1
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
2
|
Sousa LG, Alves P, Teixeira N, Correia-da-Silva G, Fonseca BM. Alterations in the pro-resolving lipid mediator machinery within first trimester maternal tissue: Implications in decidualization and miscarriage risk. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102619. [PMID: 38788346 DOI: 10.1016/j.plefa.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
A pivotal event in uterine receptivity and human reproduction is the differentiation of endometrial stromal cells into decidual cells, known as decidualization. Decidualization is interlinked with its inflammatory environment. Our study aimed to investigate the presence and role of pro-resolving lipid mediators in first trimester maternal tissue. We assessed the levels of LXA4 and RvD1, along with their metabolic LOX enzymes, in elective (control) and sporadic miscarriage samples. We investigated the effects of LXA4 and RvD1 on decidualization using primary endometrial stromal cells and the immortalized endometrial stromal St-T1b cell line. The upregulation of 12- and 15-LOX expression was observed in pregnancy tissue after sporadic miscarriage, suggesting an inflammatory imbalance. Furthermore, incubation with these lipid mediators led to a decrease in decidualization biomarkers PRL and IGFBP-1, accompanied by morphological changes indicative of aberrant differentiation. The expression of LOX enzymes in decidual natural killer cells suggests their involvement in regulating the inflammatory surroundings and the extent of decidualization.
Collapse
Affiliation(s)
- Luísa G Sousa
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Patrícia Alves
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal.
| |
Collapse
|
3
|
Günther V, Allahqoli L, Deenadayal-Mettler A, Maass N, Mettler L, Gitas G, Andresen K, Schubert M, Ackermann J, von Otte S, Alkatout I. Molecular Determinants of Uterine Receptivity: Comparison of Successful Implantation, Recurrent Miscarriage, and Recurrent Implantation Failure. Int J Mol Sci 2023; 24:17616. [PMID: 38139443 PMCID: PMC10743587 DOI: 10.3390/ijms242417616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Embryo implantation is one of the most remarkable phenomena in human reproduction and is not yet fully understood. Proper endometrial function as well as a dynamic interaction between the endometrium itself and the blastocyst-the so-called embryo-maternal dialog-are necessary for successful implantation. Several physiological and molecular processes are involved in the success of implantation. This review describes estrogen, progesterone and their receptors, as well as the role of the cytokines interleukin (IL)-6, IL-8, leukemia inhibitory factor (LIF), IL-11, IL-1, and the glycoprotein glycodelin in successful implantation, in cases of recurrent implantation failure (RIF) and in cases of recurrent pregnancy loss (RPL). Are there differences at the molecular level underlying RIF or RPL? Since implantation has already taken place in the case of RPL, it is conceivable that different molecular biological baseline situations underlie the respective problems.
Collapse
Affiliation(s)
- Veronika Günther
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Leila Allahqoli
- School of Public Health, Iran University of Medical Sciences (IUMS), Tehran 14535, Iran
| | - Anupama Deenadayal-Mettler
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Nicolai Maass
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Liselotte Mettler
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Georgios Gitas
- Private Gynecologic Practice, Chrisostomou Smirnis 11Β, 54622 Thessaloniki, Greece
| | - Kristin Andresen
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Melanie Schubert
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Johannes Ackermann
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Sören von Otte
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| |
Collapse
|
4
|
Luo Y, Chen J, Cui Y, Fang F, Zhang Z, Hu L, Chen X, Li Z, Li L, Chen L. Transcriptome-wide high-throughput m 6 A sequencing of differential m 6 A methylation patterns in the decidual tissues from RSA patients. FASEB J 2023; 37:e22802. [PMID: 36786696 DOI: 10.1096/fj.202201232rrrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Recurrent spontaneous abortion (RSA) is characterized by two or more consecutive pregnancy losses in the first trimester of pregnancy, experienced by 5% of women during their reproductive age. As a complex pathological process, the etiology of RSA remains poorly understood. Recent studies have established that gene expression changes dramatically in human endometrial stromal cells (ESCs) during decidualization. N6-methyladenosine (m6 A) modification is the most prevalent epigenetic modification of mRNA in eukaryotic cells and it is closely related to the occurrence and development of many pathophysiological phenomena. In this study, we first confirmed that high levels of m6 A mRNA methylation in decidual tissues are associated with RSA. Then, we used m6 A-modified RNA immunoprecipitation sequence (m6 A-seq) and RNA sequence (RNA-seq) to identify the differentially expressed m6 A methylation in decidual tissues from RSA patients and identified the key genes involved in abnormal decidualization by bioinformatics analysis. Using m6 A-seq, we identified a total of 2169 genes with differentially expressed m6 A methylation, of which 735 m6 A hypermethylated genes and 1434 m6 A hypomethylated genes were identified. Further joint analysis of m6 A-seq and RNA-seq revealed that 133 genes were m6 A modified with mRNA expression. GO and KEGG analyses indicated that these unique genes were mainly enriched in environmental information processing pathways, including the cytokine-cytokine receptor interaction and PI3K-Akt signaling pathway. In summary, this study uncovered the transcriptome-wide m6 A modification pattern in decidual tissue of RSA, which provides a theoretical basis for further research into m6 A modification and new therapeutic strategies for RSA.
Collapse
Affiliation(s)
- Yong Luo
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Jin Chen
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ying Cui
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Fang Fang
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Ziyu Zhang
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lili Hu
- Ambulatory Surgery Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xiaoyong Chen
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Zengming Li
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Liping Li
- Prenatal Diagnosis Center, Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
The Update Immune-Regulatory Role of Pro- and Anti-Inflammatory Cytokines in Recurrent Pregnancy Losses. Int J Mol Sci 2022; 24:ijms24010132. [PMID: 36613575 PMCID: PMC9820098 DOI: 10.3390/ijms24010132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy losses (RPL) is a common reproductive disorder with various underlying etiologies. In recent years, rapid progress has been made in exploring the immunological mechanisms for RPL. A propensity toward Th2 over Th1 and regulatory T (Treg) over Th17 immune responses may be advantageous for reproductive success. In women with RPL and animals prone to abortion, an inordinate expression of cytokines associated with implantation and early embryo development is present in the endometrium or decidua secreted from immune and non-immune cells. Hence, an adverse cytokine milieu at the maternal-fetal interface assaults immunological tolerance, leading to fetal rejection. Similar to T cells, NK cells can be categorized based on the characteristics of cytokines they secrete. Decidual NK (dNK) cells of RPL patients exhibited an increased NK1/NK2 ratio (IFN-γ/IL-4 producing NK cell ratios), leading to pro-inflammatory cytokine milieu and increased NK cell cytotoxicity. Genetic polymorphism may be the underlying etiologies for Th1 and Th17 propensity since it alters cytokine production. In addition, various hormones participate in cytokine regulations, including progesterone and estrogen, controlling cytokine balance in favor of the Th2 type. Consequently, the intricate regulation of cytokines and hormones may prevent the RPL of immune etiologies. Local or systemic administration of cytokines or their antagonists might help maintain adequate cytokine milieu, favoring Th2 over Th1 response or Treg over Th17 immune response in women with RPL. Herein, we provided an updated comprehensive review regarding the immune-regulatory role of pro- and anti-inflammatory cytokines in RPL. Understanding the roles of cytokines involved in RPL might significantly advance the early diagnosis, monitoring, and treatment of RPL.
Collapse
|
6
|
Chang Z, Kuang HX, Zhou X, Zhu H, Zhang Y, Fu Y, Fu Q, Jiang B, Wang W, Jiang S, Ren L, Ma L, Pan X, Feng XL. Temporal changes in cyclinD-CDK4/CDK6 and cyclinE-CDK2 pathways: implications for the mechanism of deficient decidualization in an immune-based mouse model of unexplained recurrent spontaneous abortion. Mol Med 2022; 28:100. [PMID: 36050637 PMCID: PMC9438304 DOI: 10.1186/s10020-022-00523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deficient endometrial decidualization has been associated with URSA. However, the underlying mechanism is poorly understood. This study aimed to investigate the temporal cytokine changes and the involvement of CyclinD-CDK4/6 and CyclinE-CDK2 pathways in the regulation of the G1 phase of the cell cycle during decidualization in a murine model of URSA. METHODS Serum and decidual tissues of mice were collected from GD4 to GD8. The embryo resorption and abortion rates were observed on GD8 and the decidual tissue status was assessed. In addition, PRL, Cyclin D, CDK6, CDK4, Cyclin E, CDK2 expression in mice were measured. RESULTS URSA mice showed high embryo resorption rate and PRL, Cyclin D, Cyclin E CDK2, CDK4, CDK6 down-regulation during decidualization. The hyperactivated Cyclin D-CDK4/CDK6 and cyclin E/CDK2 pathways inhibit the decidualization process and leading to deficient decidualization. CONCLUSION Insufficient decidualization is an important mechanism of URSA. which is related to the decrease of Cyclin D、Cyclin E、 CDK2、CDK4 and CDK6 in decidualization process of URSA.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xueming Zhou
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yang Zhang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yin Fu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiang Fu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Sha Jiang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
| | - Li Ren
- Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, China
| | - Lei Ma
- Zhaoqing City Guangdong Province Hospital of Traditional Chinese Medicine, Zhaoqing, China
| | - Xue Pan
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Xiao-Ling Feng
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
7
|
Cheng J, Liang J, Li Y, Gao X, Ji M, Liu M, Tian Y, Feng G, Deng W, Wang H, Kong S, Lu Z. Shp2 in uterine stromal cells critically regulates on time embryo implantation and stromal decidualization by multiple pathways during early pregnancy. PLoS Genet 2022; 18:e1010018. [PMID: 35025868 PMCID: PMC8791483 DOI: 10.1371/journal.pgen.1010018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/26/2022] [Accepted: 01/05/2022] [Indexed: 11/19/2022] Open
Abstract
Approximately 75% of failed pregnancies are considered to be due to embryo implantation failure or defects. Nevertheless, the explicit signaling mechanisms governing this process have not yet been elucidated. Here, we found that conditional deletion of the Shp2 gene in mouse uterine stromal cells deferred embryo implantation and inhibited the decidualization of stromal cells, which led to embryonic developmental delay and to the death of numerous embryos mid-gestation, ultimately reducing female fertility. The absence of Shp2 in stromal cells increased the proliferation of endometrial epithelial cells, thereby disturbing endometrial epithelial remodeling. However, Shp2 deletion impaired the proliferation and polyploidization of stromal cells, which are distinct characteristics of decidualization. In human endometrial stromal cells (hESCs), Shp2 expression gradually increased during the decidualization process. Knockout of Shp2 blocked the decidual differentiation of hESCs, while Shp2 overexpression had the opposite effect. Shp2 knockout inhibited the proliferation of hESCs during decidualization. Whole gene expression profiling analysis of hESCs during the decidualization process showed that Shp2 deficiency disrupted many signaling transduction pathways and gene expression. Analyses of hESCs and mouse uterine tissues confirmed that the signaling pathways extracellular regulated protein kinases (ERK), protein kinase B (AKT), signal transducer and activator of transcription 3 (STAT3) and their downstream transcription factors CCAAT/enhancer binding protein β (C/EBPβ) and Forkhead box transcription factor O1 (FOXO-1) were involved in the Shp2 regulation of decidualization. In summary, these results demonstrate that Shp2 plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Our discovery possibly provides a novel key regulator of embryo implantation and novel therapeutic target for pregnancy failure. Embryo implantation includes the establishment of uterine receptivity, blastocyst attachment, and endometrial decidualization. Disorders of this process usually induce pregnancy failure, resulting in women infertility. But the signaling mechanisms governing this process remain unclear. Here, using gene knockout mouse model and human endometrial stromal cells (hESCs), we identified a novel key regulator of embryo implantation, Shp2, which plays a crucial role in stromal decidualization by mediating and coordinating multiple signaling pathways in uterine stromal cells. Shp2 deficiency in mouse uterine stromal cells inhibited the uterine stromal decidualization, disturbing embryo implantation and embryonic development, ultimately reducing female fertility. The absence of Shp2 in hESCs also blocked the decidual differentiation. Our findings not only promote the understanding of peri-implantation biology, but may also provide a critical target for more effectively diagnose and/or treat women with recurrent implantation failure or early pregnancy loss.
