1
|
Pan Q, Ma D, Xiao Y, Ji K, Wu J. Transcriptional regulation of DLGAP5 by AR suppresses p53 signaling and inhibits CD8 +T cell infiltration in triple-negative breast cancer. Transl Oncol 2024; 49:102081. [PMID: 39182361 PMCID: PMC11387711 DOI: 10.1016/j.tranon.2024.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a challenging subtype with unclear biological mechanisms. Recently, the transcription factor androgen receptor (AR) and its regulation of the DLGAP5 gene have gained attention in TNBC pathogenesis. In this study, we found a positive correlation between high AR expression and TNBC cell proliferation and growth. Furthermore, we confirmed DLGAP5 as a critical downstream regulator of AR with high expression in TNBC tissues. Knockdown of DLGAP5 significantly inhibited TNBC cell proliferation, migration, and invasion. AR was observed to directly bind to the DLGAP5 promoter, enhancing its transcriptional activity and suppressing the activation of the p53 signaling pathway. In vivo experiments further validated that downregulation of AR or DLGAP5 inhibited tumor growth and enhanced CD8+T cell infiltration. This study highlights the crucial roles of AR and DLGAP5 in TNBC growth and immune cell infiltration. Taken together, AR inhibits the p53 signaling pathway by promoting DLGAP5 expression, thereby impacting CD8+T cell infiltration in TNBC.
Collapse
Affiliation(s)
- Qing Pan
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Dachang Ma
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Yi Xiao
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Kun Ji
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China
| | - Jun Wu
- Department of Galactophore, The First Hospital of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Kozłowska-Tomczyk K, Borski N, Głód P, Gogola-Mruk J, Ptak A. PGRMC1 and PAQR4 are promising molecular targets for a rare subtype of ovarian cancer. Open Life Sci 2024; 19:20220982. [PMID: 39464509 PMCID: PMC11512499 DOI: 10.1515/biol-2022-0982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
The heterogeneity of ovarian cancer (OC) has made developing effective treatments difficult. Nowadays, hormone therapy plays a growing role in the treatment of OC; however, hormone modulators have had only limited success so far. To provide a more rigorous foundation for hormonal therapy for different OC subtypes, the current study used a series of bioinformatics approaches to analyse the expression profiles of genes encoding membrane progesterone (PGRMC1, progestins and the adipoQ receptor [PAQR] family), and androgen (zinc transporter member 9 [ZIP9], OXER1) receptors. Our work investigated also their prognostic value in the context of OC. We found differences in expression of ZIP9 and OXER1 between different OC subtypes, as well as between patient tumour and normal tissues. Expression of mRNA encoding PAQR7 and PAQR8 in a panel of OC cell lines was below the qPCR detection limit and was downregulated in tumour tissue samples, whereas high expression of PGRMC1 and PAQR4 mRNA was observed in rare subtypes of OC cell lines. In addition, chemical inhibition of PGRMC1 reduced the viability of rare OCs represented by COV434 cells. In conclusion, PGRMC1 and PAQR4 are promising targets for anticancer therapy, particularly for rare subtypes of OC. These findings may reflect differences in the observed responses of various OC subtypes to hormone therapy.
Collapse
Affiliation(s)
- Kamila Kozłowska-Tomczyk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Norbert Borski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paulina Głód
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Faculty of Biology, Institute of Zoology and Biomedical Sciences, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Ptak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
3
|
Joëls M, Karst H, Tasker JG. The emerging role of rapid corticosteroid actions on excitatory and inhibitory synaptic signaling in the brain. Front Neuroendocrinol 2024; 74:101146. [PMID: 39004314 DOI: 10.1016/j.yfrne.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Over the past two decades, there has been increasing evidence for the importance of rapid-onset actions of corticosteroid hormones in the brain. Here, we highlight the distinct rapid corticosteroid actions that regulate excitatory and inhibitory synaptic transmission in the hypothalamus, the hippocampus, basolateral amygdala, and prefrontal cortex. The receptors that mediate rapid corticosteroid actions are located at or close to the plasma membrane, though many of the receptor characteristics remain unresolved. Rapid-onset corticosteroid effects play a role in fast neuroendocrine feedback as well as in higher brain functions, including increased aggression and anxiety, and impaired memory retrieval. The rapid non-genomic corticosteroid actions precede and complement slow-onset, long-lasting transcriptional actions of the steroids. Both rapid and slow corticosteroid actions appear to be indispensable to adapt to a continuously changing environment, and their imbalance can increase an individual's susceptibility to psychopathology.
