1
|
Kitawaki Y, Horie A, Ikeda A, Shitanaka S, Yanai A, Ohara T, Nakakita B, Sagae Y, Okunomiya A, Tani H, Mandai M. Intrauterine administration of peripheral blood mononuclear cells helps manage recurrent implantation failure by normalizing dysregulated gene expression including estrogen-responsive genes in mice. Cell Commun Signal 2024; 22:587. [PMID: 39639317 PMCID: PMC11619271 DOI: 10.1186/s12964-024-01904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Intrauterine peripheral blood mononuclear cell (PBMC) therapy for recurrent implantation failure (RIF) has been reported to improve embryo implantation by acting on the endometrium. However, the exact mode of action of PBMC on the endometrium of patients with RIF remains unclear. In addition, the differences in the therapeutic effects of PBMC therapy with and without human chorionic gonadotropin (hCG) are unknown. Therefore, in this study, we investigated the changes in the endometrium during the implantation phase induced by PBMC administration and the differences in the efficacy of this therapy with and without hCG using a mouse model of implantation failure (IF). METHODS IF model was established by the subcutaneous administration of low-dose RU486. Pregnant mice were randomly divided into five groups: control, IF, culture medium, PBMC, and PBMC-hCG (the latter three groups were IF model mice with intrauterine administration). The pregnancy rate and the number and size of implantation sites were recorded during early pregnancy (day 7.5). Uteri from the preimplantation phase (evening of day 3.5) were collected and analyzed using RNA-sequencing (RNA-seq). RESULTS The pregnancy rate, the number of implantation sites, and the number of normal-sized implantation sites were significantly decreased in the IF model and were improved in the medium, PBMC, and PBMC-hCG groups. RNA-seq data showed that PBMC treatment normalized the expression of the majority of dysregulated genes in the endometrium during the preimplantation phase in the IF model, especially the overexpression of estrogen-activated genes. In addition, PBMC treatment increased the expression of local glucocorticoid receptors and suppressed the expression of inflammation-related genes, whereas no significant changes in blood estradiol and glucocorticoid levels were observed. These changes were more pronounced in the PBMC-hCG group and were consistent with the pregnancy outcomes. CONCLUSIONS Intrauterine administration of PBMC before embryo implantation promoted embryo implantation in the IF mouse model, and hCG enhanced pregnancy outcomes. PBMC modulated steroid receptor expression and suppressed inflammation and excessive estrogen action.
Collapse
Affiliation(s)
- Yoshimi Kitawaki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan.
- Department of Gynecology and Obstetrics, Medical Research Institute Kitano Hospital, 2-4-20 Ohgimachi, Kita-Ku, Osaka, 530-8480, Japan.
| | - Asami Ikeda
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Shimpei Shitanaka
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Akihiro Yanai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Tsutomu Ohara
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Baku Nakakita
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Yusuke Sagae
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Asuka Okunomiya
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| | - Hirohiko Tani
- Department of Gynecology and Obstetrics, Shizuoka General Hospital, 4-27-1 Kita Ando Aoi-Ku, Shizuoka, 420-8527, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
| |
Collapse
|
2
|
Juriol L, Valeff N, Dibo M, Ventimiglia MS, Correale J, Jensen F. Human chorionic gonadotropin regulates cytokine production by lymphocytes from patients with multiple sclerosis. J Reprod Immunol 2024; 164:104280. [PMID: 38908336 DOI: 10.1016/j.jri.2024.104280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) that primarily affects young adults, predominantly females. This was partially attributed to sex differences in immunity, which are influenced by changes in sex hormones occurring during women's life, among other factors. Furthermore, MS patients experience significant improvement in their symptoms during pregnancy when levels of female sex-hormones significantly increase. This phenomenon was attributed to immune adaptations occurring during gestation which are regulated by paternal antigens and sex hormones. The human chorionic gonadotropin (hCG) was shown to have strong immunosuppressive abilities. We aimed to analyze here the capacity of the hCG to regulate pro- and anti-inflammatory cytokine production by PBMC from MS patients. PBMC isolated from 17 MS patients receiving IFNβ1a treatment were cultured with or without recombinant or urinary hCG. Cytokine production in the supernatants was assessed using a CBA array and cytokine production by lymphocytes and expression of co-stimulatory molecules in B-lymphocytes were evaluated by flow cytometry. hCG reduced the production of TNF by PBMC from MS patients while lowering the percentages of TNF producing T cells and diminishing the production of TNF by B cells. hCG significantly boosted the production of IL-10 by regulatory T cells and CD19high B cells from MS patients. Furthermore, hCG treatment lowered the percentages of CD80+CD86+ expressing B cells within PBMC from MS patients. Overall, our results described a novel and not yet explored mechanisms of action of hCG in the context of MS.
Collapse
Affiliation(s)
- Lorena Juriol
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - Natalín Valeff
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - Marcos Dibo
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - María Silvia Ventimiglia
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina
| | - Jorge Correale
- Fleni, 2325 Montañeses St., Ciudad Autónoma de Buenos Aires C1428AQK, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB CONICET-UBA), Graduate School of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junin St., Ciudad Autónoma de Buenos Aires C1113AAD, Argentina
| | - Federico Jensen
- Center for Pharmacological and Botanical Studies (CEFYBO-UBA-CONICET), Graduate School of Medicine, University of Buenos Aires, 2155 Paraguay St. 16th Floor, Ciudad Autónoma de Buenos Aires C1121ABG, Argentina; Centro Integrativo de Biología Y Química Aplicada, Universidad Bernardo O'Higgins, Santiago 8307993, Chile.
| |
Collapse
|
3
|
Mey M, Bhatta S, Suresh S, Labrador LM, Piontkivska H, Casadesus G. Therapeutic benefits of central LH receptor agonism in the APP/PS1 AD model involve trophic and immune regulation and are reproductive status dependent. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167165. [PMID: 38653355 DOI: 10.1016/j.bbadis.2024.167165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The mechanisms that underly reproductive hormone effects on cognition, neuronal plasticity, and AD risk, particularly in relation to gonadotropin LH receptor (LHCGR) signaling, remain poorly understood. To address this gap in knowledge and clarify the impact of circulating steroid hormones on the therapeutic effects of CNS LHCGR activation, we delivered the LHCGR agonist human chorionic gonadotropin (hCG) intracerebroventricularly (ICV) and evaluated functional, structural, plasticity-related signaling cascades, Aβ pathology, and transcriptome differences in reproductively intact and ovariectomized (OVX) APP/PS1 AD female mice. Here we demonstrate that CNS hCG delivery restored function to wild-type levels only in OVX APP/PS1 mice. Spine density was increased in all hCG treated groups independently of reproductive status. Notably, increases in BDNF signaling and cognition, were selectively upregulated only in the OVX hCG-treated group. RNA sequencing analyses identified a significant increase in peripheral myeloid and pro-inflammatory genes within the hippocampi of the OVX group that were completely reversed by hCG treatment, identifying a potential mechanism underlying the selective therapeutic effect of LHCGR activation. Interestingly, in intact mice, hCG administration mimicked the effects of gonadectomy. Together, our findings indicate that CNS LHCGR agonism in the post-menopausal context is beneficial through trophic and immune mechanisms. Our findings also underscore the presence of a steroid-LHCGR mechanistic interaction that is unexplored yet potentially meaningful to fully understand "post-menopausal" brain function and CNS hormone treatment response.
Collapse
Affiliation(s)
- Megan Mey
- Kent State University, Kent, OH 44240, United States of America
| | - Sabina Bhatta
- Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Sneha Suresh
- University of Florida, Gainesville, FL 32606, United States of America
| | | | | | - Gemma Casadesus
- University of Florida, Gainesville, FL 32606, United States of America.
| |
Collapse
|
4
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
5
|
Einenkel R, Ehrhardt J, Zygmunt M, Muzzio DO. Oxygen regulates ILC3 antigen presentation potential and pregnancy-related hormone actions. Reprod Biol Endocrinol 2022; 20:109. [PMID: 35906658 PMCID: PMC9336067 DOI: 10.1186/s12958-022-00979-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Early pregnancy is marked by placentation and embryogenesis, which take place under physiological low oxygen concentrations. This oxygen condition is crucial for many aspects of placentation, trophoblast function, vascularization and immune function. Recently, a new family of innate lymphoid cells has been found to be expressed at the fetomaternal interface. Among these, type 3 innate lymphoid cells (ILC3) are important antigen presenting cells in the context of MHC-II. The expression of MHC-II on ILC3s during pregnancy is reduced. We tested the hypothesis that low oxygen concentrations reduce the potential of ILC3s to present antigens promoting fetal tolerance.Using an in vitro approach, NCR+ ILC3s generated from cord blood stem cell precursors were incubated under different O2 concentrations in the presence or absence of the pregnancy-related hormones hCG and TGF-β1. The expression of MHC-II, accessory molecules and an activation marker were assessed by flow cytometry. We observed that 1% O2 reduced the expression of the MHC-II molecule HLA-DR as compared to 21% O2 and modulated the relative effects of hCG and TGF-β1.Our data indicate that low oxygen concentrations reduce the antigen presentation potential of NCR+ ILC3s and suggest that it may promote fetal tolerance during the first trimester of pregnancy.
