1
|
Zimmerman KD, Chan J, Glenn JP, Birnbaum S, Li C, Nathanielsz PW, Olivier M, Cox LA. Moderate maternal nutrient reduction in pregnancy alters fatty acid oxidation and RNA splicing in the nonhuman primate fetal liver. J Dev Orig Health Dis 2023; 14:381-388. [PMID: 36924159 PMCID: PMC10202844 DOI: 10.1017/s204017442300003x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Fetal liver tissue collected from a nonhuman primate (NHP) baboon model of maternal nutrient reduction (MNR) at four gestational time points (90, 120, 140, and 165 days gestation [dG], term in the baboon is ∼185 dG) was used to quantify MNR effects on the fetal liver transcriptome. 28 transcripts demonstrated different expression patterns between MNR and control livers during the second half of gestation, a developmental period when the fetus undergoes rapid weight gain and fat accumulation. Differentially expressed transcripts were enriched for fatty acid oxidation and RNA splicing-related pathways. Increased RNA splicing activity in MNR was reflected in greater abundances of transcript splice variant isoforms in the MNR group. It can be hypothesized that the increase in splice variants is deployed in an effort to adapt to the poor in utero environment and ensure near-normal development and energy metabolism. This study is the first to study developmental programming across four critical gestational stages during primate fetal liver development and reveals a potentially novel cellular response mechanism mediating fetal programming in response to MNR.
Collapse
Affiliation(s)
- Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeannie Chan
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jeremy P. Glenn
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Shifra Birnbaum
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| | - Cun Li
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Peter W. Nathanielsz
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
- Animal Science, University of Wyoming, Laramie, WY, USA
| | - Michael Olivier
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Laura A. Cox
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA and
| |
Collapse
|
2
|
Li L, Wang W, Xu Q, Huang M. Asiatic acid improves insulin secretion of β cells in type 2 diabetes through TNF- α/Mfn2 pathway. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:185-194. [PMID: 37283103 PMCID: PMC10409975 DOI: 10.3724/zdxbyxb-2022-0647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To investigate the effects and molecular mechanisms of asiatic acid on β-cell function in type 2 diabetes mellitus (T2DM). METHODS The T2DM model was established by high fat diet and streptozotocin injection in ICR mice, and the effects of asiatic acid on glucose regulation were investigated in model mice. The islets were isolated from palmitic acid-treated diabetic mice. ELISA was used to detect the glucose-stimulated insulin secretion, tumor necrosis factor (TNF)-α and interleukin (IL)-6. ATP assay was applied to measure ATP production, and Western blotting was used to detect protein expression of mature β cell marker urocortin (Ucn) 3 and mitofusin (Mfn) 2. The regulatory effects of asiatic acid on glucose-stimulated insulin secretion (GSIS) and Ucn3 expression were also investigated after siRNA interference with Mfn2 or treatment with TNF-α. RESULTS Asiatic acid with the dose of 25 mg·kg-1·d-1 had the best glycemic control in T2DM mice and improved the homeostasis model assessment β index. Asiatic acid increased the expression of Mfn2 and Ucn3 protein and improved the GSIS function of diabetic β cells in vitro and in vivo (both P<0.05). Moreover, it improved the ATP production of islets of T2DM mice in vitro (P<0.05). Interfering Mfn2 with siRNA blocked the up-regulation of Ucn3 and GSIS induced by asiatic acid. Asiatic acid inhibited islet TNF-α content and increased Mfn2 and Ucn3 protein expression inhibited by TNF-α. CONCLUSIONS Asiatic acid improves β cell insulin secretion function in T2DM mice by maintaining the β cell maturity, which may be related to the TNF-α/Mfn2 pathway.
Collapse
Affiliation(s)
- Lu Li
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wang
- Intensive Critical Care Unit, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qiang Xu
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Mingzhu Huang
- Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
3
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
4
|
Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. NPJ Regen Med 2022; 7:44. [PMID: 36057642 PMCID: PMC9440900 DOI: 10.1038/s41536-022-00246-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022] Open
Abstract
The development of induced-pluripotent stem cell (iPSC)-derived cell types offers promise for basic science, drug testing, disease modeling, personalized medicine, and translatable cell therapies across many tissue types. However, in practice many iPSC-derived cells have presented as immature in physiological function, and despite efforts to recapitulate adult maturity, most have yet to meet the necessary benchmarks for the intended tissues. Here, we summarize the available state of knowledge surrounding the physiological mechanisms underlying cell maturation in several key tissues. Common signaling consolidators, as well as potential synergies between critical signaling pathways are explored. Finally, current practices in physiologically relevant tissue engineering and experimental design are critically examined, with the goal of integrating greater decision paradigms and frameworks towards achieving efficient maturation strategies, which in turn may produce higher-valued iPSC-derived tissues.
Collapse
|
5
|
Dos Santos T, Galipeau M, Schukarucha Gomes A, Greenberg M, Larsen M, Lee D, Maghera J, Mulchandani CM, Patton M, Perera I, Polishevska K, Ramdass S, Shayeganpour K, Vafaeian K, Van Allen K, Wang Y, Weisz T, Estall JL, Mulvihill EE, Screaton RA. Islet Biology During COVID-19: Progress and Perspectives. Can J Diabetes 2022; 46:419-427. [PMID: 35589534 PMCID: PMC8608413 DOI: 10.1016/j.jcjd.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023]
Abstract
The coronavirus-2019 (COVID-19) pandemic has had significant impact on research directions and productivity in the past 2 years. Despite these challenges, since 2020, more than 2,500 peer-reviewed articles have been published on pancreatic islet biology. These include updates on the roles of isocitrate dehydrogenase, pyruvate kinase and incretin hormones in insulin secretion, as well as the discovery of inceptor and signalling by circulating RNAs. The year 2020 also brought advancements in in vivo and in vitro models, including a new transgenic mouse for assessing beta-cell proliferation, a "pancreas-on-a-chip" to study glucose-stimulated insulin secretion and successful genetic editing of primary human islet cells. Islet biologists evaluated the functionality of stem-cell-derived islet-like cells coated with semipermeable biomaterials to prevent autoimmune attack, revealing the importance of cell maturation after transplantation. Prompted by observations that COVID-19 symptoms can worsen for people with obesity or diabetes, researchers examined how islets are directly affected by severe acute respiratory syndrome coronavirus 2. Herein, we highlight novel functional insights, technologies and therapeutic approaches that emerged between March 2020 and July 2021, written for both scientific and lay audiences. We also include a response to these advancements from patient stakeholders, to help lend a broader perspective to developments and challenges in islet research.
Collapse
Affiliation(s)
- Theodore Dos Santos
- Alberta Diabetes Institute & Department of Pharmacology, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Maria Galipeau
- Department of Molecular Biology, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Cardiometabolic Disease Centre, Montréal, Québec, Canada
| | - Amanda Schukarucha Gomes
- Alberta Diabetes Institute & Department of Pharmacology, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Daniel Lee
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Jasmine Maghera
- Alberta Diabetes Institute & Department of Pharmacology, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | | | - Megan Patton
- Toronto General Hospital, Toronto, Ontario, Canada
| | - Ineli Perera
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kateryna Polishevska
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kasra Shayeganpour
- Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | | - Kyle Van Allen
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Yufeng Wang
- University Health Network, Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Tom Weisz
- Toronto General Hospital, Toronto, Ontario, Canada
| | - Jennifer L Estall
- Department of Molecular Biology, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Cardiometabolic Disease Centre, Montréal, Québec, Canada
| | - Erin E Mulvihill
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert A Screaton
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Mitofusin2 Promotes β Cell Maturation from Mouse Embryonic Stem Cells via Sirt3/Idh2 Activation. Stem Cells Int 2022; 2022:1172795. [PMID: 35386849 PMCID: PMC8977338 DOI: 10.1155/2022/1172795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/02/2022] [Indexed: 12/01/2022] Open
Abstract
β cell dysfunction is the leading cause of diabetes. Adult β cells have matured glucose-stimulated insulin secretion (GSIS), whereas fetal and neonatal β cells are insensitive to glucose and are functionally immature. However, how β cells mature and acquire robust GSIS is not fully understood. Here, we explored the potential regulatory proteins of β cell maturation process and the capacity for GSIS. Combined with the data from public databases, we found that the gene expression of Mitofusin2 (Mfn2) showed an increasing trend from mouse neonatal β cells to mature β cells. Moreover, its protein expression increased during mouse embryonic pancreas development and β cell differentiation from mouse embryonic stem cells. Knocking down Mfn2 reduced Urocortin3 (Ucn3) expression, GSIS, and ATP production in induced β cells, while overexpressing it had the opposite effect. However, neither Mfn2 knockdown nor overexpression affected the differentiation rate of insulin-positive cells. In immature and mature β cells, Mfn2 and its correlated genes were enriched in tricarboxylic acid (TCA) cycle-related pathways. The expressions of Sirtuin 3 (Sirt3) and isocitrate dehydrogenase 2 (NADP+) and mitochondrial (Idh2) were Mfn2-regulated during β cell differentiation. Inhibiting Idh2 or Sirt3 reduced cellular ATP content and insulin secretion levels that increased by Mfn2 overexpression. Thus, Mfn2 modulated the induced β cell GSIS by influencing the TCA cycle through Sirt3/Idh2 activation. We demonstrated that Mfn2 promoted embryonic stem cell-derived β cell maturation via the Sirt3/Idh2 pathway, providing new insights into β cell development. Our data contribute to understanding diabetes pathogenesis and offer potential new targets for β cell regeneration therapies.
Collapse
|
7
|
Limesand SW, Goyal R. Epigenetic Modifications Guide Maturational Processes in Rat Pancreatic Islets. Endocrinology 2022; 163:6446226. [PMID: 34849676 DOI: 10.1210/endocr/bqab243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
| | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona 85719, USA
| |
Collapse
|
8
|
Lien YC, Lu XM, Won KJ, Wang PZ, Osei-Bonsu W, Simmons RA. The Transcriptome and Epigenome Reveal Novel Changes in Transcription Regulation During Pancreatic Rat Islet Maturation. Endocrinology 2021; 162:6360893. [PMID: 34467975 PMCID: PMC8455347 DOI: 10.1210/endocr/bqab181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/03/2023]
Abstract
Islet function is critical for normal glucose homeostasis. Unlike adult β cells, fetal and neonatal islets are more proliferative and have decreased insulin secretion in response to stimuli. However, the underlying mechanisms governing functional maturity of islets have not been completely elucidated. Pancreatic islets comprise different cell types. The microenvironment of islets and interactions between these cell types are critical for β-cell development and maturation. Thus, the study of intact islets is optimal to identify novel molecular mechanisms controlling islet functional development. Transcriptomes and genome-wide histone landscapes of H3K4me3, H3K27me3, and H3K27Ac from intact islets isolated from 2- and 10-week-old Sprague-Dawley rats were integrated to elucidate genes and pathways modulating islet development, as well as the contribution of epigenetic regulation. A total of 4489 differentially expressed genes were identified; 2289 and 2200 of them were up- and down-regulated in 10-week islets, respectively. Ingenuity Pathway Analysis revealed critical pathways regulating functional maturation of islets, including nutrient sensing, neuronal function, immune function, cell replication, and extracellular matrix. Furthermore, we identified significant changes in enrichment of H3K4me3, H3K27me3, and H3K27Ac marks, which correlated with expression changes of genes critical for islet function. These histone marks were enriched at critical transcription factor-binding motifs, such as Hoxa9, C/EBP-β, Gata1, Foxo1, E2f1, E2f3, and Mafb. In addition, our chromatin immunoprecipitation sequencing data revealed multiple potential bivalent genes whose poised states changed with maturation. Collectively, our current study identified critical novel pathways for mature islet function and suggested a role for histone modifications in regulating islet development and maturation.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Zhiping Wang
- Institute for Biomedical Informatics, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wendy Osei-Bonsu
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: Rebecca A. Simmons, MD, BRB II/III, 13th Floor, Rm 1308, 421 Curie Blvd, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Lien YC, Won KJ, Simmons RA. Transcriptomic and Quantitative Proteomic Profiling Reveals Signaling Pathways Critical for Pancreatic Islet Maturation. Endocrinology 2020; 161:5923720. [PMID: 33053583 PMCID: PMC7668240 DOI: 10.1210/endocr/bqaa187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic β-cell dysfunction and reduced insulin secretion play a key role in the pathogenesis of diabetes. Fetal and neonatal islets are functionally immature and have blunted glucose responsiveness and decreased insulin secretion in response to stimuli and are far more proliferative. However, the mechanisms underlying functional immaturity are not well understood. Pancreatic islets are composed of a mixture of different cell types, and the microenvironment of islets and interactions between these cell types are critical for β-cell development and maturation. RNA sequencing and quantitative proteomic data from intact islets isolated from fetal (embryonic day 19) and 2-week-old Sprague-Dawley rats were integrated to compare their gene and protein expression profiles. Ingenuity Pathway Analysis (IPA) was also applied to elucidate pathways and upstream regulators modulating functional maturation of islets. By integrating transcriptome and proteomic data, 917 differentially expressed genes/proteins were identified with a false discovery rate of less than 0.05. A total of 411 and 506 of them were upregulated and downregulated in the 2-week-old islets, respectively. IPA revealed novel critical pathways associated with functional maturation of islets, such as AMPK (adenosine monophosphate-activated protein kinase) and aryl hydrocarbon receptor signaling, as well as the importance of lipid homeostasis/signaling and neuronal function. Furthermore, we also identified many proteins enriched either in fetal or 2-week-old islets related to extracellular matrix and cell communication, suggesting that these pathways play critical roles in islet maturation. Our present study identified novel pathways for mature islet function in addition to confirming previously reported mechanisms, and provided new mechanistic insights for future research on diabetes prevention and treatment.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Correspondence: Rebecca A. Simmons, MD, Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, BRB II/III, 13th Fl, Rm 1308, 421 Curie Blvd, Philadelphia, PA 19104, USA. E-mail:
| |
Collapse
|