Collapse
Affiliation(s)
- Marian Joëls
- University Medical Center Groningen, University of Groningen, the Netherlands; University Medical Center Utrecht, Utrecht University, the Netherlands.
| | - Henk Karst
- University Medical Center Utrecht, Utrecht University, the Netherlands; SILS-CNS. University of Amsterdam, the Netherlands.
| | - Jeffrey G Tasker
- Department of Cell and Molecular Biology and Tulane Brain Institute, Tulane University, and Southeast Louisiana Veterans Affairs Healthcare System, New Orleans, USA.
| |
Collapse
|
4
|
Knigge T. Antidepressants - The new endocrine disruptors? The case of crustaceans. Mol Cell Endocrinol 2024; 583:112155. [PMID: 38185462 DOI: 10.1016/j.mce.2024.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/09/2024]
Abstract
Antidepressants are high-volume pharmaceuticals that accumulate to concentrations in the μg·L-1 range in surface waters. The release of peptide hormones via neurosecretory cells appears as a natural target for antidepressants. Here I review research that suggests that antidepressants indeed disrupt endocrine signalling in crustaceans, by acting on the synthesis and release of neurohormones, such as crustacean hyperglycaemic hormone, moult inhibiting hormone and pigment dispersing hormone in decapods, as well as methyl farnesoate in Daphnids. Hence, antidepressants can affect hormonal regulation of physiological functions: increase in energy metabolism and activity, lowered ecdysteroid levels, potentially disrupting moult and somatic growth, reducing colour change capacity and compromising camouflage, as well as induction of male sex determination. Several studies further suggest effects of antidepressants on crustacean reproduction, but the hormonal regulation of these effects remains elusive. All things considered, a body of evidence strongly suggests that antidepressants are endocrine disrupting compounds in crustaceans.
Collapse
Affiliation(s)
- Thomas Knigge
- Normandie Univ, Unilehavre, FR CNRS 3730 Sciences Appliquées à L'Environnement, UMR-I02, Environmental Stress and Biomonitoring of Aquatic Environments, University of Le Havre Normandy, France.
| |
Collapse
|
5
|
Chiang HH, Ong CT, Chang CY, Wu KL, Wu YY, Lai JC, Shen TY, Hung JY, Lee HC, Tsai YM, Hsu YL. Downregulated antisense lncRNA ENTPD3-AS1 contributes to the development of lung adenocarcinoma. Am J Cancer Res 2024; 14:854-868. [PMID: 38455397 PMCID: PMC10915316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/02/2023] [Indexed: 03/09/2024] Open
Abstract
The poor outcome of patients with lung adenocarcinoma (LUAD) highlights the importance to identify novel effective prognostic markers and therapeutic targets. Long noncoding RNAs (lncRNAs) have generally been considered to serve important roles in tumorigenesis and the development of various types of cancer, including LUAD. Here, we aimed to investigate the role of ENTPD3-AS1 (ENTPD3 Antisense RNA 1) in LUAD and to explore its potential mechanisms by performing comprehensive bioinformatic analyses. The regulatory effect of ENTPD3-AS1 on the expression of NR3C1 was validated by siRNA-based silencing. The effect of miR-421 on the modulation of NR3C1 was determined by miRNA mimics and inhibitors transfection. ENTPD3-AS1 was expressed at lower levels in tumor parts and negatively correlated with unfavorable prognosis in LUAD patients. It exerted functions as a tumor suppressor gene by competitively binding to oncomir, miR-421, thereby attenuating NR3C1 expression. Transfection of lung cancer A549 cells with miR-421 mimics decreased the expression of NR3C1. Transfection of lung cancer A549 cells with miR-421 inhibitors increased the expression of NR3C1 with lower cellular functions as proliferation and migration via epithelial-mesenchymal transition. In addition, inhibition of ENTPD3-AS1 by siRNA transfection decreased the levels of NR3C1, supporting the ENTPD3-AS1/miR-421/NR3C1 cascade. Moreover, the bioinformatic analysis also showed that ENTPD3-AS1 could interact with the RNA-binding proteins (RBPs), CELF2 and QKI, consequently regulating RNA expression and processing. Taken together, we identified that ENTPD3-AS1 and its indirect target NR3C1 can act as novel biomarkers for determining the prognosis of patients with LUAD, and further study is required.
