1
|
Tiwari A, Ika Krisnawati D, Susilowati E, Mutalik C, Kuo TR. Next-Generation Probiotics and Chronic Diseases: A Review of Current Research and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27679-27700. [PMID: 39588716 DOI: 10.1021/acs.jafc.4c08702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The burgeoning field of microbiome research has profoundly reshaped our comprehension of human health, particularly highlighting the potential of probiotics and fecal microbiota transplantation (FMT) as therapeutic interventions. While the benefits of traditional probiotics are well-recognized, the efficacy and mechanisms remain ambiguous, and FMT's long-term effects are still being investigated. Recent advancements in high-throughput sequencing have identified gut microbes with significant health benefits, paving the way for next-generation probiotics (NGPs). These NGPs, engineered through synthetic biology and bioinformatics, are designed to address specific disease states with enhanced stability and viability. This review synthesizes current research on NGP stability, challenges in delivery, and their applications in preventing and treating chronic diseases such as diabetes, obesity, and cardiovascular diseases. We explore the physiological characteristics, safety profiles, and mechanisms of action of various NGP strains while also addressing the challenges and opportunities presented by their integration into clinical practice. The potential of NGPs to revolutionize microbiome-based therapies and improve clinical outcomes is immense, underscoring the need for further research to optimize their efficacy and ensure their safety.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Dyah Ika Krisnawati
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, Surabaya, 60237 East Java, Indonesia
| | - Erna Susilowati
- Akademi Kesehatan Dharma Husada Kediri, Kediri, 64118 East Java, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
Jiang Z, Qian M, Zhen Z, Yang X, Xu C, Zuo L, Jiang J, Zhang W, Hu N. Gut microbiota and metabolomic profile changes play critical roles in tacrolimus-induced diabetes in rats. Front Cell Infect Microbiol 2024; 14:1436477. [PMID: 39355267 PMCID: PMC11442430 DOI: 10.3389/fcimb.2024.1436477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
Aims Hyperglycemia is one of the adverse effects of tacrolimus (TAC), but the underlying mechanism is not fully identified. We used multi-omics analysis to evaluate the changes in the gut microbiota and metabolic profile of rats with TAC-induced diabetes. Methods To establish a diabetic animal model, Sprague Dawley rats were divided randomly into two groups. Those in the TAC group received intraperitoneal injections of TAC (3 mg/kg) for 8 weeks, and those in the CON group served as the control. 16S rRNA sequencing was used to analyze fecal microbiota. The metabolites of the two groups were detected and analyzed by nontargeted and targeted metabolomics, including amino acids (AAs), bile acids (BAs), and short-chain fatty acids (SCFAs). Results The rats treated with TAC exhibited hyperglycemia as well as changes in the gut microbiota and metabolites. Specifically, their gut microbiota had significantly higher abundances of Escherichia-Shigella, Enterococcus, and Allobaculum, and significantly lower abundances of Ruminococcus, Akkermansia, and Roseburia. In addition, they had significantly reduced serum levels of AAs including asparagine, aspartic acid, glutamic acid, and methionine. With respect to BAs, they had significantly higher serum levels of taurocholic acid (TCA), and glycochenodeoxycholic acid (GCDCA), but significantly lower levels of taurodeoxycholic acid (TDCA) and tauroursodeoxycholic acid (TUDCA). There were no differences in the levels of SCFAs between the two groups. Correlations existed among glucose metabolism indexes (fasting blood glucose and fasting insulin), gut microbiota (Ruminococcus and Akkermansia), and metabolites (glutamic acid, hydroxyproline, GCDCA, TDCA, and TUDCA). Conclusions Both AAs and BAs may play crucial roles as signaling molecules in the regulation of TAC-induced diabetes.
Collapse
Affiliation(s)
- Zhenwei Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Minyan Qian
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Zeng Zhen
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, China
| | - Xuping Yang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Caomei Xu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Li'an Zuo
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wenting Zhang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Pediatric Central Laboratory, Affiliated Changzhou Children's Hospital of Nantong University, Changzhou, China
| | - Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
3
|
Han X, Tian H, Yang L, Ji Y. Bidirectional Mendelian randomization to explore the causal relationships between the gut microbiota and male reproductive diseases. Sci Rep 2024; 14:18306. [PMID: 39112529 PMCID: PMC11306555 DOI: 10.1038/s41598-024-69179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Gut bacteria might play an important role in male reproductive disorders, such as male infertility and sperm abnormalities; however, their causal role is unclear. Herein, Mendelian randomization (MR)-Egger, weighted median, inverse variance weighting, Simple mode, and Weighted mode were used to test the causal relationship between gut microbes and male reproductive diseases. The MR results were validated using various metrics. The MR results were also consolidated using reverse causality speculation, conducted using two-way MR analysis and Steiger filtering. Biological function was analysed using enrichment analyses. The results suggested that eight intestinal microflorae were causally associated with male infertility. The Eubacterium oxidoreducens group was associated with an increased risk of male infertility, while the family Bacteroidaceae was negatively associated with male reproductive diseases. Eight intestinal microflorae were causally associated with abnormal spermatozoa. The family Streptococcaceae was associated with a high risk of abnormal spermatozoa, whereas the family Porphyromonadaceae was associated with a low risk of abnormal spermatozoa. No pleiotropy was observed, this study identified a high correlation between the gut flora and the likelihood of male reproductive diseases. Future research will attempt to advance microbial-focused treatments for such diseases.