Collapse
Affiliation(s)
- Rebekka Einenkel
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
- Present address: Gynecologic Endocrinology and Reproductive Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany
| | - Damián Oscar Muzzio
- Department of Obstetrics and Gynecology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
6
|
Mann ON, Kong CS, Lucas ES, Brosens JJ, Hanyaloglu AC, Brighton PJ. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells. Sci Rep 2022; 12:8624. [PMID: 35597810 PMCID: PMC9124191 DOI: 10.1038/s41598-022-12495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/03/2022] [Indexed: 12/28/2022] Open
Abstract
The human luteinising hormone choriogonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR expression has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity, and we identified a small subpopulation of stromal cells with detectable LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild-type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature.
Collapse
Affiliation(s)
- O N Mann
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - C-S Kong
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - E S Lucas
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - A C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - P J Brighton
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.
| |
Collapse
|
7
|
Human Chorionic Gonadotropin and Early Embryogenesis: Review. Int J Mol Sci 2022; 23:ijms23031380. [PMID: 35163303 PMCID: PMC8835849 DOI: 10.3390/ijms23031380] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022] Open
Abstract
Human chorionic gonadotropin (hCG) has four major isoforms: classical hCG, hyperglycosylated hCG, free β subunit, and sulphated hCG. Classical hCG is the first molecule synthesized by the embryo. Its RNA is transcribed as early as the eight-cell stage and the blastocyst produces the protein before its implantation. This review synthetizes everything currently known on this multi-effect hormone: hCG levels, angiogenetic activity, immunological actions, and effects on miscarriages and thyroid function.
Collapse
|
8
|
Satué K, Calvo A, Muñoz A, Fazio E, Medica P. Interrelationship between reproductive hormones and acute phase proteins during estrous cycle and pregnancy in Spanish purebred broodmares. Vet Anim Sci 2021; 14:100212. [PMID: 34765800 PMCID: PMC8573188 DOI: 10.1016/j.vas.2021.100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/22/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
In some species, female steroid hormones modify the profile of acute phase proteins (APPs) during the estrous cycle and pregnancy, according to the ovulation, embryonic implantation and placental development; however, nowadays there's no experimental evidence for equine species. Objectives of this study were: to compare the serum amyloid A (SAA), haptoglobin (Hp) and C-reactive protein (CRP) concentrations between cyclic and pregnant mares, and to analyze the influence of estradiol-17β (E2) during estrous cycle or estrone sulfate (E1) during pregnancy, and progesterone (P4) on these proteins to assess their potential role to identify the cyclicity or pregnancy in Spanish mares. Blood samples were taken from 20 Purebred Spanish mares on the day of ovulation (day 0), on days +5 and +16 post-ovulation, and then, monthly during the whole pregnancy. SAA, Hp and CRP did not change between day 0, +5 and +16 post-ovulation days. P4 concentrations were significantly higher on day +16 than on days +5 and 0; and E2 concentrations were significantly higher on day 0 than day +5. On the other hand, pregnancy was characterized by a progressive increase in the Hp, variable modifications of E1 and P4 concentrations, without changes in SAA and CRP. The absence of significant differences in the APPs between days 0, +5 and +16, suggested that these proteins cannot be used as biomarkers of diagnosis of heat or pregnancy in Spanish mares, at least early, since the Hp later increases during the gestation. Nevertheless, it is possible to use them for comparative purposes with other equine breeds, as supervisor instrument of health status in breeding females as diagnostic tools to monitor pregnancy's development and/or subclinical reproductive inflammations, that could lead to the early embryonic death.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU‐Cardenal Herrera University, Avd. Seminari CEU, s/n, Valencia, 46113 Spain
| | - Antonio Calvo
- Department of Animal Medicine and Surgery, School of Veterinary and Experimental Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Ana Muñoz
- Department of Animal Medicine and Surgery, School of Veterinary Medicine, University of Córdoba, Spain
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Messina University, Italy
| |
Collapse
|
9
|
Intrauterine administration of activated peripheral blood mononuclear cells in intrauterine insemination: a prospective double-blind randomized clinical trial. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2021; 44:383-389. [PMID: 34848351 DOI: 10.1016/j.jogc.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the effect of intrauterine administration of activated peripheral blood mononuclear cells (PBMC) on intrauterine insemination (IUI) success rates. METHODS This prospective double-blind randomized parallel clinical trial included 213 patients undergoing IUI at the Fertilys clinic. PBMC were isolated on the day of ovulation (day 0; D0) and stimulated with phytohemagglutinin (PHA) and human chorionic gonadotropin (hCG) for 48 hours (day 2; D2). Patients in the PBMC group (n = 108) underwent in utero administration of 1.106 cells on D2, while patients in the control group (n = 105) were administered sperm-washing medium. Distribution of CD4 T lymphocyte populations (n = 61) was assessed on D0 and D2. Pregnancy and live birth rates were also evaluated. RESULTS Demographic and clinical characteristics, pregnancy rates, and live birth rates were not significantly different between the PBMC and control groups. Significantly higher levels of T helper (Th) 2, Th22, and T regulatory cells (P < 0.0001) and lower levels of Th17 cells were observed in hCG-activated PBMC at D2 than at D0. CONCLUSION Intrauterine administration of PBMC was not beneficial in IUI patients. New clinical approaches to better identify patients requiring endometrium immunomodulation needs to be addressed.
Collapse
|
10
|
Querat B. Unconventional Actions of Glycoprotein Hormone Subunits: A Comprehensive Review. Front Endocrinol (Lausanne) 2021; 12:731966. [PMID: 34671318 PMCID: PMC8522476 DOI: 10.3389/fendo.2021.731966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/06/2021] [Indexed: 01/17/2023] Open
Abstract
The glycoprotein hormones (GPH) are heterodimers composed of a common α subunit and a specific β subunit. They act by activating specific leucine-rich repeat G protein-coupled receptors. However, individual subunits have been shown to elicit responses in cells devoid of the receptor for the dimeric hormones. The α subunit is involved in prolactin production from different tissues. The human chorionic gonadotropin β subunit (βhCG) plays determinant roles in placentation and in cancer development and metastasis. A truncated form of the thyrotropin (TSH) β subunit is also reported to have biological effects. The GPH α- and β subunits are derived from precursor genes (gpa and gpb, respectively), which are expressed in most invertebrate species and are still represented in vertebrates as GPH subunit paralogs (gpa2 and gpb5, respectively). No specific receptor has been found for the vertebrate GPA2 and GPB5 even if their heterodimeric form is able to activate the TSH receptor in mammals. Interestingly, GPA and GPB are phylogenetically and structurally related to cysteine-knot growth factors (CKGF) and particularly to a group of antagonists that act independently on any receptor. This review article summarizes the observed actions of individual GPH subunits and presents the current hypotheses of how these actions might be induced. New approaches are also proposed in light of the evolutionary relatedness with antagonists of the CKGF family of proteins.
Collapse
|
11
|
Negishi Y, Shima Y, Takeshita T, Morita R. Harmful and beneficial effects of inflammatory response on reproduction: sterile and pathogen-associated inflammation. Immunol Med 2020; 44:98-115. [PMID: 32838688 DOI: 10.1080/25785826.2020.1809951] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In reproduction, inflammatory processes play important roles in the development of many pregnancy complications such as preterm labor/birth, recurrent pregnancy loss, recurrent implantation failure, and preeclampsia. Inflammation can be initiated by both microbial and non-microbial causes. Bacterial infection in the feto-maternal interface and uterus can provoke preterm labor/birth, miscarriage, and chronic endometritis. By contrast, inflammation without infection, or 'sterile inflammation,' can also lead to many kinds of complications, such as preterm labor/birth, miscarriage, or preeclampsia. Aberrant inflammation is facilitated by immune cells such as macrophages, dendritic cells, natural killer cells, and invariant natural killer T cells. In addition, cytokines, chemokines, and several kinds of inflammatory mediators are involved. On the other hand, appropriate inflammation is required for a successful offspring during the progression of the entire pregnancy. Herein, we discuss the relation between pregnancy and inflammation with immunological alterations. Understanding the role of inflammation in complications during pregnancy may establish new perspectives of the progress of normal pregnancy as well as treatments during pregnancy complications.
Collapse
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan.,Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Yoshio Shima
- Department of Pediatrics, Nippon Medical School Musashikosugi Hospital, Kanagawa, Japan
| | - Toshiyuki Takeshita
- Department of Obstetrics and Gynecology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
12
|
Pflitsch C, Feldmann CN, Richert L, Hagen S, Diemert A, Goletzke J, Hecher K, Jazbutyte V, Renné T, Arck PC, Altfeld M, Ziegler S. In-depth characterization of monocyte subsets during the course of healthy pregnancy. J Reprod Immunol 2020; 141:103151. [PMID: 32531656 DOI: 10.1016/j.jri.2020.103151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
Pregnancy represents an immunological challenge for the maternal immune system. Pregnancy augments innate immune responses, and particularly monocytes contribute to maintaining the balance between pro- and anti-inflammatory immune responses required for the successful sequence of distinct immunological phases throughout pregnancy. Nonetheless, studies that focus on the heterogeneity of monocytes and analyze the alteration of monocyte subsets in a longitudinal approach throughout healthy pregnancies have remained scarce. In this study, we characterized the gradual phenotypic changes of monocyte subsets and the secretory potential of bulk monocytes in peripheral blood mononuclear cells of healthy pregnant women from a population-based prospective birth cohort study. Blood samples at predefined time points were analyzed using flow cytometry for in-depth characterization of monocyte subsets, which confirmed a shift from classical towards intermediate monocytes throughout pregnancy. Principal component analysis revealed characteristic phenotypic changes on monocyte subsets, especially on the intermediate monocyte subset, throughout pregnancy. Pregnancy-related hormones were measured in serum and β-human chorionic gonadotropin levels were significantly associated with expression of CD11b, CD116 and CCR2 on monocyte subsets. TLR4 and TLR7/8 stimulation of monocytes furthermore showed reduced polycytokine production towards the end of pregnancy. These data provide a comprehensive overview of phenotypic changes and secretory potential of monocytes in healthy pregnant women and establish a selective contribution of different monocyte subsets to healthy pregnancy. The results from this study therefore build a basis for future comparisons and evaluation of women with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Caroline Pflitsch
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Cai Niklaas Feldmann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Laura Richert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany; Université Bordeaux, ISPED, Centre INSERM U1219, Inria, SISTM, F-33000, Bordeaux, France; CHU de Bordeaux, pôle de santé publique, F-33000, Bordeaux, France
| | - Sven Hagen
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Janina Goletzke
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Virginija Jazbutyte
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20251, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany
| | - Susanne Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, Hamburg 20251, Germany.
| |
Collapse
|
13
|
Silasi M, You Y, Simpson S, Kaislasuo J, Pal L, Guller S, Peng G, Ramhorst R, Grasso E, Etemad S, Durosier S, Aldo P, Mor G. Human Chorionic Gonadotropin modulates CXCL10 Expression through Histone Methylation in human decidua. Sci Rep 2020; 10:5785. [PMID: 32238853 PMCID: PMC7113245 DOI: 10.1038/s41598-020-62593-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/12/2020] [Indexed: 12/20/2022] Open
Abstract
The process of implantation, trophoblast invasion and placentation demand continuous adaptation and modifications between the trophoblast (embryonic) and the decidua (maternal). Within the decidua, the maternal immune system undergoes continued changes, as the pregnancy progress, in terms of the cell population, phenotype and production of immune factors, cytokines and chemokines. Human chorionic gonadotropin (hCG) is one of the earliest hormones produced by the blastocyst and has potent immune modulatory effects, especially in relation to T cells. We hypothesized that trophoblast-derived hCG modulates the immune population present at the maternal fetal interface by modifying the cytokine profile produced by the stromal/decidual cells. Using in vitro models from decidual samples we demonstrate that hCG inhibits CXCL10 expression by inducing H3K27me3 histone methylation, which binds to Region 4 of the CXCL10 promoter, thereby suppressing its expression. hCG-induced histone methylation is mediated through EZH2, a functional member of the PRC2 complex. Regulation of CXCL10 expression has a major impact on the capacity of endometrial stromal cells to recruit CD8 cells. We demonstrate the existence of a cross talk between the placenta (hCG) and the decidua (CXCL10) in the control of immune cell recruitment. Alterations in this immune regulatory function, such as during infection, will have detrimental effects on the success of the pregnancy.
Collapse
Affiliation(s)
- Michelle Silasi
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Yuan You
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI, USA
| | - Samantha Simpson
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Janina Kaislasuo
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
- Department of Obstetrics and Gynecology, University of Helsinki and the Helsinki University Hospital, Helsinki, Finland
| | - Lubna Pal
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Seth Guller
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Gang Peng
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, USA
| | - Rosanna Ramhorst
- Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina
| | - Esteban Grasso
- Laboratory of Immunopharmacology, University of Buenos Aires School of Sciences, IQUIBICEN-CONICET (National Research Council), Buenos Aires, Argentina
| | - Shervin Etemad
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Sandy Durosier
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Paulomi Aldo
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - Gil Mor
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics, Gynecology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
14
|
Gridelet V, Perrier d'Hauterive S, Polese B, Foidart JM, Nisolle M, Geenen V. Human Chorionic Gonadotrophin: New Pleiotropic Functions for an "Old" Hormone During Pregnancy. Front Immunol 2020; 11:343. [PMID: 32231662 PMCID: PMC7083149 DOI: 10.3389/fimmu.2020.00343] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Human chorionic gonadotrophin (hCG) is the first specific molecule synthesized by the embryo. hCG RNA is transcribed as early as the eight-cell stage, and the blastocyst produces the protein before its implantation. hCG in the uterine microenvironment binds with its cognate receptor, luteinizing hormone/choriogonadotropin receptor (LHCGR), on the endometrial surface. This binding stimulates leukemia inhibitory factor (LIF) production and inhibits interleukin-6 (IL-6) production by epithelial cells of the endometrium. These effects ensure essential help in the preparation of the endometrium for initial embryo implantation. hCG also effects angiogenic and immunomodulatory actions as reported in many articles by our laboratories and other ones. By stimulating angiogenesis and vasculogenesis, hCG provides the placenta with an adequate maternal blood supply and optimal embryo nutrition during the invasion of the uterine endometrium. The immunomodulatory properties of hCG are numerous and important for programming maternal immune tolerance toward the embryo. The reported effects of hCG on uterine NK, Treg, and B cells, three major cell populations for the maintenance of pregnancy, demonstrate the role of this embryonic signal as a crucial immune regulator in the course of pregnancy. Human embryo rejection for hCG-related immunological reasons has been studied in different ways, and a sufficient dose of hCG seems to be necessary to maintain maternal tolerance. Different teams have studied the addition of hCG in patients suffering from recurrent miscarriages or implantation failures. hCG could also have a beneficial or a negative impact on autoimmune diseases during pregnancy. In this review, we will discuss the immunological impacts of hCG during pregnancy and if this hormone might be used therapeutically.
Collapse
Affiliation(s)
- Virginie Gridelet
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Sophie Perrier d'Hauterive
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
| | - Barbara Polese
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| | - Jean-Michel Foidart
- Laboratory of Tumor and Development Biology, University of Liège, Liège, Belgium
| | - Michelle Nisolle
- Center for Assisted Medical Procreation, University of Liège, CHR Citadelle, Liège, Belgium
- Department of Obstetrics and Gynecology, CHR Citadelle, University of Liège, Liège, Belgium
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology GIGA Research Institute, University of Liege, Liege, Belgium
| |
Collapse
|
15
|
Fujiwara H, Ono M, Sato Y, Imakawa K, Iizuka T, Kagami K, Fujiwara T, Horie A, Tani H, Hattori A, Daikoku T, Araki Y. Promoting Roles of Embryonic Signals in Embryo Implantation and Placentation in Cooperation with Endocrine and Immune Systems. Int J Mol Sci 2020; 21:ijms21051885. [PMID: 32164226 PMCID: PMC7084435 DOI: 10.3390/ijms21051885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Embryo implantation in the uterus is an essential process for successful pregnancy in mammals. In general, the endocrine system induces sufficient embryo receptivity in the endometrium, where adhesion-promoting molecules increase and adhesion-inhibitory molecules decrease. Although the precise mechanisms remain unknown, it is widely accepted that maternal–embryo communications, including embryonic signals, improve the receptive ability of the sex steroid hormone-primed endometrium. The embryo may utilize repulsive forces produced by an Eph–ephrin system for its timely attachment to and subsequent invasion through the endometrial epithelial layer. Importantly, the embryonic signals are considered to act on maternal immune cells to induce immune tolerance. They also elicit local inflammation that promotes endometrial differentiation and maternal tissue remodeling during embryo implantation and placentation. Additional clarification of the immune control mechanisms by embryonic signals, such as human chorionic gonadotropin, pre-implantation factor, zona pellucida degradation products, and laeverin, will aid in the further development of immunotherapy to minimize implantation failure in the future.
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
- Correspondence: or ; Tel.: +81-(0)76-265-2425; Fax: +81-(0)76-234-4266
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Yukiyasu Sato
- Department of Obstetrics and Gynecology, Takamatsu Red Cross Hospital, Takamatsu 760-0017, Japan;
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto 862-8652, Japan;
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan; (M.O.); (T.I.); (K.K.)
| | - Tomoko Fujiwara
- Department of Home Science and Welfare, Kyoto Notre Dame University, Kyoto 606-0847, Japan;
| | - Akihito Horie
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Hirohiko Tani
- Department of Obstetrics and Gynecology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; (A.H.); (H.T.)