Collapse
Affiliation(s)
- Hung-Hsing Chiang
- Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Chai-Tung Ong
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Chao-Yuan Chang
- Department of Anatomy, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Kuan-Li Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Yu-Yuan Wu
- School of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Jia-Chen Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Tzu-Yen Shen
- School of Medicine, College of Medicine, Taipei Medical UniversityTaipei 110, Taiwan
| | - Jen-Yu Hung
- School of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Internal Medicine, Kaoshiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Hsiao-Chen Lee
- Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Ying-Ming Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| |
Collapse
|
6
|
Zhang Y, Chen M, Chen H, Mi S, Wang C, Zuo H, Song L, Du J, Cui H, Li S. Testosterone reduces hippocampal synaptic damage in an androgen receptor-independent manner. J Endocrinol 2024; 260:e230114. [PMID: 37991884 PMCID: PMC10762536 DOI: 10.1530/joe-23-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Aging-related reduction in androgen levels may be a possible risk factor for neurodegenerative diseases and contribute to cognitive impairment. Androgens may affect synaptic function and cognition in an androgen receptor (AR)-independent manner; however, the mechanisms connecting theses effects are unknown. Therefore, we used testicular feminization mutation (Tfm) male mice, a model with AR mutation, to test the effects of testosterone on synaptic function and cognition. Our results showed that testosterone ameliorated spatial memory deficit and neuronal damage, and increased dendritic spines density and postsynaptic density protein 95 (PSD95) and glutamate receptor 1 (GluA1) expression in the hippocampus of Tfm male mice. And these effects of testosterone were not inhibited by anastrozole, which suppressed conversion of testosterone to estradiol. Mechanistically, testosterone activated the extracellular signal-related kinase 1/2 (Erk1/2) and cyclic adenosine monophosphate response element-binding protein (CREB) in the hippocampus of Tfm male mice. Meanwhile, Erk1/2 inhibitor SCH772984 blocked the upregulation of phospho-CREB, PSD95, and GluA1 induced by testosterone in HT22 cells pretreated with flutamide, an androgen antagonist. Collectively, our data indicate that testosterone may ameliorate hippocampal synaptic damage and spatial memory deficit by activating the Erk1/2-CREB signaling pathway in an AR-independent manner.