Collapse
Affiliation(s)
- Xiaofang Han
- Core Laboratory, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, China.
| | - Hui Tian
- Core Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Liu Yang
- Core Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yuanyuan Ji
- Core Laboratory, Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
5
|
Xu YW, Tian J, Song Y, Zhang BC, Wang J. Metabolic syndrome's new therapy: Supplement the gut microbiome. World J Diabetes 2024; 15:793-796. [PMID: 38680700 PMCID: PMC11045428 DOI: 10.4239/wjd.v15.i4.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
This letter to the editor discusses the publication on gut microbiome supplementation as therapy for metabolic syndrome. Gut microbiome dysbiosis disrupts intestinal bacterial homeostasis and is related to chronic inflammation, insulin resistance, cardiovascular diseases, type 2 diabetes mellitus, and obesity. Previous research has found that increasing the abundance of beneficial microbiota in the gut modulates metabolic syndrome by reducing chronic inflammation and insulin resistance. Prebiotics, probiotics, synbiotics, and postbiotics are often used as supplements to increase the number of beneficial microbes and thus the production of short-chain fatty acids, which have positive effects on the gut microbiome and metabolic syndrome. In this review article, the author summarizes the available supplements to increase the abundance of beneficial gut microbiota and reduce the abundance of harmful microbiota in patients with metabolic disorders. Our group is also researching the role of the gut microbiota in chronic liver disease. This article will be of great help to our research. At the end of the letter, the mechanism of the gut microbiota in chronic liver disease is discussed.
Collapse
Affiliation(s)
- Yong-Wei Xu
- Department of Gastroenterology, Songjiang Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201600, China
| | - Jun Tian
- Department of Gastroenterology, Songjiang Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201600, China
| | - Yan Song
- Department of Gastroenterology, Songjiang Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201600, China
| | - Ba-Cui Zhang
- Department of Gastroenterology, Songjiang Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201600, China
| | - Jing Wang
- Department of Gastroenterology, Songjiang Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201600, China
| |
Collapse
|
6
|
Zhang J, Wang H, Liu Y, Shi M, Zhang M, Zhang H, Chen J. Advances in fecal microbiota transplantation for the treatment of diabetes mellitus. Front Cell Infect Microbiol 2024; 14:1370999. [PMID: 38660489 PMCID: PMC11039806 DOI: 10.3389/fcimb.2024.1370999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Diabetes mellitus (DM) refers to a group of chronic diseases with global prevalence, characterized by persistent hyperglycemia resulting from various etiologies. DM can harm various organ systems and lead to acute or chronic complications, which severely endanger human well-being. Traditional treatment mainly involves controlling blood sugar levels through replacement therapy with drugs and insulin; however, some patients still find a satisfactory curative effect difficult to achieve. Extensive research has demonstrated a close correlation between enteric dysbacteriosis and the pathogenesis of various types of DM, paving the way for novel therapeutic approaches targeting the gut microbiota to manage DM. Fecal microbiota transplantation (FMT), a method for re-establishing the intestinal microbiome balance, offers new possibilities for treating diabetes. This article provides a comprehensive review of the correlation between DM and the gut microbiota, as well as the current advancements in FMT treatment for DM, using FMT as an illustrative example. This study aims to offer novel perspectives and establish a theoretical foundation for the clinical diagnosis and management of DM.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Ying Liu
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Min Shi
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Minna Zhang
- Department of Gastroenterology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Hong Zhang
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Juan Chen
- Department of Endocrinology, the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| |
Collapse
|
7
|
Zhou X, Chen R, Cai Y, Chen Q. Fecal Microbiota Transplantation: A Prospective Treatment for Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:647-659. [PMID: 38347911 PMCID: PMC10860394 DOI: 10.2147/dmso.s447784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose of Review The aim of this review is to summarize the role of gastrointestinal microbiome (GM) in the development of type 2 diabetes mellitus (T2DM). Besides, we discuss the feasibility of applying FMT in the treatment of T2DM and propose a series of processes to refine the use of FMT in the treatment of T2DM. Recent Findings T2DM is a metabolic disease which is connected with the GM. According to many researches, GM can produce a variety of metabolites such as bile acid, short chain fatty acids, lipopolysaccharides and trimethylamine oxide which play an important role in metabolism. FMT is a method to regulate GM and has been observed to be effective in the treatment of metabolic diseases such as T2DM in some mouse models and people. However, there is still a lack of direct evidence for the use of FMT in the treatment of T2DM, and the process of FMT is not standardized. Summary Dysregulation of GM is closely related to the development of T2DM. Promoting the conversion of GM in T2DM patients to normal population through FMT can reduce insulin resistance and lower their blood glucose level, which is an optional treatment for T2DM patients in the future. At present, the feasibility and limitations of applying FMT to the treatment of T2DM need to be further studied.
Collapse
Affiliation(s)
- Xiaolan Zhou
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Rumeng Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yichen Cai
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
8
|
Vargas-Antillón AB, Porchas-Quijada M, Zepeda-Carrillo EA, Torres-Valadez R, Muñoz-Valle JF, Vázquez-Solórzano R, Valdés-Miramontes E, Hernández-Palma LA, Reyes-Castillo Z. Antibodies Reactive to Leptin in Adults with Type 2 Diabetes and Its Relationship with Clinical, Metabolic and Cardiovascular Risk Parameters. Endocr Res 2024; 49:12-21. [PMID: 37864464 DOI: 10.1080/07435800.2023.2270763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND AIMS Patients with obesity and type 2 diabetes (T2D) have shown alterations in the affinity of IgG anti-leptin antibodies which are possibly related to metabolic alterations. In the present exploratory study, we analyzed serum samples from adults with T2D classified by body mass index (BMI) and evaluated the relationship of IgG anti-leptin antibodies with body composition, metabolic and cardiovascular risk parameters. METHODS Serum IgG anti-leptin antibodies (total, free and immune complexes fractions) were measured by in-house ELISA. Body composition, metabolic biomarkers (glucose, glycated hemoglobin, lipid profile, insulin, leptin) and cardiometabolic risk indexes (AIP, HOMA-IR, HOMA-ß) were evaluated in one hundred T2D patients. RESULTS Patients with T2D and obesity presented a decrease in the percentage of IgG anti-leptin immune complexes compared to patients with T2D and overweight (p < 0.0053). Negative correlations of IgG anti-leptin immune complexes with triglycerides (TG) (r=-0.412, p = 0.023) and VLDL-C (r=-0.611, p = 0.017) were found in normal weight T2D patients. Free IgG anti-leptin antibodies correlated positively with TC (r = 0.390, p = 0.032) and LDL-C (r = 0.458, p = 0.011) in overweight individuals with T2D. Finally, total IgG anti-leptin antibodies correlated positively with leptin hormone levels (r = 0.409, p = 0.024) and negatively with HOMA-IR (r =-0.459, p = 0.012) in T2D patients with obesity. CONCLUSIONS The decrease of IgG anti-leptin immune complexes observed in patients with T2D and obesity suggests a reduction in antibody affinity to the hormone that may impact its transport and signaling, lipid, lipoprotein and insulin metabolism.