| | - Akira Hattori
- Department of System Chemotherapy and Molecular Sciences, Kyoto University Graduate School of Pharmaceutical Sciences, Kyoto 606-8501, Japan;
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa 920-8640, Japan;
| | - Yoshihiko Araki
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu 279-0021, Japan;
- Department of Obstetrics and Gynecology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Pourmoghadam Z, Abdolmohammadi-Vahid S, Pashazadeh F, Aghebati-Maleki L, Ansari F, Yousefi M. Efficacy of intrauterine administration of autologous peripheral blood mononuclear cells on the pregnancy outcomes in patients with recurrent implantation failure: A systematic review and meta-analysis. J Reprod Immunol 2020; 137:103077. [DOI: 10.1016/j.jri.2019.103077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/29/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
|
17
|
Fedorka CE, Loux SL, Scoggin KE, Adams AA, Troedsson MHT, Ball BA. Alterations in T cell-related transcripts at the feto-maternal interface throughout equine gestation. Placenta 2019; 89:78-87. [PMID: 31730925 DOI: 10.1016/j.placenta.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION The tolerance of pregnancy by the maternal immune system is balanced between recognition and protection. In the human this is controlled by balancing helper T cell populations (Th1, Th2) in addition to immune suppression from the regulatory arm (Tregs), but this has not been evaluated in the horse. METHODS RNA sequencing was performed on chorioallantois and endometrium of mares at 120, 180, 300 and 330 days of gestation (n = 4/stage), as well as 45-day chorioallantois (n = 4) and diestrus endometrium (n = 3). Transcripts were selected for relativity to Th1, Th2, or Treg-associated. qPCR and immunohistochemistry were used to confirm the results of select differentially expressed genes. RESULTS In the endometrium, Th1 transcripts were highest in the diestrus mare and decreased as gestational length progressed. In contrast, Th2 transcripts were upregulated in comparison to the diestrus mare and highest in mid gestation. Treg transcripts were found increased in comparison to the diestrus mare, but decreased prepartum. In the chorioallantois no Th1 transcripts changed. The majority of Th2 transcripts increased from 45 to 300 days gestation, and then decreased prepartum. Treg-related transcripts trended down in the chorioallantois from 45 days to 120 days gestation, followed by an upregulation to 300 days and a secondary decline prepartum. DISCUSSION The mare experiences a complex and evolving immune profile within the tissues of the feto-maternal interface. This consists of a balance between the Th1 and Th2 response, and a dynamic Treg response that is hypothesized to regulate overall events within the immune system.
Collapse
Affiliation(s)
- C E Fedorka
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - S L Loux
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - K E Scoggin
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - A A Adams
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - M H T Troedsson
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - B A Ball
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
18
|
Pradhan A, Nayak M, Samanta M, Panda RP, Rath SC, Giri SS, Saha A. Gonadotropin receptors of Labeo rohita: Cloning and characterization of full-length cDNAs and their expression analysis during annual reproductive cycle. Gen Comp Endocrinol 2018; 263:21-31. [PMID: 29660307 DOI: 10.1016/j.ygcen.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
Abstract
Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), secreted from pituitary, stimulate gonadal function by binding to their cognate receptors FSH receptor (FSHR), and LH/choriogonadotropin receptor (LHCGR). Rohu (Labeo rohita) is a commercially important seasonal breeder freshwater fish species, but till date, the regulation of expression of gonadotropins and their receptors gene during different phases of annual reproductive cycle has not been investigated. We envisaged the critical role of these molecules during seasonal gonadal development in this carp species. We cloned full- length cDNAs of fshra and lhcgrba from rohu testis using RACE (Rapid amplification of cDNA ends) and analyzed their expression along with fsh and lh by quantitative real time PCR (qRT-PCR) assay at various gonadal developmental stages of the annual reproductive cycle. Full-length rohu fshra and lhcgrba cDNA encodes 670 and 716 amino acids respectively, and in adult fish, they were widely expressed in brain, pituitary, gonad, liver, kidney, head kidney, heart, muscle, gill, fin, eye and intestine. In male, both fsh and fshra transcripts showed high level of expression during spermatogenesis, however, in female, expression level was found to be higher in the fully grown oocyte stages. The expression of rohu lh and lhcgrba mRNA increased with increment of gonadosomatic index and showed highest level during spermiation stage in male and fully matured oocyte stage in female. These results together may suggest the involvement of fshra and lhcgrba in regulating function of seasonal gonadal development in rohu.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- Cyprinidae/genetics
- Cyprinidae/metabolism
- DNA, Complementary/isolation & purification
- DNA, Complementary/metabolism
- Female
- Gene Expression Profiling/veterinary
- Gonads/metabolism
- Male
- Pituitary Gland/metabolism
- Receptors, FSH/metabolism
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/isolation & purification
- Receptors, Gonadotropin/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Reproduction/genetics
- Sequence Analysis, DNA/veterinary
- Transcriptome
Collapse
Affiliation(s)
- Avinash Pradhan
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Madhusmita Nayak
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Mrinal Samanta
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Rudra Prasanna Panda
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Suresh Chandra Rath
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Shiba Shankar Giri
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Ashis Saha
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India.
| |
Collapse
|
19
|
Ziegler SM, Feldmann CN, Hagen SH, Richert L, Barkhausen T, Goletzke J, Jazbutyte V, Martrus G, Salzberger W, Renné T, Hecher K, Diemert A, Arck PC, Altfeld M. Innate immune responses to toll-like receptor stimulation are altered during the course of pregnancy. J Reprod Immunol 2018; 128:30-37. [PMID: 29886307 DOI: 10.1016/j.jri.2018.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/20/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
During pregnancy the maternal immune system has to develop tolerance towards the developing fetus. These changes in maternal immunity can result in increased severity of certain infections, but also in amelioration of autoimmune diseases. Pregnancy-related hormones have been suggested to play a central role in the adaptation of the maternal immune system, but their specific effects on innate immune function is not well understood. In a longitudinal study of pregnant women, we investigated innate immune cell function in response to toll-like receptors (TLR) 4 and 7 stimulation, two TLR pathways playing a critical role in early innate immune recognition of bacteria and viruses. IFNα production by TLR7-stimulated pDCs was decreased in early pregnancy, and increased towards the end of pregnancy. In contrast, pro-inflammatory TLR4-induced TNFα production by monocytes was increased during early pregnancy, but declined after the first trimester. Changes in cytokine production were associated with changes in pregnancy-related hormones and monocyte subpopulations over the course of pregnancy. These data demonstrating a significant association between pregnancy-related hormones and modulation of innate immune responses mediated by TLRs provide novel insights into the immunological adaptations occurring during pregnancy.
Collapse
Affiliation(s)
- Susanne Maria Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany
| | - Cai Niklaas Feldmann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany
| | - Sven Hendrik Hagen
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany
| | - Laura Richert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany; Vaccine Research Institute (VRI), Créteil, F-94010, France; Université Bordeaux, ISPED, Centre INSERM U1219, Inria, SISTM, F-33000, Bordeaux, France; CHU de Bordeaux, pôle de santé publique, F-33000, Bordeaux, France
| | - Tanja Barkhausen
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany
| | - Janina Goletzke
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Virginija Jazbutyte
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Gloria Martrus
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany
| | - Wilhelm Salzberger
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany; Department of Molecular Medicine and Surgery, Karolinska Institute, Karolinska University Hospital Solna (L1:00), SE-171 76, Stockholm, Sweden
| | - Kurt Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20251, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, Hamburg, 20251, Germany.
| |
Collapse
|
20
|
Huang P, Wei L, Li X, Qin A. Effects of intrauterine perfusion of human chorionic gonadotropin in women with different implantation failure numbers. Am J Reprod Immunol 2017; 79. [PMID: 29288552 DOI: 10.1111/aji.12809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2022] Open
Abstract
PROBLEM The aim of this research was to investigate the effects of the intrauterine perfusion of hCG before a frozen-thawed embryo transfer (FET) in women with different implantation failure numbers. METHOD OF STUDY This was a retrospective analysis of patients undergoing FET who received an intrauterine injection hCG 1000 IU before embryo transfer. The groups included women with their first implantation failure (A group, n = 26), second implantation failure (B group, n = 122), and three or more failures (C group, n = 77). Corresponding control groups (no infusion) were also included. The pregnancy rates were compared among these groups. RESULTS After intrauterine injection hCG, the biochemical pregnancy rates were 92.30%, 63.11%, 49.02%, and the clinical pregnancy rates were 76.92%, 54.91%, 48.05%, in the A, B, and C groups, respectively. The biochemical and clinical pregnancy rates were significantly higher in the A group than in the other groups (P < .05). The clinical pregnancy rates of the A and C groups were significantly higher than in the corresponding (no infusion) control groups (76.92% vs 56.81% and 48.05% vs 33.33%, P < .05). CONCLUSION Pregnancy rates decreased with the number of transplant failures. The intrauterine administration of hCG before FET significantly improved the pregnancy rates, especially after one and three or more implantation failures.
Collapse
Affiliation(s)
- Pinxiu Huang
- Guangxi Medical University, Nanning, China.,Reproductive Medicine Center, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China
| | - Lihong Wei
- Reproductive Medicine Center, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China
| | - Xinlin Li
- Reproductive Medicine Center, Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, China
| | - Aiping Qin
- Guangxi Medical University, Nanning, China.,Reproductive Medicine Center, The first Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Stoner R, Camilleri V, Calleja-Agius J, Schembri-Wismayer P. The cytokine-hormone axis - the link between premenstrual syndrome and postpartum depression. Gynecol Endocrinol 2017; 33:588-592. [PMID: 28443697 DOI: 10.1080/09513590.2017.1318367] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Premenstrual syndrome (PMS) and related disorders, and postpartum depression (PPD) can affect women to the extent that their quality of life and that of their near ones can be severely impaired. This review focuses on the different theories regarding the etiologies of PMS and PPD, and attempts to draw a link between the two. Theories focus mainly on hormonal and cytokine factors throughout different phases in the female reproductive cycle. Changes in this symptomatology during pregnancy are also reviewed, as are changes in hormones and cytokine levels. Hypotheses are thus developed as to why the symptoms experienced in PMS often subside during pregnancy yet may recur and be exacerbated after birth, giving rise to the symptoms experienced in PPD.