Collapse
Affiliation(s)
- Yizhou Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meiqin Chen
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huan Chen
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shixiong Mi
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chang Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongchun Zuo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Leigang Song
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Juan Du
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sha Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Neuroscience Research Center, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Kotula-Balak M, Lonc G, Zarzycka M, Tomiyasu J, Knapczyk-Stwora K, Płachno BJ, Korzekwa AJ, Kaczmarczyk J, Krakowska I. The uterusmasculinus of the Eurasian beaver (Castor fever L.) - The appraisal of fast hormone regulation by membrane androgen and estrogen receptors involvement. Gen Comp Endocrinol 2024; 345:114389. [PMID: 37797800 DOI: 10.1016/j.ygcen.2023.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The phenomenon of remaining paramesonephric ducts (uterus masculinus) in males of some animal species concerning its role is still an unresolved issue. Now it is well-recognized that sex hormonal regulation of reproductive physiology involves also fast nongenomic control of cellular processes through noncanonical signaling. Herein, in the uterus masculinus of Eurasian beaver membrane androgen receptor (metal ion transporter Zrt- and Irt-like protein 9; ZIP9) and membrane estrogen receptor (G protein-coupled estrogen receptor; GPER) were studied. Scanning electron microscopy together with anatomical analysis revealed that Eurasian male beavers possess one double uterus (uterus duplex). Two odd parts open into the vagina but do not form a common lumen. The length of the horns is the most differential feature of this organ in studied animals. Uterus masculinus is not a tightly closed tubular structure. Histological analysis showed an analogy to the female uterus structure however no glands but gland-like structures were observed. The presence and abundant localization of ZIP9 and GPER proteins in cells of uterus masculinus was confirmed by immunohistochemistry while their expression was measured by western blotting. GPER expression in remnants was lower (P < 0.001) than those in the female uterus. Parallelly, the concentration of progesterone and estradiol but not testosterone was lower (P < 0.05 and P < 0.01, respectively) in comparison to the female uterus. Our study, for the first time, reports the involvement of fast hormonal regulation in the uterus masculinus of Eurasian beavers reflecting the participation of this organ in the creation local hormonal environment. Moreover, the uterus masculinus seems to be a useful research model for understanding and resolving urgent biological problems such as gender identities and having children by women with a lack of uterus or anatomical barriers on this level.
Collapse
Affiliation(s)
- M Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - G Lonc
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - M Zarzycka
- Department of Medical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - J Tomiyasu
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland; Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - K Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - A J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - J Kaczmarczyk
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - I Krakowska
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
8
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
9
|
Yan L, Rui C, Zhuang B, Liu X, Luan T, Jiang L, Dong Z, Wang Q, Wu A, Li P, Wang X, Zeng X. 17β-Estradiol Mediates Staphylococcus aureus Adhesion in Vaginal Epithelial Cells via Estrogen Receptor α-Associated Signaling Pathway. Curr Microbiol 2023; 80:391. [PMID: 37884702 DOI: 10.1007/s00284-023-03488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Staphylococcus aureus, a major opportunistic pathogen in aerobic vaginitis (AV), can potentially invade the host and occasionally cause infections. Estrogen is associated with an altered immune response of vaginal epithelial cells and prevention of certain vaginal infectious diseases. However, the molecular mechanisms involving estrogen and S. aureus adhesion to vaginal epithelial cells remain unclear. Thus, here, VK2/E6E7 vaginal epithelial cells were infected with S. aureus, and the role of the estrogen receptor α-associated signaling pathway (ERα/FAK/Src/iNOS axis) in S. aureus adhesion was evaluated. The estrogen-associated phosphorylation status of ERα, FAK, and Src and the protein level of iNOS were assessed by western blotting. We used a specific ERα inhibitor to validate the involvement of the ERα-associated signaling pathway. The results showed that with exposure to 1 nM estrogen for 24 h, transient ERα-associated pathway activation was observed, and the protein expression upregulation was accompanied by a dose-dependent increase in 17-β-estradiol (E2) content and increased S. aureus adherence to vaginal epithelial cells. Estrogen-induced activation of the ERα/FAK/Src/iNOS axis was notably inhibited by the specific ERα inhibitor (ICI 182780). Simultaneously, a significant decrease in the number of adherent S. aureus was observed. However, this inhibitory effect diminished after inhibitor treatment for 24 h. Our findings suggested that the ERα-associated signaling pathway might be involved in S. aureus adherence to vaginal epithelial cells, which appeared to be linked to enhanced cell adhesion leading to AV.
Collapse
Affiliation(s)
- Lina Yan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China.
