1
|
Liu X, Zhou X, Zhang Z, Su X, Zeng B, Li Y, Qiu S, Yang L. Comprehensive Analysis of the Association Between Sex Hormones and Body Mass Components Among Men Adults: Results From a Large Population-Based Study. Clin Endocrinol (Oxf) 2025; 102:291-305. [PMID: 39467069 DOI: 10.1111/cen.15153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND As the human body ages, adverse body composition status such as sarcopenia and obesity become obvious phenotypes which can cause numerous health problems. We aimed to comprehensively investigate the association of sex hormones and body mass components in adult men of various age groups. METHODS We analysed national representative population data from the US National Health and Nutrition Examination Survey. Generalized linear model regression analyses were used to evaluate the association between sex hormones (total testosterone [TT], bio-available testosterone [BT], sex hormone-binding globulin [SHBG], estradiol [E2] and testosterone to estradiol ratio [T/E ratio]) and body mass components (weight, body mass index (BMI), total lean mass, appendicular lean mass, bone mineral content, total fat and trunk fat). The collection and testing time of blood samples were not fixed and there was no strict fasting, but in subsequent analysis we used statistical methods to minimize the impact of random testing. RESULTS After screening for inclusion and exclusion, 3759 male participants aged 20-85 years old were included in this study. Higher levels of TT, SHBG, BT and T/E ratios were significantly associated with higher total lean mass, appendicular lean mass and bone mineral content, while lower weight, BMI, total fat and trunk fat. For E2 levels in men, we found an opposite trend, with higher E2 levels significantly associated with lower total lean mass and appendicular lean mass, and higher weight, BMI, total fat and trunk fat. Notably, in subgroup analysis, the results showed that there were significant interaction effects of age and smoking history in the association between sex hormones and body mass components. CONCLUSION Higher TT levels, BT levels, SHBG levels and T/E ratios are associated with lower body weight and improved body composition in young adult men (characterized by higher lean body mass, higher bone density and lower fat mass). The relationship is especially pronounced among relatively young, nonsmoking men.
Collapse
Grants
- This work was supported by the National key research and development program of China (Grant No. 2022YFC3602902), National Natural Science Foundation of China (Grant No. 81902578, 81974098), Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (GZC20241159), Post-doctoral Science Research Foundation of Sichuan University (2020SCU12041), Post-Doctor Research Project, West China Hospital, Sichuan University (2018HXBH085), National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University (Z2024LC003).
Collapse
Affiliation(s)
- Xing Liu
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, People's Republic of China
| | - Xianghong Zhou
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Zilong Zhang
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xingyang Su
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Bin Zeng
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yifan Li
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Shi Qiu
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland
| | - Lu Yang
- Department of Urology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
2
|
Pitchakarn P, Karinchai J, Buacheen P, Imsumran A, Wongnoppavich A, Boonyapranai K, Ounjaijean S. Ficus lindsayana Leaf Extract Protects C2C12 Mouse Myoblasts Against the Suppressive Effects of Bisphenol-A on Myogenic Differentiation. Int J Mol Sci 2025; 26:476. [PMID: 39859191 PMCID: PMC11765284 DOI: 10.3390/ijms26020476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Recently, toxicological and epidemiological research has provided strong support for the unfavorable effects of bisphenol-A (BPA, 2,2'-bis(4-hydroxyphenyl) propane) on myogenesis and its underlying mechanisms. Researchers have therefore been looking for new strategies to prevent or mitigate these injurious effects of BPA on the human body. It has been found that plant extracts may act as potential therapeutic agents or functional foods, preventing human diseases caused by BPA. We previously reported that Ficus lindsayana (FL) extract exhibits anti-inflammation activity in macrophages via suppressing the expression of inflammation-related molecules and anti-insulin resistance in inflammation-treated adipocytes. In this study, we investigated whether Ficus lindsayana leaf extract (FLLE) protects C2C12 mouse myoblasts against the suppressive effects of BPA on myogenic differentiation. The viability of BPA-stimulated C2C12 myoblasts was significantly increased when co-treated with FLLE (200 µg/mL), suggesting that the extract may lessen the inhibitory effects of BPA on cell division. We also found that FLLE significantly increased neo-myotube formation by inducing the fusion of myoblasts into multinucleated myotubes when compared to the BPA-treated control cells, without impacting cell viability. In addition, the levels of myogenin and myocyte enhancer factor 2A (MEF2A), which are crucial markers and regulators of myogenesis, were markedly increased by the addition of FLLE (50 µg/mL) to the BPA-treated C2C12 cells. This finding suggests that FLLE effectively improved myogenic differentiation in BPA-exposed myoblasts. FLLE treatment (50 µg/mL) significantly raised total Akt protein levels in the BPA-treated C2C12 cells, enhancing protein phosphorylation. In addition, FLLE (50 µg/mL) obviously increased the phosphorylation levels of p70S6K and 4E-BP1, key downstream targets of the Akt/mTOR signaling cascade, by elevating total p70S6K and 4E-BP1 levels. These results suggest that FLLE diminishes the decline in myogenic differentiation induced by BPA via the regulation of the myocyte differentiation-related signaling pathway. The information obtained from this study demonstrates the health benefits of this plant, which warrants further investigation as an alternative medicine, functional ingredient, or food supplement that can prevent the negative health effects of BPA or other toxicants.
Collapse
Affiliation(s)
- Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Pensiri Buacheen
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Arisa Imsumran
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Ariyaphong Wongnoppavich
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.P.); (J.K.); (P.B.); (A.I.); (A.W.)
| | - Kongsak Boonyapranai
- Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sakaewan Ounjaijean
- Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Cao L, Guo M, Zhou Y, Zhang J, Tie S, Li X, Tian P, Wu Y, Gu S. Weizmannia coagulans BC99 Improves Strength Performance by Enhancing Protein Digestion and Regulating Skeletal Muscle Quality in College Students of Physical Education Major. Nutrients 2024; 16:3990. [PMID: 39683384 DOI: 10.3390/nu16233990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background: The dietary proteins are one of the most important factors determining health conditions in humans. The sufficient digestion and absorption of dietary proteins in the digestive tract has positive effects on performance and recovery in sportspeople and athletes. Improving protein digestibility is a strategy for maintaining health status and optimal performance in sport and exercise activities. Objectives: The aim of the present study is to verify whether Weizmannia coagulans BC 99 (BC99) can increase muscle mass and strength. Methods: This randomized double-blind, controlled trial assigned 72 male college students to receive probiotics (n = 36, 20.25 ± 1.03 years; 179.00 ± 5.94 cm; 73.55 ± 8.73 kg, protein powder with BC99) or the placebo (n = 36, 20.19 ± 0.79 years; 179.25 ± 5.16 cm; 73.61 ± 8.24 kg, protein powder) for 12 weeks. At the baseline and final stages of the study, strength tests and body composition assessment were performed. Blood and stool samples were taken at the end of the 12-week intervention, and digestive enzymatic activity of stool samples, biochemical parameters, amino acids and hormone level of plasma were analyzed. Results: BC99 administration significantly improved strength performance, skeletal muscle mass, activity of pepsin and trypsin, the concentrations of branched chain amino acids and essential amino acids, reduced activities of creatine kinase and lactic dehydrogenase and urea nitrogen (BUN) level and increased testosterone and glucagon-like peptide-1 level in male college students. Conclusions: Therefore, BC99 supplementation can be an important nutritional strategy to improve strength performance, body composition, protein digestion and body metabolism in healthy young males.
Collapse
Affiliation(s)
- Li Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| | - Minghan Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yiqing Zhou
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jie Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shanshan Tie
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| | - Pingping Tian
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
- National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang 471023, China
| |
Collapse
|
4
|
Chen H, Yang C, Yan S, Liu X, Zhou L, Yuan X. Sarcopenia in cirrhosis: From pathophysiology to interventional therapy. Exp Gerontol 2024; 196:112571. [PMID: 39236869 DOI: 10.1016/j.exger.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Sarcopenia, characterized by the loss of skeletal muscle mass and function, is a significant complication in patients with cirrhosis. This condition not only exacerbates the overall morbidity and mortality associated with liver disease but also complicates patient management, increasing the risk of hospitalization, infections, and hepatic encephalopathy. Despite its clinical significance, sarcopenia in cirrhotic patients remains underdiagnosed and undertreated. This review aims to summarize current knowledge on the pathophysiology of sarcopenia in cirrhosis, including mechanisms such as altered metabolism, hormonal imbalances, and inflammation. Additionally, we explore diagnostic challenges and discuss emerging therapeutic strategies, including nutritional support, exercise, and pharmacological interventions. By highlighting the gaps in existing research and proposing directions for future studies, this review seeks to improve the management and outcomes of cirrhotic patients affected by sarcopenia.
Collapse
Affiliation(s)
- Huiling Chen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China; Fudan University, Shanghai, China
| | - Chenyun Yang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Shijie Yan
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Xintao Liu
- Department of General Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai, China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai 201399, China.
| |
Collapse
|
5
|
Sampaio LV, Landim HRDS, Vazão AR, Fiais GA, de Freitas RN, Veras ASC, Dornelles RCM, Fakhouri WD, Lima RR, Teixeira GR, Chaves-Neto AH. Effects of a supraphysiological dose of testosterone cypionate on salivary gland function in adult male Wistar rats. J Steroid Biochem Mol Biol 2024; 243:106587. [PMID: 39004377 DOI: 10.1016/j.jsbmb.2024.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
The abusive use of anabolic androgenic steroids has become a serious health problem worldwide, but its effects on oral health are still poorly understood. Therefore, the objective of this study was to evaluate the effects of a supraphysiological dose of testosterone cypionate (TC) on salivary biochemical, histomorphology, immunohistochemistry, and redox state parameters of parotid and submandibular glands. Twenty male Wistar rats, 12 weeks old, were divided into two groups (n=10/group): a control group and TC group, which received a dose of 20 mg/kg, once a week, for 6 weeks. Post treatment, the saliva and glands were collected. A supraphysiological dose of TC increased plasma and salivary testosterone concentrations. Although TC did not alter salivary flow, pH, and buffering capacity, the treatment increased the salivary secretion of total protein and reduced amylase, calcium, phosphate, and potassium. TC reduced the connective tissue area in the parotid gland and acinar area of the submandibular gland, while increasing the granular convoluted tubule area in the submandibular gland. Proliferating cell nuclear antigen was higher in the acinar cells of the submandibular glands from the TC group. Moreover, TC increased concentrations of total oxidant capacity and damaged lipids in both salivary glands, while total antioxidant activity and uric acid were lower in the submandibular gland, and reduced glutathione was higher in both glands. Superoxide dismutase, catalase, and glutathione peroxidase activities were higher in the parotid gland, while only glutathione peroxidase activity was lower in the submandibular gland of the TC group. In conclusion, TC abuse may be a potential factor for dysfunction of the parotid and submandibular glands, becoming a risk factor for the oral and systemic health of users.
Collapse
Affiliation(s)
- Larissa Victorino Sampaio
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | | | - Arieli Raymundo Vazão
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Postgraduate Program in Sciences, Pediatric Oral Health, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Gabriela Alice Fiais
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Rayara Nogueira de Freitas
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Postgraduate Program in Sciences, Pediatric Oral Health, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Allice Santos Cruz Veras
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Rita Cassia Menegatti Dornelles
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para (UFPA), Belem, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil; Multicentric Postgraduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), School of Dentistry, Araçatuba, Brazil.
| |
Collapse
|
6
|
Handelsman DJ. Toward a Robust Definition of Sport Sex. Endocr Rev 2024; 45:709-736. [PMID: 38578952 DOI: 10.1210/endrev/bnae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Elite individual sports in which success depends on power, speed, or endurance are conventionally divided into male and female events using traditional binary definitions of sex. Male puberty creates durable physical advantages due to the 20- to 30-fold increase in circulating testosterone producing a sustained uplift in men's muscle, bone, hemoglobin, and cardiorespiratory function resulting from male puberty and sustained during men's lives. These male physical advantages provide strong justification for a separate protected category of female events allowing women to achieve the fame and fortune from success they would be denied if competing against men. Recent wider social acceptance of transgender individuals, together with the less recognized involvement of intersex individuals, challenge and threaten to defeat the sex classifications for elite individual female events. This can create unfair advantages if seeking inclusion into elite female events of unmodified male-bodied athletes with female gender identity who have gained the physical advantages of male puberty. Based on reproductive physiology, this paper proposes a working definition of sport sex based primarily on an individual's experience of male puberty and can be applied to transgender and various XY intersex conditions. Consistent with the multidimensionality of biological sex (chromosomal, genetic, hormonal, anatomical sex), this definition may be viewed as a multistrand cable whose overall strength survives when any single strand weakens or fails, rather than as a unidimensional chain whose strength is only as good as its weakest link.
Collapse
Affiliation(s)
- David J Handelsman
- Andrology Department, ANZAC Research Institute, University of Sydney, Concord Hospital, Syndey, NSW 2139, Australia
| |
Collapse
|
7
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
8
|
Beaudry K, De Lisio M. Sex-Based Differences in Muscle Stem Cell Regulation Following Exercise. Exerc Sport Sci Rev 2024; 52:87-94. [PMID: 38445901 DOI: 10.1249/jes.0000000000000337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Sexual dimorphism, driven by the sex hormones testosterone and estrogen, influences body composition, muscle fiber type, and inflammation. Research related to muscle stem cell (MuSC) responses to exercise has mainly focused on males. We propose a novel hypothesis that there are sex-based differences in MuSC regulation following exercise, such that males have more MuSCs, whereas females demonstrate a greater capacity for regeneration.
Collapse
Affiliation(s)
- Kayleigh Beaudry
- School of Human Kinetics , Department of Cellular and Molecular Medicine, Regenerative Medicine Program, Centre on Neuromuscular Disease , University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
9
|
Tipbunjong C, Thitiphatphuvanon T, Pholpramool C, Surinlert P. Bisphenol-A Abrogates Proliferation and Differentiation of C2C12 Mouse Myoblasts via Downregulation of Phospho-P65 NF- κB Signaling Pathway. J Toxicol 2024; 2024:3840950. [PMID: 38449520 PMCID: PMC10917485 DOI: 10.1155/2024/3840950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Previous studies showed that bisphenol-A (BPA), a monomer of polycarbonate plastic, is leached out and contaminated in foods and beverages. This study aimed to investigate the effects of BPA on the myogenesis of adult muscle stem cells. C2C12 myoblasts were treated with BPA in both proliferation and differentiation conditions. Cytotoxicity, cell proliferation and differentiation, antioxidant activity, apoptosis, myogenic regulatory factors (MRFs) gene expression, and mechanism of BPA on myogenesis were examined. C2C12 myoblasts exposed to 25-50 µM BPA showed abnormal morphology, expressing numerous and long cytoplasmic extensions. Cell proliferation was inhibited and was accumulated in subG1 and S phases of the cell cycle, subsequently leading to apoptosis confirmed by nuclear condensation and the expression of apoptosis markers, cleaved caspase-9 and caspase-3. In addition, the activity of antioxidant enzymes, catalase, superoxide dismutase, and glutathione peroxidase was significantly decreased. Meanwhile, BPA suppressed myoblast differentiation by decreasing the number and size of multinucleated myotubes via the modulation of MRF gene expression. Moreover, BPA significantly inhibited the phosphorylation of P65 NF-κB in both proliferation and differentiation conditions. Altogether, the results revealed the adverse effects of BPA on myogenesis leading to abnormal growth and development via the inhibition of phospho-P65 NF-κB.
Collapse
Affiliation(s)
- Chittipong Tipbunjong
- