145 and PC3) and 3-month old rats were treated with 5α-dihydrotestosterone (DHT). Alternatively, LNCaP cells were exposed to the glutaminase inhibitor BPTES, alone or in combination with the anti-androgen bicalutamide. Biochemical, Western blot and extracellular flux assays were used to evaluate the viability, proliferation, migration and metabolism of PCa cells in response to DHT treatment or glutaminase inhibition. RESULTS We found that DHT up-regulated the expression of the glutamine transporter ASCT2 and glutaminase, both in vitro in LNCaP cells and in vivo in rat prostate cells. BPTES diminished the viability and migration of PCa cells, while increasing caspase-3 activity. CRPC cells were found to be more dependent on glutamine and more sensitive to glutaminase inhibition. BPTES and bicalutamide co-treatment had an additive effect on suppressing LNCaP cell viability. Finally, we found that inhibition of glutaminolysis differentially affected glycolysis and lipid metabolism in both androgen-sensitive and CRPC cells. CONCLUSION Our data reveal glutaminolysis as a central metabolic route controlling PCa cell fate and highlight the relevance of targeting glutaminase for CRPC treatment.
Collapse
Affiliation(s)
- Henrique J Cardoso
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.,Centre for Biomedical Research (CBMR), Campus of Gambelas, University of Algarve, Faro, Portugal
| | - Marília I Figueira
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Cátia V Vaz
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Tiago M A Carvalho
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Luís A Brás
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Patrícia A Madureira
- Centre for Biomedical Research (CBMR), Campus of Gambelas, University of Algarve, Faro, Portugal.,Brain Tumour Research Centre of Excellence, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, UK
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, UC-Biotech, University of Coimbra, Biocant Park, Cantanhede, Portugal
| | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
3
|
mRNA Post-Transcriptional Regulation by AU-Rich Element-Binding Proteins in Liver Inflammation and Cancer. Int J Mol Sci 2020; 21:ijms21186648. [PMID: 32932781 PMCID: PMC7554771 DOI: 10.3390/ijms21186648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
AU-rich element-binding proteins (AUBPs) represent important post-transcriptional regulators of gene expression. AUBPs can bind to the AU-rich elements present in the 3'-UTR of more than 8% of all mRNAs and are thereby able to control the stability and/or translation of numerous target mRNAs. The regulation of the stability and the translation of mRNA transcripts by AUBPs are highly complex processes that occur through multiple mechanisms depending on the cell type and the cellular context. While AUBPs have been shown to be involved in inflammatory processes and the development of various cancers, their important role and function in the development of chronic metabolic and inflammatory fatty liver diseases (FLDs), as well as in the progression of these disorders toward cancers such as hepatocellular carcinoma (HCC), has recently started to emerge. Alterations of either the expression or activity of AUBPs are indeed significantly associated with FLDs and HCC, and accumulating evidence indicates that several AUBPs are deeply involved in a significant number of cellular processes governing hepatic metabolic disorders, inflammation, fibrosis, and carcinogenesis. Herein, we discuss our current knowledge of the roles and functions of AUBPs in liver diseases and cancer. The relevance of AUBPs as potential biomarkers for different stages of FLD and HCC, or as therapeutic targets for these diseases, are also highlighted.
Collapse
|
4
|
Hernández-Aguilar ME, Serrano MK, Pérez F, Aranda-Abreu GE, Sanchez V, Mateos A, Manzo J, Rojas-Durán F, Cruz-Gomez Y, Herrera-Covarrubias D. Quantification of neural and hormonal receptors at the prostate of long-term sexual behaving male rats after lesion of pelvic and hypogastric nerves. Physiol Behav 2020; 222:112915. [PMID: 32389668 DOI: 10.1016/j.physbeh.2020.112915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/26/2022]
Abstract
Prostate function is regulated by androgens and a neural control via the pelvic and hypogastric nerves. As such, this sexual gland contains receptors for acetylcholine and noradrenaline, although it is unknown whether the expression of these receptors is affected by sexual behavior and even less by denervation of the gland. Thus, the purpose of this work was to evaluate the effect of repeated sexual behavior on the expression of noradrenaline, acetylcholine, and androgen receptors at the prostate, and how they are affected by denervation. To achieve this, we used sexually experienced males denervated at the pelvic or hypogastric nerves, or both. The messenger (mRNA) and protein for androgen, noradrenergic, and cholinergic receptors were evaluated. The weight of the gland and the levels of serum testosterone were also measured. We found that: (1) sexual behavior was not affected by denervation; (2) blood testosterone levels increased due to sexual behavior but such increase is prevented by denervation; (3) the weight of the ventral prostate increased with sexual behavior but was not affected by denervation; (4) AR messenger levels increased with sexual behavior but were not altered by denervation; (5) the messenger for noradrenergic and cholinergic receptors decreased after denervation, and those for muscarinic receptors increased, and (6) only AR protein decreased after denervation of both nerves, while those for other receptors remained unchanged. In summary, we show that the three receptors have different regulatory mechanisms, and that only androgen receptors are regulated by both autonomic systems.