Collapse
Affiliation(s)
- Jianghong Cheng
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Jia Liang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingzhe Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Xia Gao
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengjun Ji
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Mengying Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Yingpu Tian
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
| | - Gensheng Feng
- Department of Pathology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Wenbo Deng
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Shuangbo Kong
- Reproductive Medical Centre, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, Fujian, China
- * E-mail: (HW); (SK); (ZL)
| |
Collapse
|
8
|
Halari CD, Renaud SJ, Lala PK. Molecular mechanisms in IL-1β-mediated decorin production by decidual cells. Mol Hum Reprod 2021; 27:6463501. [PMID: 34915564 DOI: 10.1093/molehr/gaab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Decorin, a small leucine-rich proteoglycan produced by decidual cells restrains trophoblast differentiation, migration and invasiveness of extra-villous trophoblast cells. Decidual overproduction of decorin is associated with preeclampsia, and elevated decorin levels in maternal plasma are a predictive biomarker of preeclampsia. Furthermore, decorin plays an autocrine role in maturation of human endometrial stromal cells into decidual cells. Thus, a balanced decorin production by the decidua is critical for healthy pregnancy. However, the molecular mechanisms regulating decorin production by the decidua are unclear. Interleukin-1 beta is an inflammation-associated multi-functional cytokine, and is reported to induce decidualization in primates. Hence, the present study was designed: (i) to test if exogenous Interleukin-1 beta stimulated decorin production by human endometrial stromal cells; and if so, (ii) to identify the cellular source of Interleukin-1 beta in first trimester decidual tissue; (iii) to identify the downstream molecular partners in Interleukin-1 beta mediated decorin production by human endometrial stromal cells. Results revealed that (i) amongst multiple pro-inflammatory cytokines tested, Interleukin-1 beta alone stimulated decorin production by these cells; (ii) both macrophages and decidual cells in first trimester decidua produced Interleukin-1 beta; (iii) Interleukin-1 beta mediated decorin production was dependent on Interleukin-1 receptor activation, followed by activation and nuclear translocation of nuclear factor kappa B and its binding to the decorin promoter. These results reveal that Interleukin-1 beta plays a novel role in inducing decorin production by human endometrial stromal cells by activating nuclear factor kappa B.
Collapse
Affiliation(s)
- C D Halari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - S J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - P K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Gurung S, Greening DW, Rai A, Poh QH, Evans J, Salamonsen LA. The proteomes of endometrial stromal cell-derived extracellular vesicles following a decidualizing stimulus define the cells' potential for decidualization success. Mol Hum Reprod 2021; 27:6370708. [PMID: 34524461 DOI: 10.1093/molehr/gaab057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adequate endometrial stromal cell (ESC) decidualization is vital for endometrial health. Given the importance of extracellular vesicles (EVs) in intercellular communication, we investigated how their protein landscape is reprogrammed and dysregulated during decidual response. Small EVs (sEVs) from human ESC-conditioned media at Day-2 and -14 following decidual stimuli were grouped as well- (WD) or poorly decidualized (PD) based on their prolactin secretion and subjected to mass spectrometry-based quantitative proteomics. On Day 2, in PD- versus WD-ESC-sEVs, 17 sEV- proteins were down-regulated (C5, C6; complement/coagulation cascades, and SERPING1, HRG; platelet degranulation and fibrinolysis) and 39 up-regulated (FLNA, COL1A1; focal adhesion, ENO1, PKM; glycolysis/gluconeogenesis, and RAP1B, MSN; leukocyte transendothelial migration). On Day 14, in PD- versus WD-ESC-sEVs, FLNA was down-regulated while 21 proteins were up-regulated involved in complement/coagulation cascades (C3, C6), platelet degranulation (SERPINA4, ITIH4), B-cell receptor signalling and innate immune response (immunoglobulins). Changes from Days 2 to 14 suggested a subsequent response in PD-ESC-sEVs with 89 differentially expressed proteins mostly involved in complement and coagulation cascades (C3, C6, C5), but no change in WD-ESC-sEVs ESC. Poor decidualization was also associated with loss of crucial sEV-proteins for cell adhesion and invasion (ITGA5, PFN1), glycolysis (ALDOA, PGK1) and cytoskeletal reorganization (VCL, RAC1). Overall, this study indicates varied ESC response even prior to decidualization and provides insight into sEVs-proteomes as a benchmark of well-decidualized ESC. It shows distinct variation in sEV-protein composition depending on the ESC decidual response that is critical for embryo implantation, enabling and limiting trophoblast invasion during placentation and sensing a healthy embryo.
Collapse
Affiliation(s)
- Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash Health, Monash University, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
10
|
Jiang Y, Li J, Li G, Liu S, Lin X, He Y, Lu J, Zhang Y, Wu J, Yang Z, Jiang Y, Wang H, Kong S, Shi G. Osteoprotegerin interacts with syndecan-1 to promote human endometrial stromal decidualization by decreasing Akt phosphorylation. Hum Reprod 2021; 35:2439-2453. [PMID: 33047116 DOI: 10.1093/humrep/deaa233] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2020] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Does osteoprotegerin (OPG) promote human endometrial stromal decidualization? SUMMARY ANSWER OPG is essential for human endometrial stromal decidualization through its interaction with syndecan-1 to decrease Akt phosphorylation. WHAT IS KNOWN ALREADY OPG (a cytokine receptor) levels are significantly increased in the circulation of pregnant women. However, the role and mechanism of OPG in human endometrial stromal cell (ESC) decidualization remain elusive. STUDY DESIGN, SIZE, DURATION We analyzed the endometrial expression of OPG in endometrial tissue samples collected from women with regular menstrual cycles (ranging from 25 to 35 days), and decidual tissue samples collected from woman with normal early pregnancy or recurrent pregnancy loss (RPL) who visited the Department of Gynecology and Obstetrics at a tertiary care center from January to October 2018. None of the subjects had hormonal treatment for at least 3 months prior to the procedure. In total, 16 women with normal early pregnancy and 15 with RPL were selected as subjects for this study. The function of OPG in decidualization was explored in a human endometrial stromal cell (HESC) line and primary cultures of HESCs. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected endometrial tissues (by biopsy) from the subjects during their menstrual cycle and decidual tissues from subjects with a normal early pregnancy and those with RPL at the time of dilation and curettage. The control group comprised randomly selected women who underwent termination of an apparently normal early pregnancy. The endometrial OPG expression was analyzed using immunohistochemical staining and quantitative RT-PCR (qRT-PCR). Immunofluorescence staining and western blot, and qRT-PCR were used to explore the mRNA and protein expression, respectively, of OPG in an immortalized HESC line and in primary cultures of HESC during proliferation and decidualization. siRNA-mediated knockdown experiments were performed to examine the function of OPG in HESC proliferation and decidualization. Flow cytometry and the cell proliferation MTS assay were performed to further examine the role of OPG in HESC proliferation. We also analyzed decidual marker gene expression by qRT-PCR to assess the consequences of OPG loss for HESC decidualization. A co-immunoprecipitation (IP) assay was used to determine the potential interaction between the OPG and Syndecan-1. Western blot analysis of the rescue experiments performed using the phosphatidylinositol 3-kinase (PI3K) signaling-specific inhibitor LY294002 was used to investigate the downstream signaling pathways through which OPG could mediate HESC decidualization. MAIN RESULTS AND THE ROLE OF CHANCE OPG was expressed in both the human endometrium and in vitro decidualized ESCs. Knockdown experiments revealed that OPG loss impaired the expression of IGF-binding protein-1 (IGFBP-1) (P < 0.05) and prolactin (PRL) (P < 0.05), two specific markers of decidualization, in HESC undergoing decidualization. We also uncovered that OPG knockdown induced the aberrant activation of Akt (protein kinase B) during HESC decidualization (P < 0.05). The inhibition of Akt activation could rescue the impaired expression of the decidual markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) in response to OPG knockdown. Syndecan-1 was considered a potential receptor candidate, as it was expressed in both the endometrium and in vitro cultured stromal cells. Subsequent co-IP experiments demonstrated the interaction between OPG and Syndecan-1 during decidualization. In addition, Syndecan-1 knockdown not only clearly attenuated the decidualization markers PRL (P < 0.05) and IGFBP-1 (P < 0.05) but also induced the aberrant enhancement of Akt phosphorylation in decidualized cells, consistent with the phenotype of OPG knockdown cells. Finally, we revealed that the transcript and protein expression of both OPG and Syndecan-1 was significantly lower in the decidual samples of women with RPL than in those of women with normal pregnancy (P < 0.05). LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION In this study, based on a number of approaches, it was demonstrated that OPG mediated the repression of Akt that occurs during human stromal cell decidualization, however, the molecular link between OPG and Akt signaling was not determined, and still requires further exploration. WIDER IMPLICATIONS OF THE FINDINGS OPG is required for decidualization, and a decrease in OPG levels is associated with RPL. These findings provide a new candidate molecule for the diagnosis and potential treatment of RPL. STUDY FUNDING/COMPETING INTEREST(S) This work was supported in part by the National Natural Science Foundation of China U1605223 (to G.S.), 81701457 (to Y.J.) and 81601349 (to Y.J.). The authors have no conflicts of interest to disclose.