Collapse
Affiliation(s)
- Ana B Vargas-Antillón
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Mildren Porchas-Quijada
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Eloy A Zepeda-Carrillo
- Unidad Especializada en Investigación, Desarrollo e Innovación en Medicina Genómica, Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Mexico
- Hospital Civil Dr. Antonio González Guevara, Servicios de Salud de Nayarit, Mexico
| | - Rafael Torres-Valadez
- Unidad Especializada en Investigación, Desarrollo e Innovación en Medicina Genómica, Centro Nayarita de Innovación y Transferencia de Tecnología, Universidad Autónoma de Nayarit, Mexico
- Unidad Académica de Salud Integral, Universidad Autónoma de Nayarit, Mexico
| | - José F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Rafael Vázquez-Solórzano
- Laboratorio de Biomedicina y Biotecnología para la Salud, Departamento de Ciencias Clínicas, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Elia Valdés-Miramontes
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Luis A Hernández-Palma
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
- Laboratorio de Biomedicina y Biotecnología para la Salud, Departamento de Ciencias Clínicas, Centro Universitario del Sur, Universidad de Guadalajara, Mexico
| |
Collapse
|
9
|
Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:27-49. [PMID: 37845351 DOI: 10.1038/s41574-023-00898-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/18/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by tissue-specific insulin resistance and pancreatic β-cell dysfunction, which result from the interplay of local abnormalities within different tissues and systemic dysregulation of tissue crosstalk. The main local mechanisms comprise metabolic (lipid) signalling, altered mitochondrial metabolism with oxidative stress, endoplasmic reticulum stress and local inflammation. While the role of endocrine dysregulation in T2DM pathogenesis is well established, other forms of inter-organ crosstalk deserve closer investigation to better understand the multifactorial transition from normoglycaemia to hyperglycaemia. This narrative Review addresses the impact of certain tissue-specific messenger systems, such as metabolites, peptides and proteins and microRNAs, their secretion patterns and possible alternative transport mechanisms, such as extracellular vesicles (exosomes). The focus is on the effects of these messengers on distant organs during the development of T2DM and progression to its complications. Starting from the adipose tissue as a major organ relevant to T2DM pathophysiology, the discussion is expanded to other key tissues, such as skeletal muscle, liver, the endocrine pancreas and the intestine. Subsequently, this Review also sheds light on the potential of multimarker panels derived from these biomarkers and related multi-omics for the prediction of risk and progression of T2DM, novel diabetes mellitus subtypes and/or endotypes and T2DM-related complications.
Collapse
Affiliation(s)
- Georgia Xourafa
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Melis Korbmacher
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Düsseldorf, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
10
|
Saha P, Panda S, Holkar A, Vashishth R, Rana SS, Arumugam M, Ashraf GM, Haque S, Ahmad F. Neuroprotection by agmatine: Possible involvement of the gut microbiome? Ageing Res Rev 2023; 91:102056. [PMID: 37673131 DOI: 10.1016/j.arr.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Agmatine, an endogenous polyamine derived from L-arginine, elicits tremendous multimodal neuromodulant properties. Alterations in agmatinergic signalling are closely linked to the pathogeneses of several brain disorders. Importantly, exogenous agmatine has been shown to act as a potent neuroprotectant in varied pathologies, including brain ageing and associated comorbidities. The antioxidant, anxiolytic, analgesic, antidepressant and memory-enhancing activities of agmatine may derive from its ability to regulate several cellular pathways; including cell metabolism, survival and differentiation, nitric oxide signalling, protein translation, oxidative homeostasis and neurotransmitter signalling. This review briefly discusses mammalian metabolism of agmatine and then proceeds to summarize our current understanding of neuromodulation and neuroprotection mediated by agmatine. Further, the emerging exciting bidirectional links between agmatine and the resident gut microbiome and their implications for brain pathophysiology and ageing are also discussed.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Aayusha Holkar
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Rahul Vashishth
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah 27272, United Arab Emirates.
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
11
|
Antony MA, Chowdhury A, Edem D, Raj R, Nain P, Joglekar M, Verma V, Kant R. Gut microbiome supplementation as therapy for metabolic syndrome. World J Diabetes 2023; 14:1502-1513. [PMID: 37970133 PMCID: PMC10642415 DOI: 10.4239/wjd.v14.i10.1502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 10/09/2023] Open
Abstract
The gut microbiome is defined as an ecological community of commensal symbiotic and pathogenic microorganisms that exist in our body. Gut microbiome dysbiosis is a condition of dysregulated and disrupted intestinal bacterial homeostasis, and recent evidence has shown that dysbiosis is related to chronic inflammation, insulin resistance, cardiovascular diseases (CVD), type 2 diabetes mellitus (T2DM), and obesity. It is well known that obesity, T2DM and CVD are caused or worsened by multiple factors like genetic predisposition, environmental factors, unhealthy high calorie diets, and sedentary lifestyle. However, recent evidence from human and mouse models suggest that the gut microbiome is also an active player in the modulation of metabolic syndrome, a set of risk factors including obesity, hyperglycemia, and dyslipidemia that increase the risk for CVD, T2DM, and other diseases. Current research aims to identify treatments to increase the number of beneficial microbiota in the gut microbiome in order to modulate metabolic syndrome by reducing chronic inflammation and insulin resistance. There is increasing interest in supplements, classified as prebiotics, probiotics, synbiotics, or postbiotics, and their effect on the gut microbiome and metabolic syndrome. In this review article, we have summarized current research on these supplements that are available to improve the abundance of beneficial gut microbiota and to reduce the harmful ones in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Mc Anto Antony
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Aniqa Chowdhury
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Dinesh Edem
- Department of Endocrinology, Diabetes and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AK 72205, United States
| | - Rishi Raj
- Department of Endocrinology, Diabetes and Metabolism, Pikeville Medical Center, Pikeville, KY 41501, United States
| | - Priyanshu Nain
- Department of Graduate Medical Education, Maulana Azad Medical College, Delhi 110002, India
| | - Mansi Joglekar
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Vipin Verma
- Department of Internal Medicine, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| | - Ravi Kant
- Department of Endocrinology, Diabetes and Metabolism, Medical University of South Carolina/AnMed Campus, Anderson, SC 29621, United States
| |
Collapse
|
12
|
Wang CY, Kuang X, Wang QQ, Zhang GQ, Cheng ZS, Deng ZX, Guo FB. GMMAD: a comprehensive database of human gut microbial metabolite associations with diseases. BMC Genomics 2023; 24:482. [PMID: 37620754 PMCID: PMC10464125 DOI: 10.1186/s12864-023-09599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The natural products, metabolites, of gut microbes are crucial effect factors on diseases. Comprehensive identification and annotation of relationships among disease, metabolites, and microbes can provide efficient and targeted solutions towards understanding the mechanism of complex disease and development of new markers and drugs. RESULTS We developed Gut Microbial Metabolite Association with Disease (GMMAD), a manually curated database of associations among human diseases, gut microbes, and metabolites of gut microbes. Here, this initial release (i) contains 3,836 disease-microbe associations and 879,263 microbe-metabolite associations, which were extracted from literatures and available resources and then experienced our manual curation; (ii) defines an association strength score and a confidence score. With these two scores, GMMAD predicted 220,690 disease-metabolite associations, where the metabolites all belong to the gut microbes. We think that the positive effective (with both scores higher than suggested thresholds) associations will help identify disease marker and understand the pathogenic mechanism from the sense of gut microbes. The negative effective associations would be taken as biomarkers and have the potential as drug candidates. Literature proofs supported our proposal with experimental consistence; (iii) provides a user-friendly web interface that allows users to browse, search, and download information on associations among diseases, metabolites, and microbes. The resource is freely available at http://guolab.whu.edu.cn/GMMAD . CONCLUSIONS As the online-available unique resource for gut microbial metabolite-disease associations, GMMAD is helpful for researchers to explore mechanisms of disease- metabolite-microbe and screen the drug and marker candidates for different diseases.
Collapse
Affiliation(s)
- Cheng-Yu Wang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xia Kuang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Qiao-Qiao Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Gu-Qin Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen-Shun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zi-Xin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Feng-Biao Guo
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Chen X, Yang Z, Du L, Guan Y, Li Y, Liu C. Study on the active ingredients and mechanism of action of Jiaotai Pill in the treatment of type 2 diabetes based on network pharmacology: A review. Medicine (Baltimore) 2023; 102:e33317. [PMID: 37000070 PMCID: PMC10063286 DOI: 10.1097/md.0000000000033317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 04/01/2023] Open
Abstract
To explore the potential active ingredients and related mechanisms of Jiaotai Pill in the treatment of Type 2 diabetes mellitus (T2DM) based on network pharmacology and molecular docking. The main active components of Jiaotai Pills were obtained by TCMSP and BATMAN-TCM database combined with literature mining, and the targets of the active components of Jiaotai Pills were predicted by reverse pharmacophore matching (PharmMapper) method. Verifying and normalizing the obtained action targets by using a Uniprot database. Obtaining T2DM related targets through GeneCards, the online mendelian inheritance in man, DrugBank, PharmGKB and therapeutic target databases, constructing a Venn diagram by using a Venny 2.1 online drawing platform to obtain the intersection action targets of Jiaotai pills and T2DM, and the protein-protein interaction network was constructed by String platform. Bioconductor platform and R language were used to analyze the function of gene ontology and the pathway enrichment of Kyoto Encyclopedia of Genes and Genomes. A total of 21 active components and 262 potential targets of Jiaotai Pill were screened by database analysis and literature mining, including 89 targets related to T2DM. Through gene ontology functional enrichment analysis, 1690 biological process entries, 106 molecular function entries and 78 cellular component entries were obtained. Seven pathways related to T2DM were identified by Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Jiaotai Pill can achieve the purpose of treating T2DM through multiple active ingredients, multiple disease targets, multiple biological pathways and multiple pathways, which provides a theoretical basis for the clinical treatment of T2DM by Jiaotai Pill.
Collapse
Affiliation(s)
- Xiaona Chen
- Hei Long Jiang University of CM, Harbin, China
| | - Zhao Yang
- Hei Long Jiang University of CM, Harbin, China
| | - Lin Du
- Hei Long Jiang University of CM, Harbin, China
| | - Yuxin Guan
- Hei Long Jiang University of CM, Harbin, China
| | - Yunfang Li
- Hei Long Jiang University of CM, Harbin, China
| | | |
Collapse
|
14
|
Hu W, Liu L, Forn-Cuní G, Ding Y, Alia A, Spaink HP. Transcriptomic and Metabolomic Studies Reveal That Toll-like Receptor 2 Has a Role in Glucose-Related Metabolism in Unchallenged Zebrafish Larvae ( Danio rerio). BIOLOGY 2023; 12:biology12020323. [PMID: 36829598 PMCID: PMC9952914 DOI: 10.3390/biology12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Toll-like receptors (TLRs) have been implicated in the regulation of various metabolism pathways, in addition to their function in innate immunity. Here, we investigate the metabolic function of TLR2 in a larval zebrafish system. We studied larvae from a tlr2 mutant and the wild type sibling controls in an unchallenged normal developmental condition using transcriptomic and metabolomic analyses methods. RNAseq was used to evaluate transcriptomic differences between the tlr2 mutant and wild-type control zebrafish larvae and found a signature set of 149 genes to be significantly altered in gene expression. The expression level of several genes was confirmed by qPCR analyses. Gene set enrichment analysis (GSEA) revealed differential enrichment of genes between the two genotypes related to valine, leucine, and isoleucine degradation and glycolysis and gluconeogenesis. Using 1H nuclear magnetic resonance (NMR) metabolomics, we found that glucose and various metabolites related with glucose metabolism were present at higher levels in the tlr2 mutant. Furthermore, we confirmed that the glucose level is higher in tlr2 mutants by using a fluorometric assay. Therefore, we have shown that TLR2, in addition to its function in immunity, has a function in controlling metabolism during vertebrate development. The functions are associated with transcriptional regulation of various enzymes involved in glucose metabolism that could explain the different levels of glucose, lactate, succinate, and malate in larvae of a tlr2 mutant.