Collapse
Affiliation(s)
- María Elena Hernández-Aguilar
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México; Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México; Centro Tlaxcala en Biología de la Conducta, Universidad Autónoma deTlaxcala, Tlaxcala, México.
| | - María Karina Serrano
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México.
| | - Fabiola Pérez
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México.
| | | | - Viridiana Sanchez
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México.
| | - Alejandro Mateos
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México.
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México.
| | - Fausto Rojas-Durán
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Veracruz, México.
| | - Yolanda Cruz-Gomez
- Centro Tlaxcala en Biología de la Conducta, Universidad Autónoma deTlaxcala, Tlaxcala, México.
| | | |
Collapse
|
5
|
Terasaka T, Kim T, Dave H, Gangapurkar B, Nicholas DA, Muñoz O, Terasaka E, Li D, Lawson MA. The RNA-Binding Protein ELAVL1 Regulates GnRH Receptor Expression and the Response to GnRH. Endocrinology 2019; 160:1999-2014. [PMID: 31188427 PMCID: PMC6660905 DOI: 10.1210/en.2019-00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/04/2019] [Indexed: 01/11/2023]
Abstract
Gonadotropin secretion, which is elicited by GnRH stimulation of the anterior pituitary gonadotropes, is a critical feature of reproductive control and the maintenance of fertility. In addition, activation of the GnRH receptor (GnRHR) regulates transcription and translation of multiple factors that regulate the signaling response and synthesis of gonadotropins. GnRH stimulation results in a broad redistribution of mRNA between active and inactive polyribosomes within the cell, but the mechanism of redistribution is not known. The RNA-binding protein embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) binds to AU-rich elements in mRNA and is one of the most abundant mRNA-binding proteins in eukaryotic cells. It is known to serve as a core component of RNA-binding complexes that direct the fate of mRNA. In LβT2 gonadotropes, we showed that ELAVL1 binds to multiple mRNAs encoding factors that are crucial for gonadotropin synthesis and release. Association with some mRNAs is GnRH sensitive but does not correlate with abundance of binding. We also showed MAPK-dependent changes in intracellular localization of ELAVL1 in response to GnRH stimulation. Knockdown of ELAVL1 gene expression resulted in reduced Lhb and Gnrhr mRNA levels, reduced cell surface expression of GnRHR, and reduced LH secretion in response to GnRH stimulation. Overall, these observations not only support the role of ELAVL1 in GnRHR-mediated regulation of gene expression and LH secretion but also indicate that other factors may contribute to the precise fate of mRNA in response to GnRH stimulation of gonadotropes.
Collapse
Affiliation(s)
- Tomohiro Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Hiral Dave
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Bhakti Gangapurkar
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Dequina A Nicholas
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Oscar Muñoz
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Eri Terasaka
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Danmei Li
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
| | - Mark A Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California
- Correspondence: Mark A. Lawson, PhD, University of California, San Diego, Department of Obstetrics, Gynecology, and Reproductive Sciences, Mail Code 0674, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
6
|
Treister NS, Richards SM, Suzuki T, Jensen RV, Sullivan DA. Influence of Androgens on Gene Expression in the BALB/c Mouse Submandibular Gland. J Dent Res 2016; 84:1187-92. [PMID: 16304452 DOI: 10.1177/154405910508401218] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Androgens have profound effects on the murine submandibular gland. Our objective was to determine the nature and extent of androgen control of gene expression in the submandibular gland, and to explore the degree to which this might account for known sex differences. Orchiectomized male BALB/c mice were treated with placebo- or testosterone-containing hormone pellets for 14 days. Glands were collected, and total RNA was isolated. Samples were analyzed for differentially expressed mRNAs by CodeLink microarrays, and the data were evaluated with GeneSifter. Androgens significantly (p < 0.05) influenced the expression of over 1300 genes, and many (n = 366) of the genes differentially regulated by androgen treatment were also differentially expressed in males compared with the females in our previous study. These findings support our hypotheses that testosterone extensively influences gene expression in the male submandibular gland, and that many of the sex differences are due to androgens.
Collapse
Affiliation(s)
- N S Treister
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
7
|
Mitsunari K, Miyata Y, Asai A, Matsuo T, Shida Y, Hakariya T, Sakai H. Human antigen R is positively associated with malignant aggressiveness via upregulation of cell proliferation, migration, and vascular endothelial growth factors and cyclooxygenase-2 in prostate cancer. Transl Res 2016; 175:116-28. [PMID: 27140699 DOI: 10.1016/j.trsl.2016.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/26/2016] [Accepted: 04/05/2016] [Indexed: 12/17/2022]
Abstract
Limited information is available on the pathologic significance of human antigen R (HuR) in prostate cancer (PCa). The main aim of this study was to clarify the relationship between HuR expression and malignant aggressiveness, outcome, and expression of cancer-related molecules in PCa. In vitro proliferation, colony formation, and migration assays were performed on LNCaP and PC-3 cells. HuR expression was knocked down (KD) using small interfering RNA. The relationships between HuR expression and the expression of vascular endothelial growth factors (VEGFs), cyclooxygenase (COX)-2, and heme oxygenase (HO)-1 were investigated in PCa cell lines using Western blotting. On KD of HuR, cell proliferation and migration were suppressed in both LNCaP and PC-3 cells, whereas expression of VEGF-A to -D and COX-2 was suppressed in PC-3 but not in LNCaP cells. In addition, expression of these cancer-related factors was analyzed in 182 hormone-naïve PCa and 23 castration-resistant prostate cancer (CRPC) human tissues in vivo. Cytoplasmic (C)-HuR expression was significantly higher in CRPC > hormone-naïve PCa > nontumoral cells. C-HuR expression was positively associated with Gleason score, T stage, and metastasis, and it was considered to be a useful predictor of biochemical recurrence after radical prostatectomy. C-HuR expression was correlated with COX-2 expression in hormone-naïve PCa, and with the expression of VEGF-A, VEGF-C, and COX-2 in CRPC tissues. Our results demonstrated that HuR plays important roles in determining malignant aggressiveness and outcome in PCa, especially in androgen-independent PCa cells, via the regulation of cell proliferation, migration, and expression of VEGF-A, -C, and COX-2.