Collapse
Affiliation(s)
- Yufei Jiang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Xiamen Key Laboratory of Reproduction and Genetics, Reproductive Medical Center, Maternal and Child Health Hospital of Xiamen, Xiamen, Fujian, China
| | - Jianing Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Gaizhen Li
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Songting Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xinjie Lin
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ying Zhang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinxiang Wu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhiping Yang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yaling Jiang
- Department of Obstetrics and Gynecology, Reproductive Medical Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Obstetrics and Gynecology, Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, Fujian, China.,Department of Obstetrics and Gynecology, Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
George AF, Jang KS, Nyegaard M, Neidleman J, Spitzer TL, Xie G, Chen JC, Herzig E, Laustsen A, Marques de Menezes EG, Houshdaran S, Pilcher CD, Norris PJ, Jakobsen MR, Greene WC, Giudice LC, Roan NR. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling. Hum Reprod 2021; 35:617-640. [PMID: 32219408 DOI: 10.1093/humrep/deaa015] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Do seminal plasma (SP) and its constituents affect the decidualization capacity and transcriptome of human primary endometrial stromal fibroblasts (eSFs)? SUMMARY ANSWER SP promotes decidualization of eSFs from women with and without inflammatory disorders (polycystic ovary syndrome (PCOS), endometriosis) in a manner that is not mediated through semen amyloids and that is associated with a potent transcriptional response, including the induction of interleukin (IL)-11, a cytokine important for SP-induced decidualization. WHAT IS KNOWN ALREADY Clinical studies have suggested that SP can promote implantation, and studies in vitro have demonstrated that SP can promote decidualization, a steroid hormone-driven program of eSF differentiation that is essential for embryo implantation and that is compromised in women with the inflammatory disorders PCOS and endometriosis. STUDY DESIGN, SIZE, DURATION This is a cross-sectional study involving samples treated with vehicle alone versus treatment with SP or SP constituents. SP was tested for the ability to promote decidualization in vitro in eSFs from women with or without PCOS or endometriosis (n = 9). The role of semen amyloids and fractionated SP in mediating this effect and in eliciting transcriptional changes in eSFs was then studied. Finally, the role of IL-11, a cytokine with a key role in implantation and decidualization, was assessed as a mediator of the SP-facilitated decidualization. PARTICIPANTS/MATERIALS, SETTING, METHODS eSFs and endometrial epithelial cells (eECs) were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. Assays were conducted to assess whether the treatment of eSFs with SP or SP constituents affects the rate and extent of decidualization in women with and without inflammatory disorders. To characterize the response of the endometrium to SP and SP constituents, RNA was isolated from treated eSFs or eECs and analyzed by RNA sequencing (RNAseq). Secreted factors in conditioned media from treated cells were analyzed by Luminex and ELISA. The role of IL-11 in SP-induced decidualization was assessed through Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas-9-mediated knockout experiments in primary eSFs. MAIN RESULTS AND THE ROLE OF CHANCE SP promoted decidualization both in the absence and presence of steroid hormones (P < 0.05 versus vehicle) in a manner that required seminal proteins. Semen amyloids did not promote decidualization and induced weak transcriptomic and secretomic responses in eSFs. In contrast, fractionated SP enriched for seminal microvesicles (MVs) promoted decidualization. IL-11 was one of the most potently SP-induced genes in eSFs and was important for SP-facilitated decidualization. LARGE SCALE DATA RNAseq data were deposited in the Gene Expression Omnibus repository under series accession number GSE135640. LIMITATIONS, REASONS FOR CAUTION This study is limited to in vitro analyses. WIDER IMPLICATIONS OF THE FINDINGS Our results support the notion that SP promotes decidualization, including within eSFs from women with inflammatory disorders. Despite the general ability of amyloids to induce cytokines known to be important for implantation, semen amyloids poorly signaled to eSFs and did not promote their decidualization. In contrast, fractionated SP enriched for MVs promoted decidualization and induced a transcriptional response in eSFs that overlapped with that of SP. Our results suggest that SP constituents, possibly those associated with MVs, can promote decidualization of eSFs in an IL-11-dependent manner in preparation for implantation. STUDY FUNDING/COMPETING INTEREST(S) This project was supported by NIH (R21AI116252, R21AI122821 and R01AI127219) to N.R.R. and (P50HD055764) to L.C.G. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Ashley F George
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Karen S Jang
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jason Neidleman
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | - Trimble L Spitzer
- Lt Col, USAF; Women's Health Clinic, Naval Medical Center, Portsmouth, VA, USA
| | - Guorui Xie
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| | | | - Eytan Herzig
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA
| | - Anders Laustsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Erika G Marques de Menezes
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Sahar Houshdaran
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Christopher D Pilcher
- Division of HIV, Infectious Diseases and Global Medicine, University of California, San Francisco, CA, USA
| | - Philip J Norris
- Vitalant Research Institute, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA.,Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Warner C Greene
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, CA, USA
| | - Linda C Giudice
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Nadia R Roan
- Gladstone Institute of Virology and Immunology, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|
12
|
Terawaki K, Saegusa Y, Sekiguchi K, Shimizu T, Takiyama M, Matsumoto T, Iizuka S, Matsumoto C, Motoyama F. The ameliorating effects of tokishakuyakusan in a rat model of implantation failure involves endometrial gland leukemia inhibitory factor and decidualization. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113288. [PMID: 32841695 DOI: 10.1016/j.jep.2020.113288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tokishakuyakusan (TSS) is a Kampo medicine that is prescribed for the treatment of infertility in Japan. However, its precise mechanism of action remains unclear. AIM OF THE STUDY Leukemia inhibitory factor (LIF) in the endometrium plays an indispensable role in embryo implantation and is linked to infertility or implantation failure. Previously, we demonstrated that TSS ameliorated implantation failure induced by mifepristone (RU-486), an antagonist of progesterone, in rats. Herein, we aimed to clarify whether the ameliorating effect of TSS on implantation failure in the rat model involves endometrial LIF. Additionally, we determined whether decidualization, the dysfunction of which is linked to infertility or implantation failure similar to LIF, progesterone, and other implantation-related factors, are involved in the effect of TSS. MATERIALS AND METHODS The implantation failure rat model was developed via the subcutaneous administration of RU-486 (7 mg/kg) on day 3 post-coitus. Sesame oil was administered as the vehicle control. Rats were fed a diet containing 1% or 3% TSS or a control diet from day 13 pre-coitus. Subsequently, the implantation sites were assessed, and plasma progesterone levels were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on day 8 post-coitus. The LIF mRNA of the endometrial gland, which was segmented via laser-microdissection from the endometrial tissue, was measured, and endometrial LIF immunostaining was carried out on day 5. The gene expression of different factors related to implantation, including decidualization and progesterone-responsiveness on days 5 and 6, were measured. The human endometrial Ishikawa cell line derived from human adenocarcinoma was treated with TSS (30-300 μg/mL) for 24 h, and the LIF concentrations in the cell culture supernatants were measured. RESULTS RU-486 decreased the number of implantation sites in the uterus of rats; however, the decrease was significantly alleviated by TSS (3%-diet), which tended to increase plasma progesterone. In rats with RU-486-induced implantation failure, endometrial gland LIF mRNA and endometrial LIF protein were markedly decreased while the gene expression of both decidualization-related factors such as interleukin-11, insulin-like growth factor binding protein-1, and cyclooxygenase-2, and progesterone responsive-related factors such as FK506 binding protein 5, were significantly decreased. These changes in the uterus of rats with implantation failure were significantly alleviated by TSS (3%-diet). Additionally, TSS significantly enhanced LIF protein production and LIF mRNA in Ishikawa cells. CONCLUSIONS The mechanism whereby TSS ameliorates RU-486-induced implantation failure in rats may involve the alleviation of decreased LIF production derived from the endometrial gland, and a dysfunction of decidualization, including lower progesterone responsiveness in the model. These findings may partly contribute to the interpretation of the beneficial effects of TSS on infertility.
Collapse
Affiliation(s)
- Kiyoshi Terawaki
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | - Yayoi Saegusa
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Kyoji Sekiguchi
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Tomofumi Shimizu
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Mikina Takiyama
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Takashi Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan
| | - Chinami Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., 3586 Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, 300-1192, Japan.
| | | |
Collapse
|
13
|
Santos LL, Ling CK, Dimitriadis E. Tripeptidyl peptidase I promotes human endometrial epithelial cell adhesive capacity implying a role in receptivity. Reprod Biol Endocrinol 2020; 18:124. [PMID: 33317560 PMCID: PMC7734757 DOI: 10.1186/s12958-020-00682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022] Open
Abstract
The endometrium undergoes cyclic remodelling throughout the menstrual cycle in preparation for embryo implantation which occurs in a short window during the mid-secretory phase. It is during this short 'receptive window' that the endometrial luminal epithelium acquires adhesive capacity permitting blastocysts firm adhesion to the endometrium to establish pregnancy. Dysregulation in any of these steps can compromise embryo implantation resulting in implantation failure and infertility. Many factors contribute to these processes including TGF-β, LIF, IL-11 and proteases. Tripeptidyl peptidase 1 (TPP1) is a is a lysosomal serine-type protease however the contribution of the TPP1 to receptivity is unknown. We aimed to investigate the role of TPP1 in receptivity in humans.In the current study, TPP1 was expressed in both epithelial and stromal compartments of the endometrium across the menstrual cycle. Expression was confined to the cytoplasm of luminal and glandular epithelial cells and stromal cells. Staining of mid-secretory endometrial tissues of women with normal fertility and primary unexplained infertility showed reduced immunostaining intensity of TPP1 in luminal epithelial cells of infertile tissues compared to fertile tissues. By contrast, TPP1 levels in glandular epithelial and stromal cells were comparable in both groups in the mid-secretory phase. Inhibition of TPP1 using siRNA compromised HTR8/SVneo (trophoblast cell line) spheroid adhesion on siRNA-transfected Ishikawa cells (endometrial epithelial cell line) in vitro. This impairment was associated with decreased sirtuin 1 (SIRT1), BCL2 and p53 mRNA and unaltered, CD44, CDH1, CDH2, ITGB3, VEGF A, OSTEOPONTIN, MDM2, CASP4, MCL1, MMP2, ARF6, SGK1, HOXA-10, LIF, and LIF receptor gene expression between treatment groups. siRNA knockdown of TPP1 in primary human endometrial stromal cells did not affect decidualization nor the expression of decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP1). Taken together, our data strongly suggests a role for TPP1 in endometrial receptivity via its effects on epithelial cell adhesion and suggests reduced levels associated with unexplained infertility may contribute to implantation failure.
Collapse
Affiliation(s)
- Leilani L Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, VIC, 3052, Australia
| | - Cheuk Kwan Ling
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia
- Gynaecology Research Centre, The Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, VIC, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, 3010, Australia.
- Gynaecology Research Centre, The Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
14
|
Ali S, Majid S, Ali MN, Taing S, Rehman MU, Arafah A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int Immunopharmacol 2020; 90:107118. [PMID: 33191177 DOI: 10.1016/j.intimp.2020.107118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Recurrent pregnancy loss (RPL) is a prominent reproductive disease that distresses about 2%-5% of couples. RPL is the loss of two or more successive spontaneous pregnancies prior to the 20th week of embryo development. The commencement of pregnancy necessitates implantation of the embryo into responsive maternal decidua synchronized with the process of placentation, decidual and myometrial trophoblast incursion as well as refashioning of spiral blood arteries of uterus. The collapse of any of the processes fundamental for pregnancy success may result into an array of pregnancy problems including spontaneous pregnancy loss. Endometrium of human female manufactures an extensive range of cytokines during the proliferative and secretory stage of the menstrual cycle. These endometrial cytokines are thought as major players for making the uterus ready for embryo implantation and placental development during pregnancy. Decidual cytokines regulate the invasion of trophoblast and remodeling of spiral arteries as well as take part in immune suppression to accomplish the pregnancy. Deterrence of maternal rejection of embryo needs a regulated milieu, which takes place essentially at the embryo-maternal interface and the tissues of the uterus. The reasons of RPL remain anonymous in a large number of cases that lead to difficulties in management and severe trauma in couples. Cytokine modulatory therapies have been shown promising for preventing RPL. Further study of novel factors is wanted to establish more effective RPL treatment protocols. The present study aims to review the outcome of cytokine breach at materno-embryonic interface and the efficacy of cytokine modulatory therapies in RPL.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India; Department of Biochemistry, Government Medical College, Srinagar, J&K, India.