Collapse
Affiliation(s)
- Wanbin Hu
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Li Liu
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Yi Ding
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Alia Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands
| | - Herman P. Spaink
- Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Correspondence:
| |
Collapse
|
15
|
Li L, Ma C, Hurilebagen, Yuan H, Hu R, Wang W, Weilisi. Effects of lactoferrin on intestinal flora of metabolic disorder mice. BMC Microbiol 2022; 22:181. [PMID: 35869430 PMCID: PMC9306164 DOI: 10.1186/s12866-022-02588-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
To study the mechanism of lactoferrin (LF) regulating metabolic disorders in nutritionally obese mice through intestinal microflora. Twenty-one male C57BL/6 mice were randomly divided into 3 groups: control group, model group and LF treatment group. The mice in control group were fed with maintenance diet and drank freely. The mice in model group were fed with high fat diet and drank freely. The mice in LF treatment group were fed with high fat diet and drinking water containing 2% LF freely. Body weight was recorded every week. Visceral fat ratio was measured at week 12. Blood glucose and serum lipid level were detected by automatic biochemical analyzer. The gut microbiota of mice was examined using 16 s rRNA sequencing method. LF treatment significantly reduced the levels of visceral adipose ratio, blood glucose, triglyceride, total cholesterol and low-density lipoprotein cholesterol (LDL-C) in high-fat diet mice (p < 0.05). It can be seen that drinking water with 2% LF had a significant impact on metabolic disorders. At the same time, the Firmicutes/Bacteroidetes ratio(F/B) of LF treated mice was decreased. The abundance of Deferribacteres, Oscillibacter, Butyricicoccus, Acinetobacter and Mucispirillum in LF treatment group were significantly decreased, and the abundance of Dubosiella was significantly increased (p < 0.05). In the LF-treated group, the expression levels of glucose metabolism genes in gut microbiota were increased, and the expression levels of pyruvate metabolism genes were decreased. It can be seen that metabolic disorders were related to intestinal flora. In conclusion, LF regulates metabolic disorders by regulating intestinal flora.
Collapse
|
16
|
Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients 2022; 14:nu14214695. [PMID: 36364957 PMCID: PMC9653718 DOI: 10.3390/nu14214695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
An intricate relationship between gut microbiota, diet, and the human body has recently been extensively investigated. Gut microbiota and gut-derived metabolites, especially, tryptophan derivatives, modulate metabolic and immune functions in health and disease. One of the tryptophan derivatives, indolepropionic acid (IPA), is increasingly being studied as a marker for the onset and development of metabolic disorders, including type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). The IPA levels heavily depend on the diet, particularly dietary fiber, and show huge variations among individuals. We suggest that these variations could partially be explained using genetic variants known to be associated with specific diseases such as T2D. In this narrative review, we elaborate on the beneficial effects of IPA in the mitigation of T2D and NAFLD, and further study the putative interactions between IPA and well-known genetic variants (TCF7L2, FTO, and PPARG), known to be associated with the risk of T2D. We have investigated the long-term preventive value of IPA in the development of T2D in the Finnish prediabetic population and the correlation of IPA with phytosterols in obese individuals from an ongoing Kuopio obesity surgery study. The diversity in IPA-linked mechanisms affecting glucose metabolism and liver fibrosis makes it a unique small metabolite and a promising candidate for the reversal or management of metabolic disorders, mainly T2D and NAFLD.
Collapse
|
17
|
Gao R, Meng X, Xue Y, Mao M, Liu Y, Tian X, Sui B, Li X, Zhang P. Bile acids-gut microbiota crosstalk contributes to the improvement of type 2 diabetes mellitus. Front Pharmacol 2022; 13:1027212. [PMID: 36386219 PMCID: PMC9640995 DOI: 10.3389/fphar.2022.1027212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 10/07/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) occurs that cannot effectively use the insulin. Insulin Resistance (IR) is a significant characteristic of T2DM which is also an essential treatment target in blood glucose regulation to prevent T2DM and its complications. Bile acids (BAs) are one group of bioactive metabolites synthesized from cholesterol in liver. BAs play an important role in mutualistic symbiosis between host and gut microbiota. It is shown that T2DM is associated with altered bile acid metabolism which can be regulated by gut microbiota. Simultaneously, BAs also reshape gut microbiota and improve IR and T2DM in the bidirectional communications of the gut-liver axis. This article reviewed the findings on the interaction between BAs and gut microbiota in improving T2DM, which focused on gut microbiota and its debinding function and BAs regulated gut microbiota through FXR/TGR5. Meanwhile, BAs and their derivatives that are effective for improving T2DM and other treatments based on bile acid metabolism were also summarized. This review highlighted that BAs play a critical role in the glucose metabolism and may serve as therapeutic targets in T2DM, providing a reference for discovering and screening novel therapeutic drugs.
Collapse
Affiliation(s)
- Ruolin Gao
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xiangjing Meng
- Shandong Academy of Pharmaceutical Science, Jinan, China
| | - Yili Xue
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Min Mao
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Yaru Liu
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Bo Sui
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Xun Li
- School of Sports and Health, Shandong Sport University, Jinan, China
| | - Pengyi Zhang
- School of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
18
|
He L, Yang FQ, Tang P, Gao TH, Yang CX, Tan L, Yue P, Hua YN, Liu SJ, Guo JL. Regulation of the intestinal flora: A potential mechanism of natural medicines in the treatment of type 2 diabetes mellitus. Biomed Pharmacother 2022; 151:113091. [PMID: 35576662 DOI: 10.1016/j.biopha.2022.113091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Diabetes mellitus comprises a group of heterogeneous disorders, which are usually subdivided into type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Both genetic and environmental factors have been implicated in the onset of diabetes. Type 1 diabetes primarily involves autoimmune insulin deficiency. In comparison, type 2 diabetes is contributed by the pathological state of insulin deficiency and insulin resistance. In recent years, significant differences were found in the abundance of microflora, intestinal barrier, and intestinal metabolites in diabetic subjects when compared to normal subjects. To further understand the relationship between diabetes mellitus and intestinal flora, this paper summarizes the interaction mechanism between diabetes mellitus and intestinal flora. Furthermore, the natural compounds found to treat diabetes through intestinal flora were classified and summarized. This review is expected to provide a valuable resource for the development of new diabetic drugs and the applications of natural compounds.
Collapse
Affiliation(s)
- Liying He
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang-Qing Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ting-Hui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cai-Xia Yang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Tan
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ya-Nan Hua
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Si-Jing Liu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jin-Lin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
ÖZ GÜL Ö, CANDER S. Evaluation of sitagliptin therapy on the levels of fibroblast growth factor-19 (FGF19) in patients with Type 2 diabetes. TURKISH JOURNAL OF INTERNAL MEDICINE 2022. [DOI: 10.46310/tjim.1070223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Ge X, Zhang A, Li L, Sun Q, He J, Wu Y, Tan R, Pan Y, Zhao J, Xu Y, Tang H, Gao Y. Application of machine learning tools: Potential and useful approach for the prediction of type 2 diabetes mellitus based on the gut microbiome profile. Exp Ther Med 2022; 23:305. [PMID: 35340868 PMCID: PMC8931625 DOI: 10.3892/etm.2022.11234] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/09/2022] [Indexed: 12/07/2022] Open
Abstract
The gut microbiota plays an important role in the regulation of the immune system and the metabolism of the host. The aim of the present study was to characterize the gut microbiota of patients with type 2 diabetes mellitus (T2DM). A total of 118 participants with newly diagnosed T2DM and 89 control subjects were recruited in the present study; six clinical parameters were collected and the quantity of 10 different types of bacteria was assessed in the fecal samples using quantitative PCR. Taking into consideration the six clinical variables and the quantity of the 10 different bacteria, 3 predictive models were established in the training set and test set, and evaluated using a confusion matrix, area under the receiver operating characteristic curve (AUC) values, sensitivity (recall), specificity, accuracy, positive predictive value and negative predictive value (npv). The abundance of Bacteroides, Eubacterium rectale and Roseburia inulinivorans was significantly lower in the T2DM group compared with the control group. However, the abundance of Enterococcus was significantly higher in the T2DM group compared with the control group. In addition, Faecalibacterium prausnitzii, Enterococcus and Roseburia inulinivorans were significantly associated with sex status while Bacteroides, Bifidobacterium, Enterococcus and Roseburia inulinivorans were significantly associated with older age. In the training set, among the three models, support vector machine (SVM) and XGboost models obtained AUC values of 0.72 and 0.70, respectively. In the test set, only SVM obtained an AUC value of 0.77, and the precision and specificity were both above 0.77, whereas the accuracy, recall and npv were above 0.60. Furthermore, Bifidobacterium, age and Roseburia inulinivorans played pivotal roles in the model. In conclusion, the SVM model exhibited the highest overall predictive power, thus the combined use of machine learning tools with gut microbiome profiling may be a promising approach for improving early prediction of T2DM in the near feature.
Collapse
Affiliation(s)
- Xiaochun Ge
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Aimin Zhang
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Lihui Li
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Qitian Sun
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Jianqiu He
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yu Wu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Rundong Tan
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Yingxia Pan
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Hui Tang
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 201204, P.R. China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
21
|
Sianipar IR, Sestramita S, Pradnjaparamita T, Yunir E, Harbuwono DS, Soewondo P, Tahapary DL. The role of Intestinal-Fatty Acid Binding Proteins and Chitinase-3-Like Protein 1 across the spectrum of dysglycemia. Diabetes Metab Syndr 2022; 16:102366. [PMID: 34942410 DOI: 10.1016/j.dsx.2021.102366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIMS Recent studies underlie the importance of intestinal permeability and chronic inflammation in the pathogenesis of T2DM. Our study compared the concentrations of FABP2 and YKL40 as markers of intestinal permeability and inflammation among normoglycemia, prediabetes and T2DM. METHODS We recruited 122 participants (45 normoglycemic, 26 prediabetes, and 51 T2DM) of whom we measured the fasting serum levels of FABP2 and YKL-40 using ELISA method. RESULTS The levels of FABP2 were significantly higher in the T2DM group [2.890 (1.880-4.070)] in comparison to both prediabetes [2.025 (1.145-2.343), p = 0.0085] and normoglycemia group [1.72 (1.250-2.645), p = 0.011]. The levels of YKL-40 were also significantly higher in the T2DM group [68.70 (44.61-166.6)] in comparison to both prediabetes [28.85 (20.64-41.53), p < 0.0001] and normoglycemia group [28.64 (19.25-43.87), p < 0.001]. CONCLUSIONS Our study observed that the levels of FABP2 and YKL-40 were highest in the T2DM group supporting the available evidences on the role of intestinal permeability disruption and chronic low-grade inflammation in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Imelda R Sianipar
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Indonesia.
| | - Sestramita Sestramita
- Graduate Student of Master Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Tika Pradnjaparamita
- Metabolic, Cardiovascular and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Em Yunir
- Metabolic, Cardiovascular and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, dr. Cipto Mangunkusumo National General Hospital/Faculty of Medicine Universitas Indonesia, Indonesia
| | - Dante S Harbuwono
- Metabolic, Cardiovascular and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, dr. Cipto Mangunkusumo National General Hospital/Faculty of Medicine Universitas Indonesia, Indonesia
| | - Pradana Soewondo
- Metabolic, Cardiovascular and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, dr. Cipto Mangunkusumo National General Hospital/Faculty of Medicine Universitas Indonesia, Indonesia.
| | - Dicky L Tahapary
- Metabolic, Cardiovascular and Aging Research Cluster, The Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, dr. Cipto Mangunkusumo National General Hospital/Faculty of Medicine Universitas Indonesia, Indonesia.
| |
Collapse
|
22
|
Xia T, Liu CS, Hu YN, Luo ZY, Chen FL, Yuan LX, Tan XM. Coix seed polysaccharides alleviate type 2 diabetes mellitus via gut microbiota-derived short-chain fatty acids activation of IGF1/PI3K/AKT signaling. Food Res Int 2021; 150:110717. [PMID: 34865748 DOI: 10.1016/j.foodres.2021.110717] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) has become a worldwide concern in recent years. Coix seed (CS) as a homologous substance of traditional Chinese medicine and food, its polysaccharides can improve the symptoms of patients with metabolic disorders. Since most plant polysaccharides are difficult to digest and absorb, we hypothesized that Coix seed polysaccharides (CSP) exert hypoglycemic effects through the gut. In this study, the underlying mechanisms regulating hypoglycemic effects of CSP on a T2DM mouse model were investigated. After treatment with CSP, serum insulin and high-density lipoprotein cholesterol levels were increased, while total cholesterol, triglycerides and low-density lipoprotein cholesterol levels were decreased in T2DM mice. In addition, CSP treatment helped repair the intestinal barrier and modulated the gut microbial composition in T2DM mice, mainly facilitating the growth of short-chain fatty acid (SCFA)-producing bacteria, Spearman's analysis revealed these bacteria were positively related with the hypoglycemic efficacy of CSP. Colonic transcriptome analysis indicated the hypoglycemic effect of CSP was associated with the activation of the IGF1/PI3K/AKT signaling pathway. Correlative analysis revealed that this activation may result from the increase of SCFAs-producing bacteria by CSP. GC-MS detection verified that CSP treatment increased fecal SCFAs levels. Molecular docking revealed that SCFAs could bind with IGF1, PI3K, and AKT. Our findings demonstrated that CSP treatment modulates gut microbial composition, especially of the SCFAs-producing bacteria, activates the IGF1/PI3K/AKT signaling pathways, and exhibits hypoglycemic efficacy.
Collapse
Affiliation(s)
- Ting Xia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Chang-Shun Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Yan-Nan Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Zhen-Ye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Fei-Long Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China
| | - Li-Xia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China.
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou 510515, PR China.
| |
Collapse
|
23
|
Redondo MJ, Balasubramanyam A. Toward an Improved Classification of Type 2 Diabetes: Lessons From Research into the Heterogeneity of a Complex Disease. J Clin Endocrinol Metab 2021; 106:e4822-e4833. [PMID: 34291809 PMCID: PMC8787852 DOI: 10.1210/clinem/dgab545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Accumulating evidence indicates that type 2 diabetes (T2D) is phenotypically heterogeneous. Defining and classifying variant forms of T2D are priorities to better understand its pathophysiology and usher clinical practice into an era of "precision diabetes." EVIDENCE ACQUISITION AND METHODS We reviewed literature related to heterogeneity of T2D over the past 5 decades and identified a range of phenotypic variants of T2D. Their descriptions expose inadequacies in current classification systems. We attempt to link phenotypically diverse forms to pathophysiology, explore investigative methods that have characterized "atypical" forms of T2D on an etiological basis, and review conceptual frameworks for an improved taxonomy. Finally, we propose future directions to achieve the goal of an etiological classification of T2D. EVIDENCE SYNTHESIS Differences among ethnic and racial groups were early observations of phenotypic heterogeneity. Investigations that uncover complex interactions of pathophysiologic pathways leading to T2D are supported by epidemiological and clinical differences between the sexes and between adult and youth-onset T2D. Approaches to an etiological classification are illustrated by investigations of atypical forms of T2D, such as monogenic diabetes and syndromes of ketosis-prone diabetes. Conceptual frameworks that accommodate heterogeneity in T2D include an overlap between known diabetes types, a "palette" model integrated with a "threshold hypothesis," and a spectrum model of atypical diabetes. CONCLUSION The heterogeneity of T2D demands an improved, etiological classification scheme. Excellent phenotypic descriptions of emerging syndromes in different populations, continued clinical and molecular investigations of atypical forms of diabetes, and useful conceptual models can be utilized to achieve this important goal.
Collapse
Affiliation(s)
- Maria J Redondo
- Section of Diabetes and Endocrinology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030, USA
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
24
|
Pyrroloquinoline-Quinone Is More Than an Antioxidant: A Vitamin-like Accessory Factor Important in Health and Disease Prevention. Biomolecules 2021; 11:biom11101441. [PMID: 34680074 PMCID: PMC8533503 DOI: 10.3390/biom11101441] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.
Collapse
|
25
|
Acharya KD, Noh HL, Graham ME, Suk S, Friedline RH, Gomez CC, Parakoyi AER, Chen J, Kim JK, Tetel MJ. Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Metabolites 2021; 11:metabo11080499. [PMID: 34436440 PMCID: PMC8398128 DOI: 10.3390/metabo11080499] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 01/14/2023] Open
Abstract
A decrease in ovarian estrogens in postmenopausal women increases the risk of weight gain, cardiovascular disease, type 2 diabetes, and chronic inflammation. While it is known that gut microbiota regulates energy homeostasis, it is unclear if gut microbiota is associated with estradiol regulation of metabolism. In this study, we tested if estradiol-mediated protection from high-fat diet (HFD)-induced obesity and metabolic changes are associated with longitudinal alterations in gut microbiota in female mice. Ovariectomized adult mice with vehicle or estradiol (E2) implants were fed chow for two weeks and HFD for four weeks. As reported previously, E2 increased energy expenditure, physical activity, insulin sensitivity, and whole-body glucose turnover. Interestingly, E2 decreased the tight junction protein occludin, suggesting E2 affects gut epithelial integrity. Moreover, E2 increased Akkermansia and decreased Erysipleotrichaceae and Streptococcaceae. Furthermore, Coprobacillus and Lactococcus were positively correlated, while Akkermansia was negatively correlated, with body weight and fat mass. These results suggest that changes in gut epithelial barrier and specific gut microbiota contribute to E2-mediated protection against diet-induced obesity and metabolic dysregulation. These findings provide support for the gut microbiota as a therapeutic target for treating estrogen-dependent metabolic disorders in women.
Collapse
Affiliation(s)
- Kalpana D. Acharya
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Hye L. Noh
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Madeline E. Graham
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Sujin Suk
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Randall H. Friedline
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Cesiah C. Gomez
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Abigail E. R. Parakoyi
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
| | - Jun Chen
- Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jason K. Kim
- Program in Molecular Medicine, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (H.L.N.); (S.S.); (R.H.F.); (J.K.K.)
| | - Marc J. Tetel
- Neuroscience Department, Wellesley College, Wellesley, MA 02481, USA; (K.D.A.); (M.E.G.); (C.C.G.); (A.E.R.P.)
- Correspondence:
| |
Collapse
|
26
|
Le Bastard Q, Berthelot L, Soulillou JP, Montassier E. Impact of non-antibiotic drugs on the human intestinal microbiome. Expert Rev Mol Diagn 2021; 21:911-924. [PMID: 34225544 DOI: 10.1080/14737159.2021.1952075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The gut microbiota is composed of trillions of microbial cells and viruses that interact with hosts. The composition of the gut microbiota is influenced by several factors including age, diet, diseases, or medications. The impact of drugs on the microbiota is not limited to antibiotics and many non-antibiotic molecules significantly alter the composition of the intestinal microbiota. AREAS COVERED This review focuses on the impact of four of the most widely prescribed non-antibiotic drugs in the world: Proton-pump inhibitors, metformin, statins, and non-steroidal anti-inflammatory. We conducted a systematic review by searching online databases including Medline, Web of science, and Scopus for indexed articles published in English until February 2021. We included studies assessing the intestinal microbiome alterations associated with proton pump inhibitors (PPIs), metformin, statins, and nonsteroidal anti-inflammatory drugs (NSAIDs). Only studies using culture-independent molecular techniques were included. EXPERT OPINION The taxonomical signature associated with non-antibiotic drugs are not yet fully described, especially in the field of metabolomic. The identification of taxonomic profiles associated a specific molecule provides information on its mechanism of action through interaction with the intestinal microbiota. Many side effects could be related to the dysbiosis induced by these molecules.
Collapse
Affiliation(s)
- Quentin Le Bastard
- Microbiota Hosts Antibiotics and Bacterial Resistances (Mihar), Université De Nantes, Nantes, France.,Service Des Urgences, CHU De Nantes, Nantes, France
| | - Laureline Berthelot
- Centre De Recherche En Transplantation Et Immunologie UMR 1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN), CHU De Nantes, Nantes, France
| | - Jean-Paul Soulillou
- Centre De Recherche En Transplantation Et Immunologie UMR 1064, INSERM, Université De Nantes, Nantes, France.,Institut De Transplantation Urologie Néphrologie (ITUN), CHU De Nantes, Nantes, France
| | - Emmanuel Montassier
- Microbiota Hosts Antibiotics and Bacterial Resistances (Mihar), Université De Nantes, Nantes, France.,Service Des Urgences, CHU De Nantes, Nantes, France
| |
Collapse
|
27
|
Uchida A, Yasuma T, Takeshita A, Toda M, Okano Y, Nishihama K, D'Alessandro-Gabazza CN, Fridman D'Alessandro V, Inoue C, Takagi T, Mukaiyama H, Takagi N, Shimizu K, Yano Y, Gabazza EC. Oral Limonite Supplement Ameliorates Glucose Intolerance in Diabetic and Obese Mice. J Inflamm Res 2021; 14:3089-3105. [PMID: 34276223 PMCID: PMC8277451 DOI: 10.2147/jir.s320451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction Diabetes mellitus is a serious threat to public health worldwide. It causes a substantial economic burden, mental and physical disabilities, poor quality of life, and high mortality. Limonite is formed when iron-rich materials from the underground emerge and oxidized on the ground surface. It is currently used to purify contaminated water, absorption of irritant gases, and improve livestock breeding. Limonite can change the composition of environmental microbial communities. In the present study, we evaluated whether limonite can ameliorate glucose metabolism abnormalities by remodeling the gut microbiome. Methods The investigation was performed using mouse models of streptozotocin-induced diabetes mellitus and high-calorie diet-induced metabolic syndrome. Results Oral limonite supplement was associated with significant body weight recovery, reduced glycemia with improved insulin secretion, increased number of regulatory T cells, and abundant beneficial gut microbial populations in mice with diabetes mellitus compared to control. Similarly, mice with obesity fed with limonite supplements had significantly reduced body weight, insulin resistance, steatohepatitis, and systemic inflammatory response with significant gut microbiome remodeling. Conclusion This study demonstrates that limonite supplement ameliorates abnormal glucose metabolism in diabetes mellitus and obesity. Gut microbiome remodeling, inhibition of inflammatory cytokines, and the host immune response regulation may explain the limonite’s beneficial activity under pathological conditions in vivo.
Collapse
Affiliation(s)
- Akihiro Uchida
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Taro Yasuma
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Atsuro Takeshita
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaaki Toda
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuko Okano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan.,Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | - Chisa Inoue
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | - Yutaka Yano
- Department of Diabetes and Endocrinology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| | - Esteban C Gabazza
- Department of Immunology, Mie University Faculty and Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
28
|
Mehmood N, Low L, Wallace GR. Behçet's Disease-Do Microbiomes and Genetics Collaborate in Pathogenesis? Front Immunol 2021; 12:648341. [PMID: 34093536 PMCID: PMC8176108 DOI: 10.3389/fimmu.2021.648341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Behçet’s disease (BD) is a multisystem autoinflammatory condition characterized by mucosal ulceration, breakdown of immune privilege sites and vasculitis. A genetic basis for BD has been described in genome-wide and validation studies. Similarly, dysbiosis of oral and gut microbiomes have been associated with BD. This review will describe links between genetic polymorphisms in genes encoding molecules involved in gut biology and changes seen in microbiome studies. A potential decrease in bacterial species producing short chain fatty acids linked to mutations in genes involved in their production suggests a potential therapy for BD.
Collapse
Affiliation(s)
- Nafeesa Mehmood
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Liying Low
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Graham R Wallace
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|