Collapse
Affiliation(s)
- Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Akihiro Asai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yohei Shida
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomoaki Hakariya
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
8
|
Melling N, Taskin B, Hube-Magg C, Kluth M, Minner S, Koop C, Grob T, Graefen M, Heinzer H, Tsourlakis MC, Izbicki J, Wittmer C, Huland H, Simon R, Wilczak W, Sauter G, Steurer S, Schlomm T, Krech T. Cytoplasmic accumulation of ELAVL1 is an independent predictor of biochemical recurrence associated with genomic instability in prostate cancer. Prostate 2016; 76:259-72. [PMID: 26764246 DOI: 10.1002/pros.23120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 10/09/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND ELAVL1 is an RNA binding protein involved in translation control, which might have a regulatory role in prostate cancer progress. METHODS To evaluate its impact and relationship with key genomic alterations, ELAVL1 expression was analyzed by immunohistochemistry on a tissue microarray containing 12,427 prostate cancers. RESULTS The analysis revealed a mild to moderate predominantly nuclear immunostaining in normal prostate epithelium and an often higher both cytoplasmic and nuclear expression in cancer cells. Weak, moderate, and strong cytoplasmic ELAVL1 staining was found in 43%, 18%, and 3% of 10,478 interpretable tumors. Strong ELAVL1 staining was linked to high Gleason grade, advanced pathological tumor stage, positive nodal status, and PSA recurrence (P < 0.0001 each). A combined analysis of the effect of nuclear and cytoplasmic ELAVL1 expression on PSA recurrence revealed that the association with patient outcome was entirely driven by cytoplasmic staining. ELAVL1 positivity was more frequent in cancers harboring TMPRSS2:ERG fusions found by FISH (78%) or showing immunohistochemical ERG expression (74%) than in cancers without ERG rearrangement (63%) or ERG expression (58%, P < 0.0001 each). Strong cytoplasmic ELAVL1 staining was further linked to presence of PTEN, 5q21, 6q15, and 3p13 deletions (P < 0.0001 each), an observation consistent with cytoplasmic ELAVL1 accumulation in case of genomic instability. The prognostic role of ELAVL1 expression was independent of Gleason grade, T stage, N stage, surgical margin status, and preoperative PSA, irrespective of whether preoperative or postoperative variables were used for modeling. CONCLUSION Our study identifies cytoplasmic accumulation of ELAVL1 as a predictor of adverse clinical behavior of prostate cancer independent of established clinico-pathological parameters.
Collapse
Affiliation(s)
- Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Berivan Taskin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Christina Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias Grob
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Germany
- Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
9
|
Wang J, Guo Y, Chu H, Guan Y, Bi J, Wang B. Multiple functions of the RNA-binding protein HuR in cancer progression, treatment responses and prognosis. Int J Mol Sci 2013; 14:10015-41. [PMID: 23665903 PMCID: PMC3676826 DOI: 10.3390/ijms140510015] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 12/16/2022] Open
Abstract
The human embryonic lethal abnormal vision-like protein, HuR, is a member of the Hu family of RNA-binding proteins. Over the past decade, this ubiquitously expressed protein has been extensively investigated in cancer research because it is involved in the regulation of mRNA stability and translation in many cell types. HuR activity and function is associated with its subcellular distribution, transcriptional regulation, translational and post-translational modifications. HuR regulation of target mRNAs is based on the interaction between the three specific domains of HuR protein and one or several U- or AU-rich elements (AREs) in the untranslated region of target mRNAs. A number of cancer-related transcripts containing AREs, including mRNAs for proto-oncogenes, cytokines, growth factors, and invasion factors, have been characterized as HuR targets. It has been proposed that HuR has a central tumorigenic activity by enabling multiple cancer phenotypes. In this review, we comprehensively survey the existing evidence with regard to the diverse functions of HuR in caner development and progression. The current data also suggest that HuR might be a novel and promising therapeutic target and a marker for treatment response and prognostic evaluation.