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India.
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Govt. Medical College Associated Lalla Ded Hospital, Srinagar, J&K, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
An J, Li L, Zhang X, Liu L, Wang L, Zhang X. A clinical and basic study of optimal endometrial preparation protocols for patients with infertility undergoing frozen-thawed embryo transfer. Exp Ther Med 2020; 20:2191-2199. [PMID: 32765695 PMCID: PMC7401479 DOI: 10.3892/etm.2020.8914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/17/2020] [Indexed: 11/05/2022] Open
Abstract
The optimal protocol for endometrial preparation in patients with infertility remains unclear. Due to this, the current study retrospectively analyzed 1,589 patients with infertility and regular menstrual cycles to assess reproductive outcomes per embryo transferred and per embryo transfer (ET) cycle following the transfer of frozen-thawed embryos (FET) in a modified natural cycle (mNC) or hormone therapy cycle (HT) with or without gonadotropin-releasing hormone agonist (GnRHa)-induced pituitary suppression. The molecular mechanisms involved were also studied using tissues from endometrial biopsies. Patients who underwent FET were assigned to 5 groups as follows: Group A underwent a mNC (n=276); group B (n=338) received estradiol (E2) and progesterone (P4); group C received 1 cycle of GnRHa, E2 and P4 (n=323); group D received 2 cycles of GnRHa, E2 and P4 (n=329); and group E received 3 cycles of GnRHa, E2 and P4 (n=323). Tissues from endometrial biopsies of 91 patients performed on the day of ET were tested for endometrial receptivity marker mRNA expression and microRNA (miR)-223-3p mRNA. Furthermore, endometrial stromal cells (ESCs) were used for an in-depth study of the molecular mechanisms involved. Among the 5 groups of patients, implantation rates, clinical pregnancy rates and live birth rates were not significantly different. However, endometrial receptivity was enhanced in group E when compared with groups A-D, which was associated with endometrial leukemia inhibitory factor (LIF), osteopontin, vascular endothelial growth factor, integrin β3 and homeobox gene 10 and 11 mRNA upregulation, and miR-223-3p miRNA downregulation. Transfection of ESCs with an miR-223-3p mimic significantly reduced levels of LIF mRNA and protein. In addition, pre-treating ESCs with GnRHa upregulated mRNA and protein expression of the decidualization markers prolactin and insulin-like growth factor binding protein-1 in a time-dependent manner. In conclusion, these results indicated that HT with GnRHa may be a potential endometrial preparation protocol for FET.
Collapse
Affiliation(s)
- Junxia An
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lifei Li
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiang Zhang
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lin Liu
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Liyan Wang
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xuehong Zhang
- The Reproductive Medicine Special Hospital of The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Key Laboratory for Reproductive Medicine and Embryo of Gansu, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
16
|
Freis A, Germeyer A, Jauckus J, Capp E, Strowitzki T, Zorn M, Machado Weber A. Endometrial expression of receptivity markers subject to ovulation induction agents. Arch Gynecol Obstet 2019; 300:1741-1750. [PMID: 31667611 DOI: 10.1007/s00404-019-05346-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Implantation rates differ according to ovulation induction agents in ART. This study investigates the different local endometrial effects of LH- versus hCG-induced ovulation. METHODS Endometrial stromal cells from healthy patients were cultured with hCG or LH in different concentrations, supplemented with 250 ng/mL hCG and progesterone after 2 and 5 days. In addition after decidualization induction, cells were treated with hCG (50 or 250 ng/mL) or LH (10 or 50 ng/mL) for 3 days. Receptivity markers expression was evaluated by real-time quantitative PCR on day 3 and 6. RESULTS On day 3, non-decidualized cells treated with LH showed an increased expression of IGFBP1, IL-8 and CXCL12 compared to hCG. The expression pattern changed on day 6, where cells treated with hCG showed higher expression of implantation markers compared to LH-treated cells. Furthermore, on day 3, decidualized cells treated with hCG250 showed an increased IL8 and CXCL12 expression compared to LH10. CONCLUSIONS LH seems to modulate the local endometrial expression of receptivity markers earlier compared to hCG; however, the effect is not sustained over time in cells without prior decidualization. Though, in decidualized cells, pattern changed and an earlier positive effect of hCG was shown on IL-8 and CXCL12.
Collapse
Affiliation(s)
- Alexander Freis
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Ariane Germeyer
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Jauckus
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Edison Capp
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany.,Department of Obstetrics and Gynecology, Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomas Strowitzki
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Zorn
- Central Laboratory, University of Heidelberg, Heidelberg, Germany
| | - Amanda Machado Weber
- Department of Gynaecological Endocrinology and Fertility Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
New Insights into the Process of Placentation and the Role of Oxidative Uterine Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9174521. [PMID: 31341539 PMCID: PMC6615000 DOI: 10.1155/2019/9174521] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022]
Abstract
For a successful pregnancy to occur, a predecidualized receptive endometrium must be invaded by placental differentiated cells (extravillous trophoblast cells (EVTs)) and, at the same time, continue decidualization. EVT invasion is aimed at anchoring the placenta to the maternal uterus and ensuring local blood supply increase necessary to provide normal placental and foetal development. The first is achieved by migrating through the maternal endometrium and deeper into the myometrium, while the second by transforming uterine spiral arteries into large vessels. This process is a tightly regulated battle comprising interests of both the mother and the foetus. Invading EVTs are required to perform a scope of functions: move, adhere, proliferate, differentiate, interact, and digest the extracellular matrix (ECM); tolerate hypoxia; transform the maternal spiral arteries; and die by apoptosis. All these functions are modulated by their surrounding microenvironment: oxygen, soluble factors (e.g., cytokines, growth factors, and hormones), ECM proteins, and reactive oxygen species. A deeper comprehension of oxidative uterine microenvironment contribution to trophoblast function will be addressed in this review.
Collapse
|
18
|
Ochiai A, Kuroda K, Ozaki R, Ikemoto Y, Murakami K, Muter J, Matsumoto A, Itakura A, Brosens JJ, Takeda S. Resveratrol inhibits decidualization by accelerating downregulation of the CRABP2-RAR pathway in differentiating human endometrial stromal cells. Cell Death Dis 2019; 10:276. [PMID: 30894514 PMCID: PMC6427032 DOI: 10.1038/s41419-019-1511-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
Abstract
Pregnancy critically depends on the transformation of the human endometrium into a decidual matrix that controls embryo implantation and placenta formation, a process driven foremost by differentiation and polarization of endometrial stromal cells into mature and senescent decidual cells. Perturbations in the decidual process underpin a spectrum of prevalent reproductive disorders, including implantation failure and early pregnancy loss, emphasizing the need for new therapeutic interventions. Resveratrol is a naturally occurring polyphenol, widely used for its antioxidant and anti-inflammatory properties. Using primary human endometrial stromal cell (HESC) cultures, we demonstrate that resveratrol has anti-deciduogenic properties, repressing not only the induction of the decidual marker genes PRL and IGFBP1 but also abrogating decidual senescence. Knockdown of Sirtuin 1, a histone deacetylase activated by resveratrol, restored the expression of IGFBP1 but not the induction of PRL or senescence markers in decidualizing HESCs, suggesting involvement of other pathways. We demonstrate that resveratrol interferes with the reprogramming of the retinoic acid signaling pathway in decidualizing HESCs by accelerating down-regulation of cellular retinoic acid-binding protein 2 (CRABP2) and retinoic acid receptor (RAR). Notably, knockdown of CRABP2 or RAR in HESCs was sufficient to recapitulate the anti-deciduogenic effects of resveratrol. Thus, while resveratrol has been advanced as a potential fertility drug, our results indicate it may have detrimental effects on embryo implantation by interfering with decidual remodeling of the endometrium.
Collapse
Affiliation(s)
- Asako Ochiai
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keiji Kuroda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Center for Reproductive Medicine and Implantation Research, Sugiyama Clinic Shinjuku, Tokyo, 116-0023, Japan.
| | - Rie Ozaki
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Yuko Ikemoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Keisuke Murakami
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Joanne Muter
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
| | - Akemi Matsumoto
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| | - Jan J Brosens
- The Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, Coventry, CV2 2DX, UK
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire, Coventry, CV2 2DX, UK
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Juntendo University, Tokyo, 113-8421, Japan
| |
Collapse
|
19
|
Vinketova К, Karagyozov I, Koleva V, Hristov M, Mourdjeva M, Sperandio M, Oreshkova T. Progesterone and cyclic adenosine monophosphate down-regulate CD90 in the stromal cells of human decidua. In vitro evidence and in situ findings. Am J Reprod Immunol 2018; 80:e13043. [PMID: 30151982 DOI: 10.1111/aji.13043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/04/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE CD90 is a glycoprotein involved in leukocyte relocation and cell differentiation. CD90 is expressed in endothelial and stromal cells in human endometrium; however, its role in the remodeling of the decidual tissue during pregnancy is poorly understood. Here, we investigate how CD90 expression in decidual stromal cells (DSCs) is regulated. METHOD OF STUDY The native CD90 receptor in stromal cells in decidua was investigated via histology. We further develop in vitro culture of DSCs which allows us to test the effects of hormones and paracrine signals on CD90 expression. RESULTS Stromal cells in first-trimester human decidua display heterogeneous levels of CD90 expression. In vitro analyses reveal that progesterone, a factor normally secreted by trophoblast cells in the placenta, and extracellular cyclic adenosine monophosphate, a known downstream signaling messenger of progesterone, reduce CD90 expression in DSCs by ~30%. This reduction in CD90 expression correlates with a change toward a more highly differentiated cell state. CONCLUSION DSCs in early pregnancy show different levels of CD90 expression, suggesting different DSC differentiation and selective interactions with cells during decidual morphogenesis.
Collapse
Affiliation(s)
- Кameliya Vinketova
- Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction "Akad. K. Bratanov" - Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iliya Karagyozov
- Department of Gynecologic Oncology and Advanced Pelvic Surgery, Tokuda Hospital, Sofia, Bulgaria
| | | | - Michael Hristov
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Milena Mourdjeva
- Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction "Akad. K. Bratanov" - Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Tsvetelina Oreshkova
- Department of Molecular Immunology, Institute of Biology and Immunology of Reproduction "Akad. K. Bratanov" - Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
20
|
Ikhena DE, Bulun SE. Literature Review on the Role of Uterine Fibroids in Endometrial Function. Reprod Sci 2017; 25:635-643. [PMID: 28826369 DOI: 10.1177/1933719117725827] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uterine fibroids are benign uterine smooth muscle tumors that are present in up to 8 out of 10 women by the age of 50. Many of these women experience symptoms such as heavy and irregular menstrual bleeding, early pregnancy loss, and infertility. Traditionally believed to be inert masses, fibroids are now known to influence endometrial function at the molecular level. We present a comprehensive review of published studies on the effect of uterine fibroids on endometrial function. Our goal was to explore the current knowledge about how uterine fibroids interact with the endometrium and how these interactions influence clinical symptoms. Our review shows that submucosal fibroids produce a blunted decidualization response with decreased release of cytokines critical for implantation such as leukocyte inhibitory factor and cell adhesion molecules. Furthermore, fibroids alter the expression of genes relevant for implantation, such as bone morphogenetic protein receptor type II, glycodelin, among others. With regard to heavy menstrual bleeding, fibroids significantly alter the production of vasoconstrictors in the endometrium, leading to increased menstrual blood loss. Fibroids also increase the production of angiogenic factors such as basic fibroblast growth factor and reduce the production of coagulation factors resulting in heavy menses. Understanding the crosstalk between uterine fibroids and the endometrium will provide key insights into implantation and menstrual biology and drive the development of new and innovative therapeutic options for the management of symptoms in women with uterine fibroids.
Collapse
Affiliation(s)
- Deborah E Ikhena
- 1 Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Serdar E Bulun
- 1 Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
21
|
Subramani E, Rameshbabu AP, Jothiramajayam M, Subramanian B, Chakravorty D, Bose G, Joshi M, Ray CD, Lodh I, Chattopadhyay R, Saha S, Mukherjee A, Dhara S, Chakravarty B, Chaudhury K. Mycobacterial heat shock protein 65 mediated metabolic shift in decidualization of human endometrial stromal cells. Sci Rep 2017. [PMID: 28638075 PMCID: PMC5479817 DOI: 10.1038/s41598-017-04024-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Successful implantation is dependent on the appropriate decidualization of endometrial stromal cells for the establishment of pregnancy in women. Mycobacterial heat shock protein 65 (HSP65) is involved in pathogenesis of the genital tuberculosis (GTB), one of the common causes of infertility in emerging countries. Though implantation failure appears to be the major cause, understanding the status of decidualizaiton process in women diagnosed with GTB has not been thoroughly addressed. We, therefore, explored the effect of HSP65 protein on the endometrial cell metabolism during in vitro decidualization. In order to identify the cellular metabolism of decidual cells with and without HSP65 treatment, proton NMR based characterization of metabolites extracted from cells and culture media were performed. In presence of HSP65, significant reduction in the decidual phenotype of endometrial stromal cells and prolactin expression is suggestive of impairment in decidualization. The intracellular and extracellular metabolic changes in HSP65 treated endometrial stromal cells produced a distinct pattern, reflecting the interaction between the protein and cellular metabolism. HSP65 mediated dysregulation in cellular metabolism is associated with poor decidualization. Besides enriching the present knowledge on metabolic changes underlying stromal cells decidualization, these findings assist in identifying potential molecular causes for decidualization failure in GTB women.
Collapse
Affiliation(s)
- Elavarasan Subramani
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Arun Prabhu Rameshbabu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Manivannan Jothiramajayam
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced study, Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Bhuvaneshwaran Subramanian
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | | | - Gunja Bose
- Institute of Reproductive Medicine, Kolkata, 700020, West Bengal, India
| | - Mamata Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, 400005, Maharashtra, India
| | - Chaitali Datta Ray
- Department of Gynaecology and Obstetrics, Institute of Post-Graduate Medical Education and Research (IPGMER) and SSKM Hospital, Kolkata, 700020, West Bengal, India
| | - Indrani Lodh
- Institute of Reproductive Medicine, Kolkata, 700020, West Bengal, India
| | | | - Sudipto Saha
- Bioinformatics Centre, Bose Institute, Kolkata, 700054, West Bengal, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced study, Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
22
|
Ahn JI, Yoo JY, Kim TH, Kim YI, Ferguson SD, Fazleabas AT, Young SL, Lessey BA, Ahn JY, Lim JM, Jeong JW. cAMP-Response Element-Binding 3-Like Protein 1 (CREB3L1) is Required for Decidualization and its Expression is Decreased in Women with Endometriosis. Curr Mol Med 2016; 16:276-87. [PMID: 26917262 DOI: 10.2174/1566524016666160225153659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 11/22/2022]
Abstract
Endometriosis is a major cause of infertility and pelvic pain, affecting more than 10% of reproductive-aged women. Progesterone resistance has been observed in the endometrium of women with this disease, as evidenced by alterations in progesterone-responsive gene and protein expression. cAMPResponse Element-Binding 3-like protein 1 (Creb3l1) has previously been identified as a progesterone receptor (PR) target gene in mouse uterus via high density DNA microarray analysis. However, CREB3L1 function has not been studied in the context of endometriosis and uterine biology. In this study, we validated progesterone (P4) regulation of Creb3l1 in the uteri of wild-type and progesterone receptor knockout (PRKO) mice. Furthermore, we observed that CREB3L1 expression was significantly higher in secretory phase human endometrium compared to proliferative phase and that CREB3L1 expression was significantly decreased in the endometrium of women with endometriosis. Lastly, by transfecting CREB3L1 siRNA into cultured human endometrial stromal cells (hESCs) prior to hormonal induction of in vitro decidualization, we showed that CREB3L1 is required for the decidualization process. Interestingly, phosphorylation of ERK1/2, critical factor for decidualization, was also significantly reduced in CREB3L1-silenced hESCs. It is known that hESCs from patients with endometriosis show impaired decidualization and that dysregulation of the P4-PR signaling axis is linked to a variety of endometrial diseases including infertility and endometriosis. Therefore, these results suggest that CREB3L1 is required for decidualization in mice and humans and may be linked to the pathogenesis of endometriosis in a P4-dependent manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - J M Lim
- Laboratory of Stem Cell and Bioevaluation, Major in Biomodulation, Seoul National University, Seoul 151-921, Republic of Korea.
| | - J-W Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, College of Human Medicine, 333 Bostwick Avenue NE, Suite 4024, Grand Rapids, MI 49503, USA.
| |
Collapse
|
23
|
Gibson DA, Simitsidellis I, Saunders PTK. Regulation of androgen action during establishment of pregnancy. J Mol Endocrinol 2016; 57:R35-47. [PMID: 27067639 DOI: 10.1530/jme-16-0027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
During the establishment of pregnancy, the ovarian-derived hormones progesterone and oestradiol regulate remodelling of the endometrium to promote an environment that is able to support and maintain a successful pregnancy. Decidualisation is characterised by differentiation of endometrial stromal cells that secrete growth factors and cytokines that regulate vascular remodelling and immune cell influx. This differentiation process is critical for reproduction, and inadequate decidualisation is implicated in the aetiology of pregnancy disorders such as foetal growth restriction and preeclampsia. In contrast to progesterone and oestradiol, the role of androgens in regulating endometrial function is poorly understood. Androgen receptors are expressed in the endometrium, and androgens are reported to regulate both the transcriptome and the secretome of endometrial stromal cells. In androgen-target tissues, circulating precursors are activated to mediate local effects, and recent studies report that steroid concentrations detected in endometrial tissue are distinct to those detected in the peripheral circulation. New evidence suggests that decidualisation results in dynamic changes in the expression of androgen biosynthetic enzymes, highlighting a role for pre-receptor regulation of androgen action during the establishment of pregnancy. These results suggest that such enzymes could be future therapeutic targets for the treatment of infertility associated with endometrial dysfunction. In conclusion, these data support the hypothesis that androgens play a beneficial role in regulating the establishment and maintenance of pregnancy. Future studies should be focussed on investigating the safety and efficacy of androgen supplementation with the potential for utilisation of novel therapeutics, such as selective androgen receptor modulators, to improve reproductive outcomes in women.
Collapse
Affiliation(s)
- Douglas A Gibson
- Medical Research Council Centre for Inflammation ResearchQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ioannis Simitsidellis
- Medical Research Council Centre for Inflammation ResearchQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Philippa T K Saunders
- Medical Research Council Centre for Inflammation ResearchQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity. J Pregnancy 2016; 2016:8689436. [PMID: 27239344 PMCID: PMC4864559 DOI: 10.1155/2016/8689436] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 12/27/2022] Open
Abstract
The human decidua is a specialized tissue characterized by embryo-receptive properties. It is formed during the secretory phase of menstrual cycle from uterine mucosa termed endometrium. The decidua is composed of glands, immune cells, blood and lymph vessels, and decidual stromal cells (DSCs). In the process of decidualization, which is controlled by oestrogen and progesterone, DSCs acquire specific functions related to recognition, selection, and acceptance of the allogeneic embryo, as well as to development of maternal immune tolerance. In this review we discuss the relationship between the decidualization of DSCs and pathological obstetrical and gynaecological conditions. Moreover, the critical influence of DSCs on local immune cells populations as well as their relationship to the onset and maintenance of immune tolerance is described.
Collapse
|
25
|
FoxM1 Directs STAT3 Expression Essential for Human Endometrial Stromal Decidualization. Sci Rep 2015; 5:13735. [PMID: 26334131 PMCID: PMC4558550 DOI: 10.1038/srep13735] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Human endometrium decidualization, which involves endometrial stromal proliferation and differentiation, is a prerequisite for embryo implantation, thus successful pregnancy. The Forkhead Box M1 (FoxM1), previously known as HNF-3, HFH-11, MPP2, Win, and Trident, is a transcriptional factor that plays crucial roles in cell proliferation and cell cycle progression. However, the molecular mechanism of FoxM1 during human endometrial decidualization remains unexplored. In this study, we first found FoxM1 is dynamically expressed in human endometrium during menstrual cycle. Employing a human endometrial stromal cell (HESC) line, we then demonstrated that FoxM1 inhibition downregulates cyclin B1 expression, delaying G2/M phase transition during HESC proliferation. Additionally, loss of FoxM1 expression blocks the differentiation of HESCs in response to estrogen, progesterone, and dbcAMP. Applying chromatin immunoprecipitation (ChIP) technique and luciferase assay, we further approved that FoxM1 can transcriptionally active signal transducer and activator of transcription 3 (STAT3), ensuring normal HESC differentiation. Besides enriching our knowledge on molecular basis underlying stromal decidualization, these findings help to shed light on the potential molecular causes for the endometrial disorders in humans.
Collapse
|
26
|
Fazleabas AT, Braundmeier A, Parkin K. Endometriosis-induced changes in regulatory T cells - insights towards developing permanent contraception. Contraception 2015; 92:116-9. [PMID: 26086573 DOI: 10.1016/j.contraception.2015.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Endometriosis is a gynecological disorder that is associated with alterations in the immune system that contributes to its pathology as well as its associated infertility. MAIN FINDINGS This brief report summarizes our findings related to the changes in T regulatory cells (Tregs) that may affect the uterine environment and impact the fertility of women and nonhuman primates with endometriosis. PRINCIPAL CONCLUSION Targeted therapies that could reduce Tregs within the reproductive tract may have a potential as long-lasting or permanent contraception.