Collapse
Affiliation(s)
- Rebecca Stoner
- a Department of Anatomy , Faculty of Medicine and Surgery, University of Malta , Msida , Malta
| | - Victoria Camilleri
- a Department of Anatomy , Faculty of Medicine and Surgery, University of Malta , Msida , Malta
| | - Jean Calleja-Agius
- a Department of Anatomy , Faculty of Medicine and Surgery, University of Malta , Msida , Malta
| | | |
Collapse
|
22
|
The human fetoembryonic defense system hypothesis: Twenty years on. Mol Aspects Med 2016; 51:71-88. [PMID: 27349751 DOI: 10.1016/j.mam.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
|
23
|
Furcron AE, Romero R, Mial TN, Balancio A, Panaitescu B, Hassan SS, Sahi A, Nord C, Gomez-Lopez N. Human Chorionic Gonadotropin Has Anti-Inflammatory Effects at the Maternal-Fetal Interface and Prevents Endotoxin-Induced Preterm Birth, but Causes Dystocia and Fetal Compromise in Mice. Biol Reprod 2016; 94:136. [PMID: 27146032 PMCID: PMC4946806 DOI: 10.1095/biolreprod.116.139345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/13/2016] [Accepted: 05/02/2016] [Indexed: 12/18/2022] Open
Abstract
Human chorionic gonadotropin (hCG) is implicated in the maintenance of uterine quiescence by down-regulating myometrial gap junctions during pregnancy, and it was considered as a strategy to prevent preterm birth after the occurrence of preterm labor. However, the effect of hCG on innate and adaptive immune cells implicated in parturition is poorly understood. Herein, we investigated the immune effects of hCG at the maternal-fetal interface during late gestation, and whether this hormone can safely prevent endotoxin-induced preterm birth. Using immunophenotyping, we demonstrated that hCG has immune effects at the maternal-fetal interface (decidual tissues) by: 1) increasing the proportion of regulatory T cells; 2) reducing the proportion of macrophages and neutrophils; 3) inducing an M1 → M2 macrophage polarization; and 4) increasing the proportion of T helper 17 cells. Next, ELISAs were used to determine whether the local immune changes were associated with systemic concentrations of progesterone, estradiol, and/or cytokines (IFNgamma, IL1beta, IL2, IL4, IL5, IL6, IL10, IL12p70, KC/GRO, and TNFalpha). Plasma concentrations of IL1beta, but not progesterone, estradiol, or any other cytokine, were increased following hCG administration. Pretreatment with hCG prevented endotoxin-induced preterm birth by 44%, proving the effectiveness of this hormone as an anti-inflammatory agent. However, hCG administration alone caused dystocia and fetal compromise, as proven by Doppler ultrasound. These results provide insight into the mechanisms whereby hCG induces an anti-inflammatory microenvironment at the maternal-fetal interface during late gestation, and demonstrate its effectiveness in preventing preterm labor/birth. However, the deleterious effects of this hormone on mothers and fetuses warrant caution.
Collapse
Affiliation(s)
- Amy-Eunice Furcron
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, Michigan
| | - Tara N Mial
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Amapola Balancio
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Bogdan Panaitescu
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Aashna Sahi
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Claire Nord
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
24
|
Fouda UM, Sayed AM, Elshaer HS, Hammad BEM, Shaban MM, Elsetohy KA, Youssef MA. GnRH antagonist rescue protocol combined with cabergoline versus cabergoline alone in the prevention of ovarian hyperstimulation syndrome: a randomized controlled trial. J Ovarian Res 2016; 9:29. [PMID: 27184139 PMCID: PMC4869387 DOI: 10.1186/s13048-016-0237-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study was to compare the efficacy of antagonist rescue protocol (replacing GnRH agonist with GnRH antagonist and reducing the dose of gonadotropins) combined with cabergoline versus cabergoline alone in the prevention of ovarian hyperstimulation syndrome (OHSS) in patients pretreated with GnRH agonist long protocol who were at high risk for OHSS. Methods Two hundred and thirty six patients were randomized in a 1:1 ratio to the cabergoline group or the antagonist rescue combined with cabergoline group. Both groups received oral cabergoline (0.5 mg/day) for eight days beginning on the day of HCG administration. In the antagonist rescue combined with cabergoline group, when the leading follicle reached 16 mm, GnRH agonist (triptorelin) was replaced with GnRH antagonist (cetrorelix acetate) and the dose of HP-uFSH was reduced to 75 IU/day. HCG (5,000 IU/I.M) was administered when the serum estradiol level dropped below 3500 pg/ml. The study was open label and the outcome assessors (laboratory staff and the doctor who performed oocyte retrieval) were blind to treatment allocation. Results The incidence of moderate/severe OHSS was significantly lower in the antagonist rescue combined with cabergoline group [5.08 % Vs 13.56 %, P value =0.025, OR = 0.342, 95 % CI, 0.129–0.906]. Four cycles were cancelled in the cabergoline group. There were no significant differences between the groups with respect to the number of retrieved oocytes, metaphase II oocytes, high quality embryos and fertilization rate. Moreover, the implantation and pregnancy rates were comparable between both groups. Conclusion GnRH antagonist rescue protocol combined with cabergoline is more effective than cabergoline alone in the prevention of OHSS. Trial registration Clinical trial.gov (NCT02461875).
Collapse
Affiliation(s)
- Usama M Fouda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Kasr Al-Ainy Hospital, Al-Saraya Street, Cairo, Egypt.
| | - Ahmed M Sayed
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Kasr Al-Ainy Hospital, Al-Saraya Street, Cairo, Egypt
| | - Hesham S Elshaer
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Kasr Al-Ainy Hospital, Al-Saraya Street, Cairo, Egypt
| | - Bahaa Eldin M Hammad
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Kasr Al-Ainy Hospital, Al-Saraya Street, Cairo, Egypt
| | - Mona M Shaban
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Kasr Al-Ainy Hospital, Al-Saraya Street, Cairo, Egypt
| | - Khaled A Elsetohy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Kasr Al-Ainy Hospital, Al-Saraya Street, Cairo, Egypt
| | - Mohamed A Youssef
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Kasr Al-Ainy Hospital, Al-Saraya Street, Cairo, Egypt
| |
Collapse
|
25
|
Fujiwara H, Araki Y, Imakawa K, Saito S, Daikoku T, Shigeta M, Kanzaki H, Mori T. Dual Positive Regulation of Embryo Implantation by Endocrine and Immune Systems--Step-by-Step Maternal Recognition of the Developing Embryo. Am J Reprod Immunol 2016; 75:281-9. [PMID: 26755274 DOI: 10.1111/aji.12478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/09/2015] [Indexed: 01/21/2023] Open
Abstract
In humans, HCG secreted from the implanting embryo stimulates progesterone production of the corpus luteum to maintain embryo implantation. Along with this endocrine system, current evidence suggests that the maternal immune system positively contributes to the embryo implantation. In mice, immune cells that have been sensitized with seminal fluid and then the developing embryo induce endometrial differentiation and promote embryo implantation. After hatching, HCG activates regulatory T and B cells through LH/HCG receptors and then stimulates uterine NK cells and monocytes through sugar chain receptors, to promote and maintain pregnancy. In accordance with the above, the intrauterine administration of HCG-treated PBMC was demonstrated to improve implantation rates in women with repeated implantation failures. These findings suggest that the maternal immune system undergoes functional changes by recognizing the developing embryos in a stepwise manner even from a pre-fertilization stage and facilitates embryo implantation in cooperation with the endocrine system.
Collapse
Affiliation(s)
- Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshihiko Araki
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | | | | | - Takahide Mori
- Academia for Repro-Regenerative Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Gregori S, Amodio G, Quattrone F, Panina-Bordignon P. HLA-G Orchestrates the Early Interaction of Human Trophoblasts with the Maternal Niche. Front Immunol 2015; 6:128. [PMID: 25870595 PMCID: PMC4378286 DOI: 10.3389/fimmu.2015.00128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/09/2015] [Indexed: 01/13/2023] Open
Abstract
Extravillous trophoblasts (EVTs) play a central role in educating maternal leukocytes, endometrial stromal and endothelial cells to generate a receptive decidual microenvironment tailored to accept the semi-allogeneic fetus. HLA-G, a non-classical HLA class I molecule endowed with immune-regulatory functions, is primarily expressed on EVTs lining the placenta and on the naturally occurring tolerogenic dendritic cells, named DC-10, which are enriched in the human first trimester decidua. Decidual DC-10 are involved in HLA-G-mediated tolerance at the maternal–fetal interface. EVTs not only establish a tolerogenic microenvironment through the interaction with maternal innate and adaptive cells but also orchestrate placenta vascular and tissue remodeling, leading to a successful pregnancy. Here, we discuss the potential implications of the HLA-G-mediated cross-talk among the cells present at the maternal–fetal interface, and its role in maintaining a positive relationship between the mother and the fetus.
Collapse
Affiliation(s)
- Silvia Gregori
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Giada Amodio
- Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Federica Quattrone
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital , Milan , Italy
| | - Paola Panina-Bordignon
- Reproductive Sciences Laboratory, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital , Milan , Italy
| |
Collapse
|
27
|
Mesdag V, Salzet M, Vinatier D. Le trophoblaste : chef d’orchestre de la tolérance immunologique maternelle. ACTA ACUST UNITED AC 2014; 43:657-70. [DOI: 10.1016/j.jgyn.2014.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 06/07/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022]
|
28
|
Zamorina SA, Shirshev SV. Role of toll-like receptors in realization of human chorionic gonadotropin effects on monocyte functional activity. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2014. [DOI: 10.1134/s1990747813050243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Racicot KE, Wünsche V, Auerbach B, Aldo P, Silasi M, Mor G. Human chorionic gonadotropin enhances trophoblast-epithelial interaction in an in vitro model of human implantation. Reprod Sci 2014; 21:1274-80. [PMID: 24520082 DOI: 10.1177/1933719114522553] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryo implantation, which is an absolute requirement for reproduction, starts with blastocyst apposition to the uterine endometrium, followed by attachment to the endometrial surface epithelium. Recent clinical studies reported an increase in implantation and pregnancy rates among women receiving intrauterine human chorionic gonadotropin (hCG) prior to embryo transfer suggesting that, at least in some cases, female infertility is a result of inadequate secretion of hCG. In this study, we characterized the effect of hCG on trophoblast-epithelial interaction by further developing our recently described in vitro model of implantation. Here, we confirmed hCG increased attachment of trophoblast to epithelial cells, using a single-cell trophoblast-epithelial coculture system in addition to a blastocyst-like spheroid-epithelial coculture system. Furthermore, we discovered that the source and concentration was pivotal; the first preparation of hCG affected 2 molecules related to implantation, MUC16 and osteopontin, while the second preparation required additional cytokines to mimic the effects. Using this system, we can develop a comprehensive knowledge of the cellular and gene targets of hCG and other factors involved in embryo apposition and implantation and potentially increase the number of therapeutic targets for subfertile patients.
Collapse
Affiliation(s)
- Karen E Racicot
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Vera Wünsche
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Ben Auerbach
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Paulomi Aldo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Michelle Silasi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Gil Mor
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA Department of Obstetrics, Gynecology & Reproductive Sciences, Reproductive Immunology Unit, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Polese B, Gridelet V, Araklioti E, Martens H, Perrier d’Hauterive S, Geenen V. The Endocrine Milieu and CD4 T-Lymphocyte Polarization during Pregnancy. Front Endocrinol (Lausanne) 2014; 5:106. [PMID: 25071722 PMCID: PMC4083450 DOI: 10.3389/fendo.2014.00106] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/21/2014] [Indexed: 12/18/2022] Open
Abstract
Acceptance of the fetal semi-allograft by the mother's immune system has become the focus of intensive research. CD4+ T cells are important actors in the establishment of pregnancy. Th1/Th2 paradigm has been expanded to include CD4+ regulatory T (Treg) and T helper 17 (Th17) cells. Pregnancy hormones exert very significant modulatory properties on the maternal immune system. In this review, we describe mechanisms by which the endocrine milieu modulates CD4 T cell polarization during pregnancy. We first focused on Treg and Th17 cells and on their importance for pregnancy. Secondly, we review the effects of pregnancy hormones [progesterone (P4) and estradiol (E2)] on immune cells previously described, with a particular attention to human chorionic gonadotropin (hCG). The importance of Treg cells for pregnancy is evidenced. They are recruited before implantation and are essential for pregnancy maintenance. Decreased number or less efficient Treg cells are implicated in fertility disorders. As for Th17 cells, the few available studies suggest that they have a negative impact on fertility. Th17 frequency is increased in infertile patients. With the combination of its pro-effects on Th2 and Treg cells and anti-effects on Th1 and Th17 cells, P4 contributes to establishment of a favorable environment for pregnancy. E2 effects are more dependent on the context but it seems that E2 promotes Treg and Th2 cells while it inhibits Th1 cells. hCG positively influences activities of Treg and uterine natural killer cells. This embryo signal is an essential actor for the success of pregnancy, both as the endocrine factor regulating P4 secretion by the ovarian corpus luteum, but also as a paracrine agent during implantation as well as an angiogenic and immunologic mediator during the course of gestation. Luteinizing hormone (LH) immune properties begin to be studied but its positive impact on Treg cells suggests that LH could be a considerable immunomodulator in the mouse.
Collapse
Affiliation(s)
- Barbara Polese
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
- *Correspondence: Barbara Polese, GIGA-I3, Center of Immunoendocrinology, University of Liege, CHU-B34, Sart Tilman, Liège B-4000, Belgium e-mail:
| | - Virginie Gridelet
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Eleni Araklioti
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | - Henri Martens
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| | | | - Vincent Geenen
- GIGA-I3, Center of Immunoendocrinology, University of Liège, Liège, Belgium
| |
Collapse
|
31
|
Sun C, He M, Ko WKW, Wong AOL. Gene expression of luteinizing hormone receptor in carp somatotrophs differentially regulated by local action of gonadotropin and dopamine D1 receptor activation. Mol Cell Endocrinol 2013; 374:22-34. [PMID: 23603402 DOI: 10.1016/j.mce.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/27/2013] [Accepted: 04/07/2013] [Indexed: 01/25/2023]
Abstract
In grass carp, luteinizing hormone (LH) can act locally within the pituitary to regulate growth hormone expression. To test if LH receptor (LHR) expression in the carp pituitary can also serve as a target of modulation for LH actions, grass carp LHR was cloned and characterized by functional expression. In carp pituitary cells, LHR mRNA (lhr) level could be reduced by LH or human chorionic gonadotropin (hCG) but up-regulated by dopamine treatment. Dopamine-induced lhr expression occurred mainly in carp somatotrophs via the cAMP/PKA pathway coupled to pituitary D1 receptors. This stimulatory effect could be blocked by LHR activation by hCG, presumably through phosphodiesterase III activation. These findings provide evidence that lhr expression in the carp pituitary is under the differential control of LH and dopamine via modification of cAMP-dependent signaling mechanisms, which may play a role in regulating somatotroph responsiveness to the paracrine action of LH in carp species.
Collapse
Affiliation(s)
- Caiyun Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
32
|
Schumacher A, Heinze K, Witte J, Poloski E, Linzke N, Woidacki K, Zenclussen AC. Human Chorionic Gonadotropin as a Central Regulator of Pregnancy Immune Tolerance. THE JOURNAL OF IMMUNOLOGY 2013; 190:2650-8. [DOI: 10.4049/jimmunol.1202698] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Bernardini L, Moretti-Rojas I, Brush M, Rojas FJ, Balmaceda JP. Failure of hCG/LH receptors to stimulate the transmembrane effector adenylyl cyclase in human endometrium. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.410126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Sachdeva R, Bhardwaj N, Huhtaniemi I, Aggrawal U, Jain SK, Zaidi R, Singh O, Pal R. Transgenesis-mediated reproductive dysfunction and tumorigenesis: effects of immunological neutralization. PLoS One 2012; 7:e51125. [PMID: 23226476 PMCID: PMC3511405 DOI: 10.1371/journal.pone.0051125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/31/2012] [Indexed: 02/01/2023] Open
Abstract
Human chorionic gonadotropin (hCG) was initially thought to be made only during pregnancy, but is now known to also be synthesized by a variety of cancers and is associated with poor patient prognosis. Transgenic expression of βhCG in mice causes hyper-luteinized ovaries, a loss in estrous cyclicity and infertility, increased body weight, prolactinomas and mammary gland tumors. Strategies were devised to generate antibody responses against hCG to investigate whether reversal of the molecular processes driving tumorigenesis would follow. hCG-immunized transgenic mice did not exhibit increases in body weight or serum prolactin levels, and gross ovarian and pituitary morphology remained normal. While non-immunized transgenic animals demonstrated heightened levels of transcripts associated with pituitary tumorigenesis (HMG2A, E2F1, CCND1, PRL, GH, GAL, PTTG1, BMP4) and decreased levels of CDK inhibitors CDKN1B (p27), CDKN2A (p16) and CDKN2c (p18), immunization led to a reversal to levels found in non-transgenic animals. Serum derived from transgenic (but not non-transgenic) mice led to enhanced transcription as well as expression of VEGF, IL-8, KC (murine IL-8) and MMP-9 in tumor cells, effects not seen when sera derived from hCG-immunized transgenic mice was employed. As the definitive indication of the restoration of the reproductive axis, immunization led to the resumption of estrous cyclicity as well as fertility in transgenic mice. These results indicate that hCG may influence cancer pathogenesis and progression via several distinct mechanisms. Using a stringent in vivo system in which βhCG acts both a “self” antigen and a tumor-promoting moiety (putatively akin to the situation in humans), the data builds a case for anti-gonadotropin vaccination strategies in the treatment of gonadotropin-dependent or secreting malignancies that frequently acquire resistance to conventional therapy.