Collapse
Affiliation(s)
- Jun Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-531-5166-5336; Fax: +86-531-5166-6649
| | - Yan Guo
- Department of Outpatient, Military Command of Shandong Province, Jinan 250013, China; E-Mail:
| | - Huili Chu
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Yaping Guan
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Jingwang Bi
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| | - Baocheng Wang
- Department of Oncology, General Hospital, Jinan Command of the People’s Liberation Army, Jinan 250031, China; E-Mails: (H.C.); (Y.G.); (J.B.); (B.W.)
| |
Collapse
|
10
|
Shao R, Wang X, Weijdegård B, Norström A, Fernandez-Rodriguez J, Brännström M, Billig H. Coordinate regulation of heterogeneous nuclear ribonucleoprotein dynamics by steroid hormones in the human fallopian tube and endometrium in vivo and in vitro. Am J Physiol Endocrinol Metab 2012; 302:E1269-82. [PMID: 22436695 DOI: 10.1152/ajpendo.00673.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs), which are chromatin-associated RNA-binding proteins, participate in mRNA stability, transport, intracellular localization, and translation by acting as transacting factors. Several studies have shown that steroid hormones can regulate hnRNP expression. However, to date, the regulation of hnRNPs and their interactions with steroid hormone signaling in fallopian tubes and endometrium are not fully elucidated. In the present study, we determined whether hnRNP expression is regulated during the menstrual cycle and correlates with estrogen receptor (ER) and progesterone receptor (PR) levels in human fallopian tubes in vivo. Because of the limited availability of human tubal tissues for the research, we also explored the mechanisms of hnRNP regulation in human endometrium in vitro. Fallopian tissue was obtained from patients in the early, late, and postovulatory phases and the midsecretory phase and endometrial tissue from premenopausal and postmenopausal women undergoing hysterectomy. We measured expression of hnRNPs and assessed their intracellular localization and interactions with ERs and PRs. We also determined the effects of human chorionic gonadotropin, 17β-estradiol (E(2)), and progesterone (P(4)) on hnRNP expression. In fallopian tubes, mRNA and protein levels of hnRNP A1, AB, D, G, H, and U changed dynamically during ovulation and in the midsecretory phase. In coimmunolocation and coimmunoprecipitation experiments, hnRNPs interacted with each other and with ERs and PRs in fallopian tubes. After treatment with E(2) and/or P(4) to activate ERs and PRs, hnRNP A1, AB, D, G, and U proteins displayed overlapping but distinct patterns of regulation in the endometrium in vitro. Our findings expand the physiological repertoire of hnRNPs in human fallopian tubes and endometrium and suggest that steroid hormones regulate different hnRNPs directly by interacting with ERs and/or PRs or indirectly by binding other hnRNPs. Both actions may contribute to regulation of gene transcription.
Collapse
Affiliation(s)
- Ruijin Shao
- Dept. of Physiology/Endocrinology, Sahlgrenska Academy, Univ. of Gothenburg, Box 434, Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
11
|
Nandrolone decreases mu opioid receptor expression in SH-SY5Y human neuroblastoma cells. Neuroreport 2008; 19:1131-5. [DOI: 10.1097/wnr.0b013e328305639d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Hu Z, Zimmermann BG, Zhou H, Wang J, Henson BS, Yu W, Elashoff D, Krupp G, Wong DT. Exon-level expression profiling: a comprehensive transcriptome analysis of oral fluids. Clin Chem 2008; 54:824-32. [PMID: 18356245 DOI: 10.1373/clinchem.2007.096164] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The application of global gene expression profiling to saliva samples is hampered by the presence of partially fragmented and degraded RNAs that are difficult to amplify and detect with the prevailing technologies. Moreover, the often limited volume of saliva samples is a challenge to quantitative PCR (qPCR) validation of multiple candidates. The aim of this study was to provide proof-of-concept data on the combination of a universal mRNA-amplification method with exon arrays for candidate selection and a multiplex preamplification method for easy validation. METHODS We used a universal mRNA-specific linear-amplification strategy in combination with Affymetrix Exon Arrays to amplify salivary RNA from 18 healthy individuals on the nanogram scale. Multiple selected candidates were preamplified in one multiplex reverse transcription PCR reaction, cleaned up enzymatically, and validated by qPCR. RESULTS We defined a salivary exon core transcriptome (SECT) containing 851 transcripts of genes that have highly similar expression profiles in healthy individuals. A subset of the SECT transcripts was verified by qPCR analysis. Informatics analysis of the SECT revealed several functional clusters and sequence motifs. Sex-specific salivary exon biomarkers were identified and validated in tests with samples from healthy individuals. CONCLUSIONS It is feasible to use samples containing fragmented RNAs to conduct high-resolution expression profiling with coverage of the entire transcriptome and to validate multiple targets from limited amounts of sample.