Collapse
Affiliation(s)
- Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, MI 48824, USA.
| | - Andrea Braundmeier
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, IL 62702, USA
| | - Kirstin Parkin
- Department of Microbiology and Molecular Genetics, Michigan State University College of Human Medicine, MI 48824, USA
| |
Collapse
|
27
|
Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 2014; 35:851-905. [PMID: 25141152 DOI: 10.1210/er.2014-1045] [Citation(s) in RCA: 652] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Birgit Gellersen
- Endokrinologikum Hamburg (B.G.), 20251 Hamburg, Germany; and Division of Reproductive Health (J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
28
|
Wang Y, Zhang Y, Li MQ, Fan DX, Wang XH, Li DJ, Jin LP. Interleukin-25 induced by human chorionic gonadotropin promotes the proliferation of decidual stromal cells by activation of JNK and AKT signal pathways. Fertil Steril 2014; 102:257-63. [DOI: 10.1016/j.fertnstert.2014.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/12/2014] [Accepted: 03/12/2014] [Indexed: 02/05/2023]
|
29
|
Aghajanova L, Simón C, Horcajadas JA. Are favorite molecules of endometrial receptivity still in favor? ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.3.4.487] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Yoshinaga K, PrabhuDas M, Davies C, White K, Caron K, Golos T, Fazleabas A, Paria B, Mor G, Paul S, Ye X, Dey SK, Spencer T, Roberts RM. Interdisciplinary collaborative team for blastocyst implantation research: inception and perspectives. Am J Reprod Immunol 2013; 71:1-11. [PMID: 24286196 DOI: 10.1111/aji.12173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch, NICHD, NIH, DHHS, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lee CH, Kim TH, Lee JH, Oh SJ, Yoo JY, Kwon HS, Kim YI, Ferguson SD, Ahn JY, Ku BJ, Fazleabas AT, Lim JM, Jeong JW. Extracellular signal-regulated kinase 1/2 signaling pathway is required for endometrial decidualization in mice and human. PLoS One 2013; 8:e75282. [PMID: 24086495 PMCID: PMC3782496 DOI: 10.1371/journal.pone.0075282] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Decidualization is a crucial change required for successful embryo implantation and the maintenance of pregnancy. During this process, endometrial stromal cells differentiate into decidual cells in response to the ovarian steroid hormones of early pregnancy. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) are known to regulate cell proliferation and apoptosis in multiple cell types, including uterine endometrial cells. Aberrant activation of ERK1/2 has recently been implicated in the pathological processes of endometriosis and endometrial cancer. However, the function of ERK1/2 signaling during implantation and decidualization is still unknown. To determine the role and regulation of ERK1/2 signaling during implantation and decidualization, we examine ERK1/2 signaling in the mouse uterus during early pregnancy using immunostaining and qPCR. Interestingly, levels of phospho-ERK1/2 were highest within decidual cells located at the implantation sites. Expression levels of ERK1/2 target genes were also significantly higher at implantation sites, when compared to either inter-implantation sites. To determine if ERK1/2 signaling is also important during human endometrial decidualization, we examined levels of phospho-ERK1/2 in cultured human endometrial stromal cells during in vitro decidualization. Following treatment with a well-established decidualization-inducing steroidogenic cocktail, levels of phospho-ERK1/2 were markedly increased. Treatment with the ERK1/2 inhibitor, U0126, significantly decreased the expression of the known decidualization marker genes, IGFBP1 and PRL as well as inhibited the induction of known ERK1/2 target genes; FOS, MSK1, STAT1, and STAT3. Interestingly, the phosphorylation level of CCAAT/ enhancer binding protein β (C/EBPβ), a protein previously shown to be critical for decidualization, was significantly reduced in this model. These results suggest that ERK1/2 signaling is required for successful decidualization in mice as well as human endometrial stromal cells and implicates C/EBPβ as a downstream target of ERK1/2.
Collapse
Affiliation(s)
- Chae Hyun Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Jae Hee Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Seo Jin Oh
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Hyo Suk Kwon
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Young Im Kim
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Susan D. Ferguson
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Ji Yeon Ahn
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
- Cancer Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
- * E-mail: (JWJ); (JML)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- WCU Biomodulation Program, Seoul National University, Seoul, South Korea
- * E-mail: (JWJ); (JML)
| |
Collapse
|
32
|
Stefanoska I, Jovanović Krivokuća M, Vasilijić S, Ćujić D, Vićovac L. Prolactin stimulates cell migration and invasion by human trophoblast in vitro. Placenta 2013; 34:775-83. [PMID: 23849393 DOI: 10.1016/j.placenta.2013.06.305] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Prolactin (PRL) is present in endometrium at the time of embryo implantation and throughout pregnancy. Extrapituitary PRL acts as a cytokine in cells expressing PRL receptor (PRLR). So far no specific function has been demonstrated for PRL in the trophoblast of early pregnancy. METHODS PRLR in placental tissue and trophoblast cells was shown here immunochemically. The possibility that PRL could influence trophoblast cell migration and invasion was investigated in vitro using isolated cytotrophoblast of the first trimester of pregnancy placental tissue and HTR-8/SVneo cell line. Wound healing cell migration test was performed on HTR-8/SVneo cells, and both cell types were used in Matrigel invasion test. RESULTS PRLR is expressed by extravillous cytotrophoblast of the cell column and the placental bed, as well as in isolated cytotrophoblast (CT) and HTR-8/SVneo cells. PRL (at 100 and 1000 ng/ml) stimulated HTR-8/SVneo cell migration and cell invasion in both cell types, which could be blocked by anti-PRLR. Integrins α1 and α5, and galectin-1 (gal-1) were variably increased in PRL treated CT and HTR-8/SVneo cells. DISCUSSION To our knowledge this is the first study demonstrating that PRL stimulates trophoblast invasiveness through PRLR, which is accompanied by increased integrins and gal-1, not excluding change in other potential mediators. This finding further supports relevance of PRLR for invasive trophoblast. CONCLUSION This report supports a possibility that PRL may have a role in trophoblast invasion in vivo.
Collapse
Affiliation(s)
- I Stefanoska
- Laboratory for Biology of Reproduction, Institute for The Application of Nuclear Energy INEP, University of Belgrade, Banatska 31b, 11080 Zemun, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
33
|
Meng YH, Li H, Chen X, Liu LB, Shao J, Chang KK, Du MR, Jin LP, Li MQ, Li DJ. RANKL promotes the growth of decidual stromal cells in an autocrine manner via CCL2/CCR2 interaction in human early pregnancy. Placenta 2013; 34:663-71. [PMID: 23697850 DOI: 10.1016/j.placenta.2013.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Receptor-activator of NF-κB ligand (TNFSF11, also known as RANKL) and its receptor RANK are essential regulators on bone remodeling, mammary gland development and hormone-associated breast cancer development. However, the expression pattern and role of RANKL/RANK axis in decidual stromal cells (DSCs) are unclear in human early pregnancy. STUDY DESIGN We analyzed RANKL/RANK expression in DSCs by real-time PCR, immunhistochemistry, enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. Then BrdU cell proliferation assay, flow cytometry assay and ELISA were performed to investigate the effect of recombinant human RANKL and DSCs-derived RANKL on the proliferation, apoptosis, chemokine (C-C motif) ligand 2 (CCL2) secretion, C-C chemokine receptor type 2 (CCR2) and other target proteins expression in DSCs in vitro, respectively. RESULTS Here we show that DSCs co-express RANKL/RANK. Not only recombinant human (rh) RANKL but also the DSC-secreted RANKL stimulate proliferation and anti-apoptosis, and elevate CCL2 secretion and CCR2 expression of DSCs. Furthermore, the stimulatory effects on the proliferation, anti-apoptosis and the expression of Bcl-2 and Ki67 and inhibitory signaling on Fas ligand (FasL) in DSCs induced by RANKL can be partly reversed by the way of blocking CCL2 and or CCR2. CONCLUSIONS Our results have revealed that RANKL/RANK signal promotes Bcl-2 and Ki67 and decreases FasL expression, and further as a positive regulator for stimulating the proliferation and growth of DSCs through up-regulating CCL2/CCR2 signal, which finally contributes to the establishment and maintenance of physiological pregnancy.
Collapse
Affiliation(s)
- Y-H Meng
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, 413 Zhaozhou Rd., Shanghai 200011, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang W, Taylor RN, Bagchi IC, Bagchi MK. Regulation of human endometrial stromal proliferation and differentiation by C/EBPβ involves cyclin E-cdk2 and STAT3. Mol Endocrinol 2012; 26:2016-30. [PMID: 23097472 DOI: 10.1210/me.2012-1169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During each menstrual cycle, the human uterus undergoes a unique transformation, known as decidualization, which involves endometrial stromal proliferation and differentiation. During this process, the stromal cells are transformed into decidual cells, which produce factors that prepare the uterus for potential embryo implantation. We previously identified the transcription factor CCAAT/enhancer-binding protein (C/EBP)β as a regulator of endometrial stromal proliferation and differentiation in mice. In this study, we addressed the role of C/EBPβ in human endometrial decidualization. Using small interfering RNA targeted to C/EBPβ mRNA, we demonstrated that C/EBPβ controls the proliferation of primary human endometrial stromal cells (HESCs) by regulating the expression of several key cell cycle-regulatory factors during the G(1)-S phase transition. Additionally, loss of C/EBPβ expression blocked the differentiation of HESCs in response to estrogen, progesterone, and cyclic AMP. Gene expression profiling of normal and C/EBPβ-deficient HESCs revealed that the receptor for the cytokine IL-11 and its downstream signal transducer signal transducer and activator of transcription 3 (STAT3) are targets of regulation by C/EBPβ. Chromatin immunoprecipitation analysis indicated that C/EBPβ controls the expression of STAT3 gene by directly interacting with a distinct regulatory sequence in its 5'-flanking region. Attenuation of STAT3 mRNA expression in HESCs resulted in markedly reduced differentiation of these cells, indicating an important role for STAT3 in decidualization. Gene expression profiling, using STAT3-deficient HESCs, showed an extensive overlap of pathways downstream of STAT3 and C/EBPβ during stromal cell differentiation. Collectively, these findings revealed a novel functional link between C/EBPβ and STAT3 that is a critical regulator of endometrial differentiation in women.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
35
|
Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β. Cell Tissue Res 2012; 349:825-38. [PMID: 22382391 DOI: 10.1007/s00441-012-1356-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/30/2012] [Indexed: 01/09/2023]
Abstract
Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review.
Collapse
|
36
|
Saleh L, Otti GR, Fiala C, Pollheimer J, Knöfler M. Evaluation of human first trimester decidual and telomerase-transformed endometrial stromal cells as model systems of in vitro decidualization. Reprod Biol Endocrinol 2011; 9:155. [PMID: 22151839 PMCID: PMC3267678 DOI: 10.1186/1477-7827-9-155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/07/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Decidualization, the differentiation process of maternal uterine stromal cells into secretory decidual cells, is a prerequisite for successful implantation and progression of pregnancy. For in vitro differentiation mostly primary human endometrial stromal cells (HESC) isolated from uterine samples after hysterectomy for benign gynaecological diseases are utilised. However, a continuous supply of endometrial tissue is often lacking. Hence, we analysed whether cultivated human decidual stromal cells (HDSC) prepared from first trimester pregnancy terminations may represent an alternative model system for in vitro decidualization. Moreover, based on the expression of critical marker genes these cells were compared to a previously established endometrial stromal cell line during in vitro differentiation. METHODS HDSC isolated from decidual tissue attached to first trimester placentae, and telomerase-transformed human endometrial stromal cells (THESC) were characterised by immunofluorescence and differentiated in vitro using either cyclic adenosine monophosphate (cAMP) and/or estrogen (E2)/progesterone (P4). Proliferation was measured by analyzing cumulative cell numbers. Expression of mRNAs encoding progesterone receptor (PR), prolactin (PRL), insulin-like growth factor binding protein-1 (IGFBP1), and Dickkopf-1 (DKK1) was evaluated using quantitative PCR after 3, 6, 9 and 12 days of in vitro differentiation. PRL and IGFBP-1 protein expression was investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting, respectively. Furthermore, forkhead box O1A (FOXO1A), a critical transcription factor in decidualization, was analysed by immunofluorescence and Western blotting at two different time points of differentiation. RESULTS Treatment with cAMP provoked morphological changes and growth arrest of THESC and HDSC, the latter showing loss of cells after 6 days of treatment. E2P4 stimulation did neither affect cell morphology nor proliferation of THESC and HDSC. Upon cAMP stimulation PR mRNA was suppressed in HDSC but not in THESC, whereas E2P4 did not alter transcript levels in both cell types. Protein expression of PR-A and PR-B was detectable in HDSC and diminished under cAMP, whereas THESC failed to produce the nuclear receptors. Supplementation of cAMP induced mRNA and protein expression of PRL and IGFBP-1 in both cell types at day 3, 6, 9, and 12 of treatment. In HDSC stimulation with E2P4 increased PRL and IGFBP-1 mRNA and protein production, whereas hormone treatment did not induce the two factors in THESC. E2P4 increased DKK1 mRNA at all time points in HDSC and cAMP provoked induction at day 9 and 12 of differentiation. In contrast, cAMP suppressed DKK1 mRNA in THESC, whereas E2P4 was ineffective. In both cell types combined treatments with cAMP and E2P4 provoked higher expression levels of PRL and IGFBP1 mRNA and protein as compared to cAMP stimulation alone. FOXO1A protein and its nuclear abundance were increased by cAMP in both cell types. However, reduction of its nuclear localisation upon E2P4 treatment could only be observed in HDSC. CONCLUSION Both HDSC and THESC may represent suitable model systems for cAMP-dependent in vitro decidualization. Since cAMP decreases cell viability of HDSC after 6 days of incubation, this substance should be preferentially used in short-term experiments. Progesterone treatment of THESC might not be applicable since these cells lack progesterone response and PR protein. In contrast, stimulation of PR-expressing HDSC with E2P4 or cAMP/E2P4 may represent an appropriate protocol for human in vitro decidualization inducing and maintaining expression of critical marker genes in a time-dependent manner.
Collapse
Affiliation(s)
- Leila Saleh
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
37
|
Lemons AR, Naz RK. Contraceptive vaccines targeting factors involved in establishment of pregnancy. Am J Reprod Immunol 2011; 66:13-25. [PMID: 21481058 DOI: 10.1111/j.1600-0897.2011.01001.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Current methods of contraception lack specificity and are accompanied with serious side effects. A more specific method of contraception is needed. Contraceptive vaccines can provide most, if not all, the desired characteristics of an ideal contraceptive. This article reviews several factors involved in the establishment of pregnancy, focusing on those that are essential for successful implantation. Factors that are both essential and pregnancy-specific can provide potential targets for contraception. Using database search, 76 factors (cytokines/chemokines/growth factors/others) were identified that are involved in various steps of the establishment of pregnancy. Among these factors, three, namely chorionic gonadotropin (CG), leukemia inhibitory factor (LIF), and pre-implantation factor (PIF), are found to be unique and exciting molecules. Human CG is a well-known pregnancy-specific protein that has undergone phase I and phase II clinical trials, in women, as a contraceptive vaccine with encouraging results. LIF and PIF are pregnancy-specific and essential for successful implantation. These molecules are intriguing and may provide viable targets for immunocontraception. A multiepitope vaccine combining factors/antigens involved in various steps of the fertilization cascade and pregnancy establishment may provide a highly immunogenic and efficacious modality for contraception in humans.
Collapse
Affiliation(s)
- Angela R Lemons
- Reproductive Immunology and Molecular Biology Laboratories, Department of Obstetrics and Gynecology, School of Medicine, West Virginia University, 1 Medical Center Drive, Morgantown, WV 26506-9186, USA
| | | |
Collapse
|
38
|
Li Z, Kreiner M, van der Walle CF, Mardon HJ. Clustered integrin α5β1 ligand displays model fibronectin-mediated adhesion of human endometrial stromal cells. Biochem Biophys Res Commun 2011; 407:777-82. [DOI: 10.1016/j.bbrc.2011.03.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/20/2011] [Indexed: 02/02/2023]
|
39
|
New generation contraceptives: interleukin 11 family cytokines as non-steroidal contraceptive targets. J Reprod Immunol 2011; 88:233-9. [DOI: 10.1016/j.jri.2010.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/09/2010] [Accepted: 12/09/2010] [Indexed: 11/19/2022]
|
40
|
Lim HJ, Wang H. Uterine disorders and pregnancy complications: insights from mouse models. J Clin Invest 2010; 120:1004-15. [PMID: 20364098 DOI: 10.1172/jci41210] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications.
Collapse
Affiliation(s)
- Hyunjung Jade Lim
- Department of Biomedical Science and Technology, IBST, RCTC, Konkuk University, 1 Hwayang-dong, Kwangjin-gu, Seoul 143-701, Korea.
| | | |
Collapse
|
41
|
Strakova Z, Reed J, Ihnatovych I. Human transcriptional coactivator with PDZ-binding motif (TAZ) is downregulated during decidualization. Biol Reprod 2010; 82:1112-8. [PMID: 20164440 DOI: 10.1095/biolreprod.109.081844] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) is known to bind to a variety of transcription factors to control cell differentiation and organ development. However, its role in uterine physiology has not yet been described. To study its regulation during the unique process of differentiation of fibroblasts into decidual cells (decidualization), we utilized the human uterine fibroblast (HuF) in vitro cell model. Immunocytochemistry data demonstrated that the majority of the TAZ protein is localized in the nucleus. Treatment of HuF cells with the embryonic stimulus cytokine interleukin 1 beta in the presence of steroid hormones (estradiol-17 beta and medroxyprogesterone acetate) for 13 days did not cause any apparent TAZ mRNA changes but resulted in a significant TAZ protein decline (approximately 62%) in total cell lysates. Analysis of cytosolic and nuclear extracts revealed that the decline of total TAZ was caused primarily by a drop of TAZ protein levels in the nucleus. TAZ was localized on the peroxisome proliferator-activated receptor response element site (located at position -1200 bp relative to the transcription start site) of the genomic region of decidualization marker insulin-like growth factor-binding protein 1 (IGFBP1) in HuF cells as detected by chromatin immunoprecipitation. TAZ is also present in human endometrium tissue as confirmed by immunohistochemistry. During the secretory phase of the menstrual cycle, specific TAZ staining particularly diminishes in the stroma, suggesting its participation during the decidualization process, as well as implantation. During early baboon pregnancy, TAZ protein expression remains minimal in the endometrium close to the implantation site. In summary, the presented evidence shows for the first time to date TAZ protein in the human uterine tract, its downregulation during in vitro decidualization, and its localization on the IGFBP1 promoter region, all of which indicate its presence in the uterine differentiation program during pregnancy.
Collapse
Affiliation(s)
- Zuzana Strakova
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, IL 60612, USA.
| | | | | |
Collapse
|
42
|
Cook IH, Evans J, Maldonado-Pérez D, Critchley HO, Sales KJ, Jabbour HN. Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway. Mol Hum Reprod 2009; 16:158-69. [PMID: 19801577 PMCID: PMC2816169 DOI: 10.1093/molehr/gap084] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1-prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1-PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium-calcineurin signalling pathway in a guanine nucleotide-binding protein (G(q/11)), extracellular signal-regulated kinases, Ca(2+) and calcineurin-nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11Ralpha and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1-PROKR1 signalling pathway regulating IL-11.
Collapse
Affiliation(s)
- Ian H Cook
- Medical Research Council, Human Reproductive Sciences Unit, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | | | | | |
Collapse
|
43
|
Paiva P, Menkhorst E, Salamonsen L, Dimitriadis E. Leukemia inhibitory factor and interleukin-11: critical regulators in the establishment of pregnancy. Cytokine Growth Factor Rev 2009; 20:319-28. [PMID: 19647472 DOI: 10.1016/j.cytogfr.2009.07.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Blastocyst implantation into a receptive endometrium is critical to the establishment of pregnancy and is tightly regulated by factors within the blastocyst-endometrial micro-environment. Leukemia inhibitory factor (LIF) and interleukin-11 (IL11) have key roles during implantation. Female mice with a null mutation in the LIF or IL11RA gene are infertile due to a complete failure of implantation or a defective differentiation/decidualization response to the implanting blastocyst, respectively. LIF and IL11 deficiency during pregnancy is associated with infertility and miscarriage in women. Numerous cell populations at the maternal-fetal interface are regulated by LIF/IL11 including the endometrial epithelium, decidualizing stroma, placental trophoblasts and leukocytes. This review focuses on the roles of LIF/IL11 during early pregnancy and highlights their potential as contraceptive targets and therapeutic agents for infertility.
Collapse
Affiliation(s)
- Premila Paiva
- Prince Henry's Institute of Medical Research, 246, Clayton Road, Clayton, VIC 3168, Australia.
| | | | | | | |
Collapse
|
44
|
Menkhorst E, Salamonsen L, Robb L, Dimitriadis E. IL11 antagonist inhibits uterine stromal differentiation, causing pregnancy failure in mice. Biol Reprod 2009; 80:920-7. [PMID: 19144959 DOI: 10.1095/biolreprod.108.073601] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hormonal contraceptives are unsuitable for many women; thus, the development of new, nonhormonal contraceptives is of great interest. In women, uterine epithelial expression of interleukin 11 (IL11) and its receptor (IL11RA) suggests IL11 is critical for blastocyst attachment during implantation. Il11ra-deficient mice are infertile due to a defective decidualization response to the blastocyst, leading to total pregnancy loss. We examined the effect of administering a PEGylated IL11 antagonist, PEGIL11A (where PEG is polyethylene glycol), on pregnancy outcomes in mice and IL11 signaling in human endometrial epithelial cells (HES). PEGIL11A was detected in sera up to 72 h after intraperitoneal (IP) injection versus up to 2 h for the non-PEGylated antagonist. Following IP injection, PEGIL11A localized to uterine decidual cells and reduced immunoreactive cyclin D3 (IL11 decidual target). To inhibit IL11 action during early decidualization, PEGIL11A or control were administered IP on Days 3-6 (beginning just prior to maximal decidual Il11 expression). On Day 6, mesometrial decidualization was disturbed in PEGIL11A-treated animals with regions of hemorrhage visible in the mesometrial decidua. On Day 10, severe decidual destruction was visible: implantation sites contained significant hemorrhage, and the uterine luminal epithelium had reformed, suggesting a return to estrous cycling. These results demonstrate that PEGIL11A blocked IL11 action in the decidua during early decidualization, which totally abolished pregnancy and which is equivalent to the Il11ra(-/-) mouse. PEGIL11A significantly diminished STAT3 phosphorylation in HES cells in vitro (P < or = 0.05). This study provides valuable information for PEGIL11A that could lead to the development of this protein as a nonhormonal contraceptive.