- Department of Obstetrics and Gynecology, Changzhou Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, People's Republic of China.
| | - Can Rui
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Bin Zhuang
- Department of Pediatrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xia Liu
- Department of Obstetrics and Gynecology, Jiangsu Taizhou People's Hospital, Taizhou, 225300, People's Republic of China
| | - Ting Luan
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Lisha Jiang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Zhiyong Dong
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Aiwen Wu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Ping Li
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xinyan Wang
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| | - Xin Zeng
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, People's Republic of China
| |
Collapse
|
10
|
Abstract
It took several hundred million years of evolution, in order to develop the endocrine vitamin D signaling system, which is formed by a nuclear receptor, the transcription factor VDR (vitamin D receptor), its ligand, the vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and several metabolizing enzymes and transport proteins. Even within the nuclear receptor superfamily the affinity of VDR for 1,25(OH)2D3 is outstandingly high (KD = 0.1 nM). The activation of VDR by 1,25(OH)2D3 is the core mechanism of genomic signaling of vitamin D3, which results in the modulation of the epigenome at thousands of promoter and enhancer regions as well as finally in the activation or repression of hundreds of target gene transcription. In addition, rapid non-genomic actions of vitamin D are described, which are mechanistically far less understood. The main function of vitamin D is to keep the human body in homeostasis. This implies the control of calcium levels, which is essential for bone mineralization, as well as for pushing of innate immunity to react sufficiently strong to microbe infection and preventing overreactions of adaptive immunity, i.e., not to cause autoimmune diseases. This review will discuss whether genomic signaling is sufficient for explaining all physiological functions of vitamin D3.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, PL-10748 Olsztyn, Poland; School of Medicine, Institute of Biomedicine, University of Eastern Finland, FI-70211 Kuopio, Finland.
| |
Collapse
|
11
|
Hart DA. Regulation of Bone by Mechanical Loading, Sex Hormones, and Nerves: Integration of Such Regulatory Complexity and Implications for Bone Loss during Space Flight and Post-Menopausal Osteoporosis. Biomolecules 2023; 13:1136. [PMID: 37509172 PMCID: PMC10377148 DOI: 10.3390/biom13071136] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
During evolution, the development of bone was critical for many species to thrive and function in the boundary conditions of Earth. Furthermore, bone also became a storehouse for calcium that could be mobilized for reproductive purposes in mammals and other species. The critical nature of bone for both function and reproductive needs during evolution in the context of the boundary conditions of Earth has led to complex regulatory mechanisms that require integration for optimization of this tissue across the lifespan. Three important regulatory variables include mechanical loading, sex hormones, and innervation/neuroregulation. The importance of mechanical loading has been the target of much research as bone appears to subscribe to the "use it or lose it" paradigm. Furthermore, because of the importance of post-menopausal osteoporosis in the risk for fractures and loss of function, this aspect of bone regulation has also focused research on sex differences in bone regulation. The advent of space flight and exposure to microgravity has also led to renewed interest in this unique environment, which could not have been anticipated by evolution, to expose new insights into bone regulation. Finally, a body of evidence has also emerged indicating that the neuroregulation of bone is also central to maintaining function. However, there is still more that is needed to understand regarding how such variables are integrated across the lifespan to maintain function, particularly in a species that walks upright. This review will attempt to discuss these regulatory elements for bone integrity and propose how further study is needed to delineate the details to better understand how to improve treatments for those at risk for loss of bone integrity, such as in the post-menopausal state or during prolonged space flight.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone & Joint Research, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
12
|
Čonkaš J, Sabol M, Ozretić P. 'Toxic Masculinity': What Is Known about the Role of Androgen Receptors in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:ijms24043766. [PMID: 36835177 PMCID: PMC9965076 DOI: 10.3390/ijms24043766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), the most prevalent cancer in the head and neck region, develops from the mucosal epithelium of the upper aerodigestive tract. Its development directly correlates with alcohol and/or tobacco consumption and infection with human papillomavirus. Interestingly, the relative risk for HNSCC is up to five times higher in males, so it is considered that the endocrine microenvironment is another risk factor. A gender-specific risk for HNSCC suggests either the existence of specific risk factors that affect only males or that females have defensive hormonal and metabolic features. In this review, we summarized the current knowledge about the role of both nuclear and membrane androgen receptors (nAR and mARs, respectively) in HNSCC. As expected, the significance of nAR is much better known; it was shown that increased nAR expression was observed in HNSCC, while treatment with dihydrotestosterone increased proliferation, migration, and invasion of HNSCC cells. For only three out of five currently known mARs-TRPM8, CaV1.2, and OXER1-it was shown either their increased expression in various types of HNSCC or that their increased activity enhanced the migration and invasion of HNSCC cells. The primary treatments for HNSCC are surgery and radiotherapy, but targeted immunotherapies are on the rise. On the other hand, given the evidence of elevated nAR expression in HNSCC, this receptor represents a potential target for antiandrogen therapy. Moreover, there is still plenty of room for further examination of mARs' role in HNSCC diagnosis, prognosis, and treatment.