Collapse
Affiliation(s)
- Zhanzhi Hu
- Dental Research Institute, 73-017 Center for Health Sciences, University of California, Los Angeles, CA 90095-1668, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ing NH, Massuto DA, Jaeger LA. Estradiol up-regulates AUF1p45 binding to stabilizing regions within the 3'-untranslated region of estrogen receptor alpha mRNA. J Biol Chem 2007; 283:1764-1772. [PMID: 18029355 DOI: 10.1074/jbc.m704745200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estradiol up-regulates expression of the estrogen receptor alpha gene in the uterus by stabilizing estrogen receptor alpha mRNA. Previously, we defined two discrete minimal estradiol-modulated stability sequences (MEMSS) within the extensive 3'-untranslated region of estrogen receptor alpha mRNA with an in vitro stability assay using cytosolic extracts from sheep uterus. We report here that excess MEMSS RNA inhibited the enhanced stability of estrogen receptor alpha mRNA in extracts from estradiol-treated ewes compared with those from control ewes. Several estradiol-induced MEMSS-binding proteins were characterized by UV cross-linking in uterine extracts from ewes in a time course study (0, 8, 16, and 24 h after estradiol injection). The pattern of binding proteins changed at 16 h post-injection, concurrent with enhanced estrogen receptor alpha mRNA stability and the highest rate of accumulation of estrogen receptor alpha mRNA. The predominant MEMSS-binding protein induced by estradiol treatment was identified as AUF1 (A + U-rich RNA-binding factor 1) protein isoform p45 (a product of the heterogeneous nuclear ribonucleoprotein D gene). Immunoblot analysis indicated that only two of four AUF1 protein isoforms were present in the uterine cytosolic extracts and that estradiol treatment strongly increased the ratio of AUF1 isoforms p45 to p37. Nonphosphorylated recombinant AUF1p45 protected estrogen receptor alpha mRNA in vitro in a dose-dependent manner. These studies describe estrogenic induction of AUF1p45 binding to the estrogen receptor alpha mRNA as a molecular mechanism for post-transcriptional up-regulation of gene expression.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A & M University, College Station, Texas 77843; Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas 77843.
| | - Dana A Massuto
- Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas 77843
| | - Laurie A Jaeger
- Veterinary Integrative Biosciences, Texas A & M University, College Station, Texas 77843
| |
Collapse
|
14
|
Lu L, Zheng L, Viera L, Suswam E, Li Y, Li X, Estévez AG, King PH. Mutant Cu/Zn-superoxide dismutase associated with amyotrophic lateral sclerosis destabilizes vascular endothelial growth factor mRNA and downregulates its expression. J Neurosci 2007; 27:7929-38. [PMID: 17652584 PMCID: PMC6672720 DOI: 10.1523/jneurosci.1877-07.2007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) plays a neuroprotective role in mice harboring mutations of copper-zinc superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis (ALS). Conversely, the loss of VEGF expression through genetic depletion can give rise to a phenotype resembling ALS independent of SOD1 mutations. Here, we observe a profound downregulation of VEGF mRNA expression in spinal cords of G93A SOD1 mice that occurred early in the course of the disease. Using an in vitro culture model of glial cells expressing mutant SOD1, we demonstrate destabilization and downregulation of VEGF RNA with concomitant loss of protein expression that correlates with level of transgene expression. Using a luciferase reporter assay, we show that this molecular effect is mediated through a portion of the VEGF 3'-untranslated region (UTR) that harbors a class II adenylate/uridylate-rich element. Other mutant forms of SOD1 produced a similar negative effect on luciferase RNA and protein expression. Mobility shift assay with a VEGF 3'-UTR probe reveals an aberrantly migrating complex that contains mutant SOD1. We further show that the RNA stabilizing protein, HuR (human antigen R), is translocated from nucleus to cytoplasm in mutant SOD1 cells in vitro and mouse motor neurons in vivo. In summary, our data suggest that mutant SOD1 gains a novel function, possibly by altering the ribonucleoprotein complex with the VEGF 3'-UTR. We postulate that the resultant dysregulation of VEGF posttranscriptional processing critically reduces the level of this neuroprotective growth factor and accelerates the neurodegenerative process in ALS.
Collapse
Affiliation(s)
- Liang Lu
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | | | - Liliana Viera
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute
| | | | - Yanyan Li
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | - Xuelin Li
- Departments of Neurology
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| | - Alvaro G. Estévez
- Laboratory of Motor Neuron Biology, Burke Medical Research Institute
- Department of Neurology and Neurosciences, Weill Medical College of Cornell University, White Plains, New York 10605
| | - Peter H. King
- Departments of Neurology
- Genetics, and
- Physiology and Biophysics, University of Alabama, Birmingham, and
- Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35295, and
| |
Collapse
|
15
|
Abstract
This review addresses the scope of influence of mRNA decay on cellular functions and its potential role in normal and malignant hematopoiesis. Evidence is emerging that leukemic oncogenes and hematopoietic cytokines interact with mRNA decay pathways. These pathways can co-regulate functionally related genes through specific motifs in the 3'-untranslated region of targeted transcripts. The steps that link external stimuli to transcript turnover are not fully understood, but include subcellular relocalization or post-transcriptional modification of specific transcript-stabilizing or -destabilizing proteins. Improper functioning of these regulators of mRNA turnover can impede normal cellular differentiation or promote cancers. By delineating how subsets of transcripts decay in synchrony during normal hematopoiesis, it may be possible to determine whether this post-transcriptional regulatory pathway is hijacked in leukemogenesis.
Collapse
Affiliation(s)
- R A Steinman
- University of Pittsburgh Cancer Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
16
|
Treister NS, Richards SM, Rowley P, Jensen RV, Sullivan DA. Influence of testosterone on gene expression in the ovariectomized mouse submandibular gland. Eur J Oral Sci 2006; 114:328-36. [PMID: 16911104 DOI: 10.1111/j.1600-0722.2006.00360.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Androgens exert significant effects on the murine submandibular gland. Our objective in this study was to determine the nature and extent of testosterone regulation of gene expression in the female submandibular gland, and to explore the degree to which this control is the same as in male glands. Ovariectomized female BALB/c mice were treated with placebo- or testosterone-containing hormone pellets for 14 d. Glands were collected and total RNA was isolated. Samples were analyzed for differential expression of mRNA using CodeLink microarrays, and the data were evaluated using genesifter. Testosterone significantly influenced the expression of over 500 genes, and while many (n = 214) of the genes were similarly differentially expressed in androgen-treated males, there were also many that were unique. These findings support our hypotheses that testosterone extensively influences gene expression in the female submandibular gland, and that the nature of this influence is variable between sexes.
Collapse
Affiliation(s)
- Nathaniel S Treister
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Many epidemiological studies demonstrate that treatment with non-steroidal anti-inflammatory drugs (NSAIDs) reduce the incidence and mortality of certain malignancies, especially gastrointestinal cancer. The cyclooxygenase (COX) enzymes are well-known targets of NSAIDs. However, conventional NSAIDs non-selectively inhibit both the constitutive form COX-1, and the inducible form COX-2. Recent evidence indicates that COX-2 is an important molecular target for anticancer therapies. Its expression is undetectable in most normal tissues, and is highly induced by pro-inflammatory cytokines, mitogens, tumor promoters and growth factors. It is now well-established that COX-2 is chronically overexpressed in many premalignant, malignant, and metastastic cancers, including hepatocellular carcinoma (HCC). Overexpression of COX-2 in patients with HCC is generally higher in well-differentiated HCCs compared with less-differentiated HCCs or histologically normal liver, suggesting that COX-2 may be involved in the early stages of hepatocarcinogenesis, and increased expression of COX-2 in noncancerous liver tissue has been significantly associated with shorter disease-free survival in patients with HCC.
In tumors, overexpression of COX-2 leads to an increase in prostaglandin (PG) levels, which affect many mechanisms involved in carcinogenesis, such as angiogenesis, inhibition of apoptosis, stimulation of cell growth as well as the invasiveness and metastatic potential of tumor cells.
The availability of novel agents that selectively inhibit COX-2 (COXIB), has contributed to shedding light on the role of this molecule. Experimental studies on animal models of liver cancer have shown that NSAIDs, including both selective and non-selective COX-2 inhibitors, exert chemopreventive as well as therapeutic effects. However, the key mechanism by which COX-2 inhibitors affect HCC cell growth is as yet not fully understood.
Increasing evidence suggests the involvement of molecular targets other than COX-2 in the anti-proliferative effects of COX-2 selective inhibitors. Therefore, COX-inhibitors may use both COX-2-dependent and COX-2-independent mechanisms to mediate their antitumor properties, although their relative contributions toward the in vivo effects remain less clear.
Here we review the features of COX enzymes, the role of the expression of COX isoforms in hepatocarcinogenesis and the mechanisms by which they may contribute to HCC growth, the pharmacological properties of COX-2 selective inhibitors, the antitumor effects of COX inhibitors, and the rationale and feasibility of COX-2 inhibitors for the treatment of HCC.
Collapse
|
18
|
Sheflin LG, Zou AP, Spaulding SW. Androgens regulate the binding of endogenous HuR to the AU-rich 3'UTRs of HIF-1alpha and EGF mRNA. Biochem Biophys Res Commun 2004; 322:644-51. [PMID: 15325278 DOI: 10.1016/j.bbrc.2004.07.173] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Indexed: 11/26/2022]
Abstract
The 3'UTRs of mammalian HIF-1alpha and EGF mRNA contain several highly conserved AU-rich elements (ARE) known to control the turnover of labile mRNAs by binding ARE-binding proteins that regulate nucleocytoplasmic shuttling, translation, and degradation. Androgens regulate the level and subcellular shuttling of HuR, a major ARE-binding protein that stabilizes many ARE-mRNAs. Pull down of biotinylated 3'UTRs of HIF-1alpha or EGF enriches HuR on blots from Jurkat cell lysates 5-fold, and enriches the amount of RNase-protected biotinylated RNA that comigrates with HuR approximately 10-fold. Dihydrotestosterone treatment decreases the HuR-protected riboprobe pulled down from total Jurkat cell lysates by 30-40%, apparently reflecting shifts in HuR from the nucleus to the cytoplasm. Androgen treatment also changes the amount of HuR-protected riboprobe pulled down from a PC-3 clone expressing a functional androgen receptor. The shift in the amount of riboprobe bound by HuR suggests that androgen is up-regulating endogenous ARE-mRNAs that can compete for binding endogenous HuR. These changes in the shuttling and ARE-binding of endogenous HuR indicate that androgen can act posttranscriptionally to regulate ARE-mRNAs, including HIF-1alpha and EGF.