Collapse
Affiliation(s)
- Ellen Menkhorst
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
45
|
Ganeff C, Chatel G, Munaut C, Frankenne F, Foidart JM, Winkler R. The IGF system in in-vitro human decidualization. Mol Hum Reprod 2008; 15:27-38. [PMID: 19038974 DOI: 10.1093/molehr/gan073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Decidualization of endometrial stromal cells (ESCs) is critical for a successful pregnancy but the molecular mechanisms of the process are poorly understood. In this study, we investigated whether the insulin-like growth factor (IGF) network is involved in this cellular process. Expression kinetics of members of the IGF system was examined at both mRNA and protein levels during in-vitro decidualization of cultured human ESCs. We found a significant up-regulation of IGF-II as well as of IGF-I receptor and the A and B insulin receptor (InsR) isoforms. In addition, levels of the key adaptor proteins insulin receptor substrate 1 (IRS-1) and IRS-2 increased, suggesting a potential involvement of the IGF signalling pathway in the decidualization process. Expression of two IGF binding proteins, IGFBP-1 and IGFBP-4, which can inhibit IGF action, also increased. In order to determine whether IGF signalling was activated during decidualization, the phosphorylation status of the receptors and the adaptor proteins was estimated. Only IRS-2 was slightly phosphorylated in decidualized cells and was further activated by the addition of exogenous IGF-II. These results suggest that the IGF signalling pathway could play a crucial role in the functions of decidualized endometrial cells.
Collapse
Affiliation(s)
- C Ganeff
- Laboratory of Tumor and Development Biology, Center of Experimental Cancer Research, University of Liège, GIGA-R, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Guo B, Han BC, Tian Z, Zhao TY, Zeng L, Yang ZM, Yue ZP. Expression and hormonal regulation of IL-11Ralpha in canine uterus during early pregnancy. Reprod Domest Anim 2008; 44:779-82. [PMID: 18992081 DOI: 10.1111/j.1439-0531.2008.01072.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Embryo implantation is critical for the successful establishment of pregnancy. Interleukin-11 (IL-11) is essential for adequate decidualization in the mouse and human via binding to the specific IL-11 receptor alpha (IL-11Ralpha). But the expression and regulation of IL-11 and IL-11Ralpha in the canine endometrium remain unknown. The aim of this study was to investigate the differential expression of IL-11Ralpha in canine uterus during early pregnancy and its regulation under different conditions by in situ hybridization. Interleukin-11Ralpha mRNA was mainly localized in glandular epithelium in canine uterus. There was a low level of IL-11Ralpha expression in the glandular epithelium on days 6, 12 and 17 of pregnancy. On day 20 of pregnancy when embryo implanted, IL-11Ralpha mRNA was highly expressed in the glandular epithelium surrounding the embryo, but not in the luminal epithelium and stroma. On day 23 of pregnancy, the expression of IL-11Ralpha mRNA maintained a constant level compared with the expression of day 20 and increased on day 28 of pregnancy. During the oestrous cycle, a high level of IL-11Ralpha mRNA expression was seen in the oestrous uterus. Progesterone slightly induced the expression of IL-11Ralpha mRNA in the ovariectomized canine uterus. These results suggest that IL-11Ralpha expression is closely related to canine implantation and up-regulated by progesterone.
Collapse
Affiliation(s)
- B Guo
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun, P.R. China
| | | | | | | | | | | | | |
Collapse
|
47
|
Dimitriadis E, Stoikos C, Tan YL, Salamonsen LA. Interleukin 11 signaling components signal transducer and activator of transcription 3 (STAT3) and suppressor of cytokine signaling 3 (SOCS3) regulate human endometrial stromal cell differentiation. Endocrinology 2006; 147:3809-17. [PMID: 16709613 DOI: 10.1210/en.2006-0264] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The differentiation of endometrial stromal cells into decidual cells (decidualization) is critical for embryo implantation, but the mechanisms remain poorly defined. Numerous paracrine agents including IL-11 promote human endometrial stromal cell (HESC) decidualization. IL-11 signaling is transduced by the signal transducers and activators of transcription (STAT) proteins. Suppressors of cytokine signaling (SOCS) proteins are stimulated in response to cytokine-inducible STAT phosphorylation, acting in a negative-feedback mechanism to hinder cytokine receptor activity. This study examined the role of IL-11 signal transduction components in HESC decidualization in an ex vivo model. Cells were induced to differentiate with estrogen plus medroxyprogesterone acetate (E+P) or cAMP (assessed by prolactin secretion) and resulted in increased STAT3 and SOCS3. E+P maximally stimulated STAT3, whereas cAMP maximally stimulated SOCS3 during decidualization, suggesting E+P and cAMP differentially regulated the signaling components. IL-11 stimulated the phosphorylation (p) of STAT3 and SOCS3 mRNA and protein. Antiprogestin (onapristone) added to decidualizing cells attenuated STAT3 protein but increased SOCS3 mRNA and protein, suggesting regulation via both ligand-dependent and -independent progesterone-receptor pathways. SOCS3 overexpression in HESC reduced IL-11-induced pSTAT3 and retarded decidualization, indicating that SOCS3 is a critical regulator of differentiation. Immunoreactive pSTAT3 and SOCS3 were all present in decidualized stromal cells, epithelial cells, and leukocytes in human endometrium. These data support a role for IL-11 via pSTAT3 and SOCS3 in initiating and progressing decidualization.
Collapse
|
48
|
White CA, Dimitriadis E, Sharkey AM, Stoikos CJ, Salamonsen LA. Interleukin 1 beta is induced by interleukin 11 during decidualization of human endometrial stromal cells, but is not released in a bioactive form. J Reprod Immunol 2006; 73:28-38. [PMID: 16860880 DOI: 10.1016/j.jri.2006.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 05/05/2006] [Accepted: 05/09/2006] [Indexed: 11/18/2022]
Abstract
Blastocyst implantation is dependent on the differentiation of endometrial stromal cells (ESC) into decidual cells. Decidualization of human ESC in vitro is enhanced by interleukin 11 (IL11), with associated changes in gene expression. Genes downstream of IL11 may provide targets for the treatment of implantation failure or the development of non-hormonal contraceptives. This study aimed to examine the effect of IL11 on interleukin 1 beta (IL1B) mRNA and protein expression during in vitro decidualization of ESC. Cells were decidualized with 17beta-estradiol and medroxyprogesterone acetate in the presence or absence of exogenous IL11, and IL1B mRNA was quantified by real-time RT-PCR. Inactive proIL1B and bioactive IL1B in cell lysates and conditioned media were measured using specific immunoassays. Secretion of bioactive IL1B from decidualizing ESC was investigated by in vitro stimulation of decidualizing cells with lipopolysaccharide, interferon gamma or human chorionic gonadotropin. Immunohistochemistry was carried out on cycling and pregnant decidua using an antibody specific for bioactive IL1B. Exogenous IL11 increased by 28-fold the abundance of IL1B mRNA in decidualizing ESC, and total immunoreactive IL1B was also increased. However, this was not reflected in bioactive IL1B secretion from these cells, and none of the tested stimuli were able to induce its release. Bioactive IL1B was detected in vivo at very low levels and at discrete foci in late secretory phase and first trimester decidua. This regulation of latent and bioactive IL1B at the fetal-maternal interface may prime decidual cells to respond rapidly to immunological challenge or to signals from the blastocyst during implantation.
Collapse
Affiliation(s)
- Christine A White
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Vic. 3168, Australia.
| | | | | | | | | |
Collapse
|
49
|
Laird SM, Tuckerman EM, Li TC. Cytokine expression in the endometrium of women with implantation failure and recurrent miscarriage. Reprod Biomed Online 2006; 13:13-23. [PMID: 16820103 DOI: 10.1016/s1472-6483(10)62011-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One potential cause of reproductive failure such as infertility and recurrent miscarriage may be an endometrial defect. Numerous studies in mice have suggested the importance of various different cytokines in successful pregnancy outcome. This article reviews the literature available on the role of T helper cytokines and IL-1, IL-11, LIF, IL-12 and IL-18 in infertility and recurrent miscarriage, with particular emphasis on the role that endometrial cytokines may play. Although there are numerous studies on cytokines in recurrent miscarriage, much less has been reported on their role in infertility with or without failure after IVF. There is also considerable variation in the results obtained from various different studies, which may be due to different populations studied, the different timing of the sample collection, and whether the cytokines were measured in whole tissue or a specific cell population. The presence of complicated networks of cytokines and their overlapping biological activities means that alteration of one cytokine is likely to affect others and this also makes the study of their role in implantation failure very difficult. There is an urgent need to re-examine the role played by various cytokines in reproductive failure through carefully planned and vigorously designed studies and to compare the different types of reproductive failure.
Collapse
Affiliation(s)
- S M Laird
- BMRC, Sheffield Hallam University, City Campus, Sheffield, S1 1WB, UK.
| | | | | |
Collapse
|
50
|
Abstract
Endometriosis is one of the most common causes of chronic pelvic pain and infertility in women in the reproductive age group. Although the existence of this disease has been known for over 100 years our current knowledge of its pathogenesis and the pathophysiology of its related infertility remains unclear. Several reasons contribute to our lack of knowledge, the most critical being the difficulty in carrying out objective long-term studies in women. Thus, we and others have developed a model of this disease in the non-human primate, the baboon (Papio anubis). Intraperitoneal inoculation of autologous menstrual endometrium results in the development of endometriotic lesions with gross morphological characteristics similar to those seen in the human. Multiple factors have been implicated in endometriosis-associated infertility. We have described aberrant levels of factors involved in multiple pathways important in the establishment of pregnancy, in the endometrium of baboons induced with endometriosis. Specifically, we have observed dysregulation of proteins involved in invasion, angiogenesis, methylation, cell growth, immunomodulation, and steroid hormone action. These data suggest that, in an induced model of endometriosis in the baboon, an increased angiogenic capacity, decreased apoptotic potential, progesterone resistance, estrogen hyper-responsiveness, and an inability to respond appropriately to embryonic signals contribute to the reduced fecundity associated with this disease.
Collapse
Affiliation(s)
- Julie M Hastings
- Department of Obstetrics and Gynecology (MC808), College of Medicine, University of Illinois at Chicago, 820 S Wood Street, Chicago, Illinois, 60612, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics and Gynecology (MC808), College of Medicine, University of Illinois at Chicago, 820 S Wood Street, Chicago, Illinois, 60612, USA
| |
Collapse
|