Collapse
Affiliation(s)
- Ruchi Sachdeva
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Neetu Bhardwaj
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ilpo Huhtaniemi
- Department of Physiology, University of Turku, Turku, Finland
- Department of Reproductive and Developmental Biology, Imperial College, London, Hammersmith Campus, London, United Kingdom
| | - Usha Aggrawal
- Institute of Pathology, Safdarjung Hospital, New Delhi, India
| | | | - Rana Zaidi
- Department of Biochemistry, Faculty of Science, Jamia Hamdard, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Om Singh
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| | - Rahul Pal
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (RZ); (OS); (RP)
| |
Collapse
|
35
|
Bai H, Sakurai T, Fujiwara H, Ideta A, Aoyagi Y, Godkin JD, Imakawa K. Functions of interferon tau as an immunological regulator for establishment of pregnancy. Reprod Med Biol 2012; 11:109-116. [PMID: 29699116 DOI: 10.1007/s12522-011-0117-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/27/2011] [Indexed: 11/29/2022] Open
Abstract
The establishment of a successful pregnancy requires a "fine quality embryo", "maternal recognition of pregnancy", and a "receptive uterus" during the period of conceptus implantation to the uterine endometrium. In ruminants, a conceptus cytokine, interferon tau (IFNT), a major cytokine produced by the peri-implantation trophectoderm, is known as a key factor for maternal recognition of pregnancy. IFNT can be considered one of the main factors in conceptus-uterus cross-talk, resulting in the rescue of ovarian corpus luteum (CL), induction of endometrial gene expressions, activation of residual immune cells, and recruitment of immune cells. Much research on IFNT has focused on the CL life-span (pregnancy recognition) and uterine gene expression through IFNT and related genes; however, immunological acceptance of the conceptus by the mother has not been well characterized. In this review, we will discuss the progress in IFNT and implantation research made by us and others for over 10 years, and relate this progress to pregnancy in mammalian species other than ruminants.
Collapse
Affiliation(s)
- Hanako Bai
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Toshihiro Sakurai
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| | - Hiroshi Fujiwara
- Department of Gynecology and Obstetrics, Faculty of Medicine Kyoto University Sakyo-ku 606-8397 Kyoto Japan
| | - Atsushi Ideta
- Zen-noh ET center 080-1407 Kamishihoro Hokkaido Japan
| | | | - James D Godkin
- Department of Animal Sciences University of Tennessee 37996-4588 Knoxville TN USA
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding and Reproduction, Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku 113-8657 Tokyo Japan
| |
Collapse
|
36
|
Okitsu O, Kiyokawa M, Oda T, Miyake K, Sato Y, Fujiwara H. Intrauterine administration of autologous peripheral blood mononuclear cells increases clinical pregnancy rates in frozen/thawed embryo transfer cycles of patients with repeated implantation failure. J Reprod Immunol 2011; 92:82-7. [PMID: 22035703 DOI: 10.1016/j.jri.2011.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/18/2011] [Accepted: 07/29/2011] [Indexed: 11/17/2022]
Abstract
Intrauterine administration of autologous peripheral blood mononuclear cells (PBMC) activated by HCG in vitro are reported to improve implantation rates in patients with repeated failure of IVF-ET. In this study, we examined the effects of intrauterine administration of freshly isolated PBMC on clinical pregnancy and the implantation rates of patients who received frozen/thawed embryo transfer by prospective cohort study. Patients who had not achieved a successful pregnancy despite at least one or more IVF-ET sessions were enrolled in this study (n = 253, 253 cycles). Based on the patient's treatment preferences, PBMC were freshly isolated from each patient and then administered to the intrauterine cavity of that patient. Frozen/thawed embryo transfer was performed and the success of implantation in the PBMC-treated group (n = 83, 83 cycles) was compared with that in the non-treated control groups (n = 170, 170 cycles). There were no significant differences in the clinical pregnancy rate (34.9% vs. 32.9%), implantation rate (21.6% vs. 21.1%) and live birth delivery rate (21.7% vs. 21.8%) between PBMC-treated and non-treated groups. However, when the analyses were restricted to patients who had three or more implantation failures, the clinical pregnancy rate and the implantation rate in the PBMC-treated group (42.1% and 25.0%, p<0.05; n = 19 and 32, respectively) were significantly higher than those in the non-treated group (16.7% and 9.4%, p<0.05; n = 36 and 64, respectively). These findings indicate that intrauterine administration of autologous PBMC freshly isolated from patients, effectively improves embryo implantation in patients with three or more IVF failures.
Collapse
Affiliation(s)
- Osamu Okitsu
- Center for Reproductive Medicine, Miyake Clinic, 369-8 Ofuku, Minami-ku, Okayama 701-0204, Japan.
| | | | | | | | | | | |
Collapse
|
37
|
Koldehoff M, Katzorke T, Wisbrun NC, Propping D, Wohlers S, Bielfeld P, Steckel NK, Beelen DW, Elmaagacli AH. Modulating impact of human chorionic gonadotropin hormone on the maturation and function of hematopoietic cells. J Leukoc Biol 2011; 90:1017-26. [DOI: 10.1189/jlb.0910520] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
38
|
Ott TL, Gifford CA. Effects of Early Conceptus Signals on Circulating Immune Cells: Lessons from Domestic Ruminants. Am J Reprod Immunol 2010; 64:245-54. [DOI: 10.1111/j.1600-0897.2010.00912.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Tsampalas M, Gridelet V, Berndt S, Foidart JM, Geenen V, d’Hauterive SP. Human chorionic gonadotropin: A hormone with immunological and angiogenic properties. J Reprod Immunol 2010; 85:93-8. [DOI: 10.1016/j.jri.2009.11.008] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/22/2009] [Accepted: 11/25/2009] [Indexed: 12/19/2022]
|
40
|
Xiangbing H, Yankai Z, Ming L, Yong L, Yu Z, Huiyong Z, Yingying C, Jing H, Yun X, Liang J, Rongyue C, Jingjing L. The fusion protein of HSP65 with tandem repeats of β-hCG acting as a potent tumor vaccine in suppressing hepatocarcinoma. Int Immunopharmacol 2010; 10:230-8. [DOI: 10.1016/j.intimp.2009.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 10/12/2009] [Accepted: 11/05/2009] [Indexed: 12/21/2022]
|
41
|
Is the zona pellucida an intrinsic source of signals activating maternal recognition of the developing mammalian embryo? J Reprod Immunol 2009; 81:1-8. [DOI: 10.1016/j.jri.2009.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 03/12/2009] [Accepted: 04/03/2009] [Indexed: 11/30/2022]
|
42
|
Schumacher A, Brachwitz N, Sohr S, Engeland K, Langwisch S, Dolaptchieva M, Alexander T, Taran A, Malfertheiner SF, Costa SD, Zimmermann G, Nitschke C, Volk HD, Alexander H, Gunzer M, Zenclussen AC. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy. THE JOURNAL OF IMMUNOLOGY 2009; 182:5488-97. [PMID: 19380797 DOI: 10.4049/jimmunol.0803177] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Regulatory T cells (Treg) expand during pregnancy and are present at the fetal-maternal interface at very early stages in pregnancy. The migration mechanisms of Treg to the pregnant uterus are still unclear. Human chorionic gonadotropin (hCG) is secreted by the blastocyst immediately after fertilization and has chemoattractant properties. Therefore, we sought to analyze whether hCG secreted by early trophoblasts attracts Treg to the uterus and hence contributes to maternal tolerance toward the fetus. Decidua and placenta tissue samples from patients having spontaneous abortions or ectopic pregnancies were employed to evaluate Treg and hCG levels. Age-matched samples from normal pregnant women served as controls. We further performed in vitro studies with primary first trimester trophoblast cells and a choriocarcinoma cell line (JEG-3) aiming to evaluate the ability of secreted hCG to attract Treg. Patients having miscarriages or ectopic pregnancy presented significantly decreased hCG mRNA and protein levels associated with decreased Foxp3, neuropilin-1, IL-10, and TGF-beta mRNA levels as compared with normal pregnant women. Using migration assays we demonstrated that Treg were attracted by hCG-producing trophoblasts or choriocarcinoma cells. Treg migration toward cells transfected with hCG expression vectors confirmed the chemoattractant ability of hCG. Our data clearly show that hCG produced by trophoblasts attracts Treg to the fetal-maternal interface. High hCG levels at very early pregnancy stages ensure Treg to migrate to the site of contact between paternal Ags and maternal immune cells and to orchestrate immune tolerance toward the fetus.
Collapse
Affiliation(s)
- Anne Schumacher
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kane N, Kelly R, Saunders PTK, Critchley HOD. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology 2009; 150:2882-8. [PMID: 19196802 PMCID: PMC2709965 DOI: 10.1210/en.2008-1309] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The endometrial lining of the human uterus contains a population of phenotypically distinct (CD56(bright), CD16(dim)), tissue-specific, natural killer [uterine natural killer (uNK)] cells that play a key role in the establishment of a successful pregnancy. An increase in the number of endometrial uNK cells occurs when the conceptus implants, and there is a further increase during the early stages of placentation. Here, we describe studies that have identified human chorionic gonadotrophin (hCG), a glycoprotein synthesized by the preimplantation conceptus, as a novel regulator of uNK cell proliferation. The impact of hCG on uNK cells was mediated via the mannose receptor (CD206) rather than by the classical hCG/LH receptor that was not expressed. The mannose receptor and hCG were colocalized on the surface of uNK cells, and proliferation did not occur if cells were incubated with deglycosylated hCG or intact hCG in the presence of excess d-Mannose. These novel observations provide new insight into the endocrine-immune dialogue that exists between the conceptus and immune cells within the receptive endometrium, and have implications for the role of uNK cell-trophoblast interactions and pregnancy outcome.
Collapse
Affiliation(s)
| | - Rodney Kelly
- MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ
| | - Philippa TK Saunders
- MRC Human Reproductive Sciences Unit, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ
| | - Hilary OD Critchley
- Corresponding author: Professor Hilary OD Critchley, Division of Reproductive and Developmental Sciences, The University of Edinburgh, The Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH164TJ, UK, Phone: 44 (0) 131 242 6858, Fax: +44 (0) 131 242 6441,
| |
Collapse
|
44
|
Fujiwara H. Do circulating blood cells contribute to maternal tissue remodeling and embryo-maternal cross-talk around the implantation period? Mol Hum Reprod 2009; 15:335-43. [DOI: 10.1093/molehr/gap027] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
45
|
Takao Y, Fujiwara H, Yoshioka S, Fujii S, Ueda M. Monoamine oxidase A is highly expressed by the human corpus luteum of pregnancy. Reproduction 2008; 136:367-75. [PMID: 18499710 DOI: 10.1530/rep-08-0004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the physiological characteristics of the corpus luteum (CL) of pregnancy, we raised a mAb, human corpus luteum (HCL)-4, against human luteal cells obtained from CL of pregnancy. The affinity-purified antigen from human CL of pregnancy or placenta using HCL-4 was a 61 kDa protein. The partial amino acid sequence of the antigenic protein was identical to that of human monoamine oxidase A (MAOA, EC1.4.3.4). MAOA has been shown to catabolize catecholamines that were reported to regulate luteal function in CL and vasoconstriction in various organs. Immunohistochemistry using HCL-4 mAb showed that MAOA was intensely expressed on large luteal cells and moderately expressed on small luteal cells in the CL of pregnancy. In the CL of menstrual cycle, MAOA was weakly detected on large luteal cells but not detected at all on small luteal cells. Western blotting analysis confirmed the high expression of MAOA in CL of pregnancy. Northern blot analysis also showed the expression of MAOA mRNA in human CL, and showed that its expression was higher in CL of pregnancy than in CL of menstrual cycle. The increased expression of MAOA in the CL of pregnancy suggests the contribution of MAOA to the function of the CL of pregnancy.
Collapse
Affiliation(s)
- Yumi Takao
- Department of Gynecology and Obstetrics, Faculty of Medicine Institute for Virus Research, Kyoto University, Sakyo-Ku, Kyoto 606, Japan
| | | | | | | | | |
Collapse
|
46
|
Ticconi C, Zicari A, Belmonte A, Realacci M, Rao CV, Piccione E. Pregnancy-promoting actions of HCG in human myometrium and fetal membranes. Placenta 2007; 28 Suppl A:S137-43. [PMID: 17382998 DOI: 10.1016/j.placenta.2007.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 12/28/2006] [Accepted: 01/03/2007] [Indexed: 11/17/2022]
Abstract
Human chorionic gonadotropin (HCG) plays a major role in early human development through a series of well recognized pregnancy-promoting actions that are exerted in the first trimester, including maternal recognition of pregnancy, enhancement of embryo implantation and survival, stimulation of trophoblast growth and differentiation, and prolongation of the functional life of the corpus luteum. Recent research indicates that HCG can exert significant pregnancy-promoting actions also in the remainder of pregnancy through its effect on the myometrium and on fetal membranes. In the myometrium, HCG promotes the inhibition of smooth muscle cell contractility through several mechanisms, including inhibition of gap junction formation, reduction of intracellular calcium concentration, increase in the expression of progesterone receptor, and an increase in the expression of phosphodiesterase 5 (PDE5), an enzyme controlling the intracellular levels of cGMP. This effect appears to be specific for PDE5 since it has not been found for other hormones potentially involved in pregnancy such as estrogen, progesterone and thyroid hormone. In fetal membranes, HCG can modulate expression of the inducible isoform of nitric oxide synthase (iNOS), as well as specific immunoregulatory cytokines such as the high mobility group box 1 (HMGB1) protein. This accumulating evidence suggests that HCG has a wide spread pregnancy-promoting actions that are exerted in various reproductive and gestational tissues.
Collapse
Affiliation(s)
- C Ticconi
- Department of Surgery, Section of Gynecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Kosaka K, Fujiwara H, Yoshioka S, Fujii S. Vascular endothelial growth factor production by circulating immune cells is elevated in ovarian hyperstimulation syndrome. Hum Reprod 2007; 22:1647-51. [PMID: 17356124 DOI: 10.1093/humrep/dem042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic disease manifesting itself by ovarian enlargement and massive ascites with increased peritoneal capillary permeability. Although vascular endothelial growth factor (VEGF) is considered to play the main role in developing OHSS, its precise mechanism remains unclear. In this study, we examined possible roles of circulating immune cells in the pathogenesis of OHSS. METHODS Peripheral blood mononuclear cells (PBMC) and plasma were collected from healthy non-pregnant volunteers and from patients receiving ovulation induction for IVF. PBMC were cultured for 48 h. Plasma and/or medium concentrations of VEGF, estradiol and progesterone were measured using enzyme-linked immunosorbent assay and radioimmunoassay kits. RESULTS VEGF production by cultured PBMC and plasma concentrations of VEGF taken from patients with early onset OHSS (n = 12) were significantly higher than those in non-pregnant volunteers and patients without OHSS whose oocyte retrieval rates were similar to that of OHSS patients. OHSS patients were further classified into a high plasma VEGF concentration group and a high culture medium VEGF group. There was no significant correlation among VEGF production by PBMC and plasma concentration of VEGF, estradiol or progesterone. CONCLUSION Although mechanistic evidence has not been provided, our study does provide new evidence to suggest that circulating immune cells are involved in the pathogenesis of OHSS via VEGF production.
Collapse
Affiliation(s)
- Kenzo Kosaka
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
48
|
Ticconi C, Piccione E, Belmonte A, Rao CV. HCG--A new kid on the block in prematurity prevention. J Matern Fetal Neonatal Med 2007; 19:687-92. [PMID: 17127491 DOI: 10.1080/14767050600921315] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human chorionic gonadotropin (HCG) is a molecule with multiple endocrine, paracrine, and immunoregulatory actions. Its importance for the enhancement of fertility, successful implantation, and survival of the conceptus in early gestation is recognized. However, studies conducted worldwide in recent years indicate that HCG may also play a significant role in maintaining pregnancy well after the first trimester. Emerging evidence suggests that different biomolecular and physiologic effects of HCG are concordantly directed toward inhibition of myometrial contractility to maintain pregnancy. These studies have prompted preliminary animal and human testing of HCG for the prevention of preterm birth. This article reviews the current knowledge as well as the future perspectives on HCG as a useful new tool in prematurity prevention.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgery, Section of Gynecology and Obstetrics, University of Rome Tor Vergata, 00133, Rome, Italy.
| | | | | | | |
Collapse
|
49
|
Delves PJ, Iles RK, Roitt IM, Lund T. Designing a new generation of anti-hCG vaccines for cancer therapy. Mol Cell Endocrinol 2007; 260-262:276-81. [PMID: 17049720 DOI: 10.1016/j.mce.2006.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 02/19/2006] [Indexed: 11/21/2022]
Abstract
The heterodimeric 'pregnancy-specific' hormone human chorionic gonadotropin (hCG) has been used as the basis for a contraceptive vaccine. More recently, the observation that hCG, particularly in the form of the beta-chain expressed in the absence of alpha-chain, is aberrantly expressed in a number of different tumors has opened up a second potential application for such vaccines. Drawbacks of the currently available vaccines are that they are either relatively weakly immunogenic or that they induce antibodies that cross-react with human leuteinizing hormone (hLH). We have explored the possibility of creating mutated versions of the hCG beta-chain with improved immunologic properties.
Collapse
Affiliation(s)
- P J Delves
- Department of Immunology and Molecular Pathology, Division of Infection and Immunity, University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Barron AM, Fuller SJ, Verdile G, Martins RN. Reproductive hormones modulate oxidative stress in Alzheimer's disease. Antioxid Redox Signal 2006; 8:2047-59. [PMID: 17034349 DOI: 10.1089/ars.2006.8.2047] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by gradual cognitive decline, impairments in speech and language, and dysfunction in the sensorimotor systems, culminating in complete reliance on nursing care. Oxidative stress, caused by an imbalance in the pro-oxidant/antioxidant mechanisms in the body, has been implicated in AD pathogenesis, as in many other age-associated diseases such as atherosclerosis, Parkinson disease, and amyotrophic lateral sclerosis. Although the hormones estrogen, progesterone, testosterone, and luteinizing hormone are best known for their roles in reproduction, many studies show these hormones have other roles, including neuroprotection. Changes in the levels of these hormones that occur in reproductive senescence are hypothesized to increase risk of AD, as a result of reduced protection against oxidative insults. The Abeta peptide, overproduction of which is thought to be a key pathogenic event in the development of AD, is neurotoxic, most likely due to its ability to promote oxidative stress. The reproductive hormones are known to influence Abeta metabolism, and this review discusses the beneficial and detrimental effects these hormones have on Abeta production and oxidative stress, and their relevance in potential AD therapies.
Collapse
Affiliation(s)
- Anna M Barron
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, Australia
| | | | | | | |
Collapse
|