Collapse
|
13
|
Amendoeira AF, Luz A, Valente R, Roma-Rodrigues C, Ali H, van Lier JE, Marques F, Baptista PV, Fernandes AR. Cell Uptake of Steroid-BODIPY Conjugates and Their Internalization Mechanisms: Cancer Theranostic Dyes. Int J Mol Sci 2023; 24:3600. [PMID: 36835012 PMCID: PMC9963437 DOI: 10.3390/ijms24043600] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11β-OMe-estradiol-BODIPY 2 and 7α-Me-19-nortestosterone-BODIPY 4 towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates. The internalization of the conjugates was shown to be an energy-dependent process that is likely mediated by clathrin- and caveolae-endocytosis. Studies using 2D co-cultures of cancer cells and normal fibroblasts showed that the conjugates are more selective towards cancer cells. Cell viability assays showed that the conjugates are non-toxic for cancer and/or normal cells. Visible light irradiation of cells incubated with estradiol-BODIPYs 1 and 2 and 7α-Me-19-nortestosterone-BODIPY 4 induced cell death, suggesting their potential for use as PDT agents.
Collapse
Affiliation(s)
- Ana F. Amendoeira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Ruben Valente
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Hasrat Ali
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Johan E. van Lier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| |
Collapse
|
14
|
Obrador E, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano P, Estrela JM. Survival Mechanisms of Metastatic Melanoma Cells: The Link between Glucocorticoids and the Nrf2-Dependent Antioxidant Defense System. Cells 2023; 12:cells12030418. [PMID: 36766760 PMCID: PMC9913432 DOI: 10.3390/cells12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Circulating glucocorticoids increase during stress. Chronic stress, characterized by a sustained increase in serum levels of cortisol, has been associated in different cases with an increased risk of cancer and a worse prognosis. Glucocorticoids can promote gluconeogenesis, mobilization of amino acids, fat breakdown, and impair the body's immune response. Therefore, conditions that may favor cancer growth and the acquisition of radio- and chemo-resistance. We found that glucocorticoid receptor knockdown diminishes the antioxidant protection of murine B16-F10 (highly metastatic) melanoma cells, thus leading to a drastic decrease in their survival during interaction with the vascular endothelium. The BRAFV600E mutation is the most commonly observed in melanoma patients. Recent studies revealed that VMF/PLX40-32 (vemurafenib, a selective inhibitor of mutant BRAFV600E) increases mitochondrial respiration and reactive oxygen species (ROS) production in BRAFV600E human melanoma cell lines. Early-stage cancer cells lacking Nrf2 generate high ROS levels and exhibit a senescence-like growth arrest. Thus, it is likely that a glucocorticoid receptor antagonist (RU486) could increase the efficacy of BRAF-related therapy in BRAFV600E-mutated melanoma. In fact, during early progression of skin melanoma metastases, RU486 and VMF induced metastases regression. However, treatment at an advanced stage of growth found resistance to RU486 and VMF. This resistance was mechanistically linked to overexpression of proteins of the Bcl-2 family (Bcl-xL and Mcl-1 in different human models). Moreover, melanoma resistance was decreased if AKT and NF-κB signaling pathways were blocked. These findings highlight mechanisms by which metastatic melanoma cells adapt to survive and could help in the development of most effective therapeutic strategies.