Collapse
Affiliation(s)
- Lowell G Sheflin
- Medical Research Service, VA WNYHS, 3495 Bailey Avenue, Buffalo, NY 14215, USA.
| | | | | |
Collapse
|
19
|
Manjithaya RR, Dighe RR. The 3′ Untranslated Region of Bovine Follicle-Stimulating Hormone β Messenger RNA Downregulates Reporter Expression: Involvement of AU-Rich Elements and Transfactors1. Biol Reprod 2004; 71:1158-66. [PMID: 15189830 DOI: 10.1095/biolreprod.104.030130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
FSHbeta mRNA has a unique 3' untranslated region (3'UTR) that is highly conserved across the species. Sequence analyses of the mouse, rat, human, bovine, and ovine 3'UTRs revealed the presence of elements implicated in mRNA instability and translational control such as AU-Rich Element (ARE) and lipoxygenase differentiation control elements. Bovine FSHbeta 3'UTR down-regulated reporter expression in alphaT3-1 and NIH3T3 cells, but not in HEK 293 cells, suggesting the involvement of a cell-specific factor or mechanism. The presence of a 3'UTR did not influence reporter mRNA stability, but it did decrease its association with polysomes, indicating that the downregulatory effect may be exerted at the translational level. The segment spanning 601-800 bases (U4) of the bovine FSHbeta 3'UTR was found to be the most effective downregulating segment, its effect being equal to that of the full-length 3'UTR. RNA electrophoretic mobility shift assay with U4 showed the presence of specific transfactors in the cytosolic preparations of bovine pituitary and the cell lines. U4 contained an ARE that appeared to be functional, because the mutated U4 ARE was ineffective in downregulating the reporter expression and inhibiting [(32)P]-labeled U4-transfactor complex formation. Downregulation of reporter activity by the full-length 3'UTR and U4 could be overcome by overexpression of HuR, a protein known to stabilize ARE-containing mRNAs in NIH3T3 cells, but not in the alphaT3-1 cells, once again indicating that factors other than HuR may also be involved in the regulation of FSHbeta in the pituitary.
Collapse
Affiliation(s)
- Ravi R Manjithaya
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
20
|
Abstract
Androgens (testosterone), acting via the androgen receptor (AR) a nuclear transcription factor, regulate male sexual development and body composition. In addition, AR expression plays an important role in the proliferation of human prostate cancer and confers a better prognosis in breast cancer. AR mRNA stability is central to the regulation of AR expression in prostate and breast cancer cells, and recent studies have demonstrated binding by members of the ELAV/Hu and poly(C) RNA-binding protein families to a highly conserved UC-rich element in the 3'-untranslated region of AR mRNA, with functional impact on AR protein expression. Remarkably, a CAG trinucleotide repeat in exon 1 of the AR, the length of which has been linked to prostate cancer survival, is also a target for multiple RNA-binding proteins from a variety of human and murine tissues. In this review, we will detail the current knowledge of the mechanisms involved in regulating AR mRNA stability, the nature, potential role and structural biology of several novel AR mRNA-protein interactions, and the implications for novel therapeutics in human prostate cancer.
Collapse
Affiliation(s)
- Bu B Yeap
- School of Medicine and Pharmacology, The University of Western Australia, Fremantle and Royal Perth Hospitals, Perth, Western Australia, Australia
| | | | | |
Collapse
|
21
|
Auboeuf D, Dowhan DH, Kang YK, Larkin K, Lee JW, Berget SM, O'Malley BW. Differential recruitment of nuclear receptor coactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci U S A 2004; 101:2270-4. [PMID: 14982999 PMCID: PMC356940 DOI: 10.1073/pnas.0308133100] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biological consequences of steroid hormone-mediated transcriptional activation of target genes might be difficult to predict because alternative splicing of a single neosynthesized precursor RNA can result in production of different protein isoforms with opposite biological activities. Therefore, an important question to address is the manner in which steroid hormones affect the splicing of their target gene transcripts. In this report, we demonstrate that individual steroid hormones had different and opposite effects on alternative splicing decisions, stimulating the production of different spliced variants produced from genes driven by steroid hormone-dependent promoters. Steroid hormone transcriptional effects are mediated by steroid hormone receptor coregulators that also modify alternative splicing decisions. Our data suggest that activated steroid hormone receptors recruit coregulators to the target promoter that participate in both the production and the splicing of the target gene transcripts. Because different coregulators activating transcription can have opposite effects on alternative splicing decisions, we conclude that the precise nature of the transcriptional coregulators recruited by activated steroid receptors, depending on the promoter and cellular contexts, may play a major role in regulating the nature of the spliced variants produced from certain target genes in response to steroid hormones.
Collapse
Affiliation(s)
- Didier Auboeuf
- Department of Molecular and Cellular Biology, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Denkert C, Weichert W, Pest S, Koch I, Licht D, Köbel M, Reles A, Sehouli J, Dietel M, Hauptmann S. Overexpression of the embryonic-lethal abnormal vision-like protein HuR in ovarian carcinoma is a prognostic factor and is associated with increased cyclooxygenase 2 expression. Cancer Res 2004; 64:189-95. [PMID: 14729623 DOI: 10.1158/0008-5472.can-03-1987] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human embryonic-lethal abnormal vision-like protein HuR is involved in the regulation of mRNA turnover and serves as a shuttling protein between the nucleus and the cytoplasm that stabilizes mRNAs containing adenine- and uridine-rich elements in their 3' untranslated region. We have shown recently that expression of cyclooxygenase (COX)-2 is related to poor prognosis in ovarian carcinoma. Other studies have shown that the COX-2 mRNA contains an adenine- and uridine-rich element and is stabilized by HuR. In this study, we investigated the expression and cellular distribution of HuR in 83 primary ovarian carcinomas, 16 borderline tumors of the ovary, 3 normal ovaries, and 9 ovarian carcinoma cell lines. Expression of HuR was detected in all cell lines on the mRNA and protein level and showed a predominantly nuclear staining in OVCAR-3 cells by confocal microscopy. In an immunohistochemical evaluation of human ovarian carcinomas, HuR showed a nuclear expression in 81% of tumors. In addition, a cytoplasmic expression of HuR was observed in a subgroup of 45% of ovarian carcinomas. Nuclear as well as cytoplasmic expression of HuR was significantly increased in ovarian carcinomas compared with borderline tumors or normal ovaries. In univariate analysis, a significant association between cytoplasmic HuR expression and increased COX-2 expression (P = 0.025) as well as between histological grade (P = 0.008) and mitotic activity (P = 0.002) was observed, although nuclear expression of HuR was not correlated with COX-2 expression or other clinicopathological parameters. In Kaplan-Meier survival analysis, increased cytoplasmic expression of HuR was a significant prognostic indicator for progression-free survival (P = 0.03) as well as overall survival (P = 0.007). In multivariate analysis using the Cox regression model, cytoplasmic expression of HuR was an independent prognostic parameter for reduced overall survival with a relative risk of 2.62 (95% confidence interval, 1.32-5.19). Our results suggest that there is a dysregulation of cellular distribution of the mRNA stability factor HuR in a subset of invasive ovarian carcinomas. This dysregulation appears to result in an increased expression of COX-2, an increased proliferative rate, and may lead to a reduced survival time. Additional studies are required to analyze the downstream effects of increased cytoplasmic expression of HuR. In addition, it would be interesting to investigate the prognostic role of increased cytoplasmic expression of HuR in prospective studies.
Collapse
Affiliation(s)
- Carsten Denkert
- Institute of Pathology and Department of Gynecology and Obstetrics, Charité Hospital, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common reasons for malignancy-related death in Africa and Asia and is still recognised as the leading cancer in men in Taiwan. Despite enthusiastic efforts in early diagnosis, aggressive surgical treatment and application of additional nonoperative modalities, its prognosis is still dismal. This emphasises the necessity to develop new measures and strategies for its prevention. Inducible cyclooxygenease 2 (COX-2) is an immediate-early (IE) response gene and extensive studies conducted over the past few years have recognised its overexpression in several carcinomas and thus its implication in carcinogenesis. Recent studies have suggested that overexpression of COX-2 might be one of the leading factors in hepatic carcinogenesis. COX-2 can induce angiogenesis via vascular endothelial growth factor (VEGF) and prostaglandin production and can also inhibit apoptosis by inducing the antiapoptotic factor Bcl-2 as well as activating antiapoptotic signalling through Akt/PKB. Therefore, the use of selective inhibitors for the downregulation of COX-2 activity might be a target for preventing hepatic carcinoma development.
Collapse
Affiliation(s)
- Mohammad A Rahman
- Second Department of Surgery, Shimane Medical University, Izumo 693-8501, Japan.
| | | | | |
Collapse
|
24
|
Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM, Czyzyk-Krzeska MF, Furneaux H, Wilce MCJ, Wilce JA, Leedman PJ. Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3'-untranslated region of the androgen receptor messenger RNA. J Biol Chem 2002; 277:27183-92. [PMID: 12011088 DOI: 10.1074/jbc.m202883200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) mediates androgen action and plays a central role in the proliferation of specific cancer cells. We demonstrated recently that AR mRNA stability is a major determinant of AR gene expression in prostate and breast cancer cells and that androgens differentially regulate AR mRNA decay dependent on cell type (Yeap, B. B., Kreuger, R. G., Leedman, P. J. (1999) Endocrinology 140, 3282-3291). Here, we have identified a highly conserved UC-rich region in the 3-untranslated region of AR mRNA that contains a 5'-C(U)(n)C motif and a 3'-CCCUCCC poly(C)-binding protein motif. In transfection studies with LNCaP human prostate cancer cells, the AR UC-rich region reduced expression of a luciferase reporter gene. The AR UC-rich region was a target for cytoplasmic and nuclear RNA-binding proteins from human prostate and breast cancer cells as well as human testicular and breast cancer tissue. One of these proteins is HuR, a ubiquitously expressed member of the Elav/Hu family of RNA-binding proteins involved in the stabilization of several mRNAs. Poly(C)-binding protein-1 and -2 (CP1 and CP2), previously implicated in the control of mRNA turnover and translation, also bound avidly to the UC-rich region. Mutational analysis of the UC-rich region identified specific binding motifs for both HuR and the CPs. HuR and CP1 bound simultaneously to the UC-rich RNA and in a cooperative manner. Immunoprecipitation studies confirmed that each of these proteins associated with AR mRNA in prostate cancer cells. In summary, we have identified and characterized a novel complex of AR mRNA-binding proteins that target the highly conserved UC-rich region. The binding of HuR, CP1, and CP2 to AR mRNA suggests a role for each of these proteins in the post-transcriptional regulation of AR expression in cancer cells.
Collapse
Affiliation(s)
- Bu B Yeap
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, University Department of Medicine, University of Western Australia, 50 Murray Street, Perth, WA 6000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|