Collapse
Affiliation(s)
- Elena Obrador
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| | - Rosario Salvador-Palmer
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | - María Oriol-Caballo
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
| | | | - José M. Estrela
- Cell Pathophysiology Unit (UFC), Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech S.L., 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence: (E.O.); (J.M.E.); Tel.: +34-963864646 (J.M.E.)
| |
Collapse
|
15
|
Sayaf K, Gabbia D, Russo FP, De Martin S. The Role of Sex in Acute and Chronic Liver Damage. Int J Mol Sci 2022; 23:ijms231810654. [PMID: 36142565 PMCID: PMC9505609 DOI: 10.3390/ijms231810654] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Acute and chronic hepatic damages are caused by xenobiotics or different diseases affecting the liver, characterized by different etiologies and pathological features. It has been demonstrated extensively that liver damage progresses differently in men and women, and some chronic liver diseases show a more favorable prognosis in women than in men. This review aims to update the most recent advances in the comprehension of the molecular basis of the sex difference observed in both acute and chronic liver damage. With this purpose, we report experimental studies on animal models and clinical observations investigating both acute liver failure, e.g., drug-induced liver injury (DILI), and chronic liver diseases, e.g., viral hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), autoimmune liver diseases, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35131 Padova, Italy
- Gastroenterology and Multivisceral Transplant Units, Azienda Ospedale—Università di Padova, 35131 Padova, Italy
- Correspondence:
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
16
|
Northey JJ, Weaver VM. Mechanosensitive Steroid Hormone Signaling and Cell Fate. Endocrinology 2022; 163:bqac085. [PMID: 35678467 PMCID: PMC9237634 DOI: 10.1210/endocr/bqac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/19/2022]
Abstract
Mechanical forces collaborate across length scales to coordinate cell fate during development and the dynamic homeostasis of adult tissues. Similarly, steroid hormones interact with their nuclear and nonnuclear receptors to regulate diverse physiological processes necessary for the appropriate development and function of complex multicellular tissues. Aberrant steroid hormone action is associated with tumors originating in hormone-sensitive tissues and its disruption forms the basis of several therapeutic interventions. Prolonged perturbations to mechanical forces may further foster tumor initiation and the evolution of aggressive metastatic disease. Recent evidence suggests that steroid hormone and mechanical signaling intersect to direct cell fate during development and tumor progression. Potential mechanosensitive steroid hormone signaling pathways along with their molecular effectors will be discussed in this context.
Collapse
Affiliation(s)
- Jason J Northey
- Department of Surgery, University of California, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143,USA
| | - Valerie M Weaver
- Department of Surgery, University of California, San Francisco, CA 94143, USA
- Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA 94143,USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143,USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143,USA
- Department of Radiation Oncology, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143,USA
| |
Collapse
|
17
|
Kelly AM. A consideration of brain networks modulating social behavior. Horm Behav 2022; 141:105138. [PMID: 35219166 DOI: 10.1016/j.yhbeh.2022.105138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/04/2022]
Abstract
A primary goal of the field of behavioral neuroendocrinology is to understand how the brain modulates complex behavior. Over the last 20 years we have proposed various brain networks to explain behavioral regulation, however, the parameters by which these networks are identified are often ill-defined and reflect our personal scientific biases based on our area of expertise. In this perspective article, I question our characterization of brain networks underlying behavior and their utility. Using the Social Behavior Network as a primary example, I outline issues with brain networks commonly discussed in the field of behavioral neuroendocrinology, argue that we reconsider how we identify brain networks underlying behavior, and urge the future use of analytical tools developed by the field of Network Neuroscience. With modern statistical/mathematical tools and state of the art technology for brain imaging, we can strive to minimize our bias and generate brain networks that may more accurately reflect how the brain produces behavior.
Collapse
Affiliation(s)
- Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| |
Collapse
|
18
|
Paul SN, Wingenfeld K, Otte C, Meijer OC. Brain Mineralocorticoid receptor in health and disease: from molecular signaling to cognitive and emotional function. Br J Pharmacol 2022; 179:3205-3219. [PMID: 35297038 PMCID: PMC9323486 DOI: 10.1111/bph.15835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/27/2022] Open
Abstract
Brain mineralocorticoid receptors (MR) mediate effects of glucocorticoid hormones in stress adaptation, as well as the effects of aldosterone itself in relation to salt homeostasis. Brain stem MRs respond to aldosterone, whereas forebrain MRs mediate rapid and delayed glucocorticoid effects in conjunction with the glucocorticoid receptor (GR). MR‐mediated effects depend on age, gender, genetic variations, and environmental influences. Disturbed MR activity through chronic stress, certain (endocrine) diseases or during glucocorticoid therapy can cause deleterious effects on affective state, cognitive and behavioural function in susceptible individuals. Considering the important role MR plays in cognition and emotional function in health and disease, MR modulation by pharmacological intervention could relieve stress‐ and endocrine‐related symptoms. Here, we discuss recent pharmacological interventions in the clinic and genetic developments in the molecular underpinnings of MR signalling. Further understanding of MR‐dependent pathways may help to improve psychiatric symptoms in a diversity of settings.
Collapse
Affiliation(s)
- Susana N Paul
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Katja Wingenfeld
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany
| | - Christian Otte
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin Campus Benjamin Franklin, Berlin, Germany.,NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Gangwar SK, Kumar A, Jose S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Nuclear receptors in oral cancer-emerging players in tumorigenesis. Cancer Lett 2022; 536:215666. [DOI: 10.1016/j.canlet.2022.215666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
20
|
Sheng JA, Tan SML, Hale TM, Handa RJ. Androgens and Their Role in Regulating Sex Differences in the Hypothalamic/Pituitary/Adrenal Axis Stress Response and Stress-Related Behaviors. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2022; 2:261-274. [PMID: 35024695 PMCID: PMC8744007 DOI: 10.1089/andro.2021.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
Androgens play a pivotal role during development. These gonadal hormones and their receptors exert organizational actions that shape brain morphology in regions controlling the stress regulatory systems in a male-specific manner. Specifically, androgens drive sex differences in the hypothalamic/pituitary/adrenal (HPA) axis and corresponding hypothalamic neuropeptides. While studies have examined the role of estradiol and its receptors in sex differences in the HPA axis and associated behaviors, the role of androgens remains far less studied. Androgens are generally thought to modulate the HPA axis through the activation of androgen receptors (ARs). They can also impact the HPA axis through reduction to estrogenic metabolites that can bind estrogen receptors in the brain and periphery. Such regulation of the HPA axis stress response by androgens can often result in sex-biased risk factors for stress-related disorders, such as anxiety and depression. This review focuses on the biosynthesis pathways and molecular actions of androgens and their nuclear receptors. The impact of androgens on hypothalamic neuropeptide systems (corticotropin-releasing hormone, arginine vasopressin, oxytocin, dopamine, and serotonin) that control the stress response and stress-related disorders is discussed. Finally, this review discusses potential therapeutics involving androgens (androgen replacement therapies, selective AR modulator therapies) and ongoing clinical trials.
Collapse
Affiliation(s)
- Julietta A Sheng
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah M L Tan
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Taben M Hale
- Department of Basic Medical Science, University of Arizona College of Medicine - Phoenix, Arizona, USA
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
21
|
Renteria M, Belkin O, Jang D, Aickareth J, Bhalli M, Zhang J. CmPn signaling networks in the tumorigenesis of breast cancer. Front Endocrinol (Lausanne) 2022; 13:1013892. [PMID: 36246881 PMCID: PMC9556883 DOI: 10.3389/fendo.2022.1013892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
|
22
|
Molecular Characterization of Membrane Steroid Receptors in Hormone-Sensitive Cancers. Cells 2021; 10:cells10112999. [PMID: 34831222 PMCID: PMC8616056 DOI: 10.3390/cells10112999] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones’ activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.
Collapse
|
23
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|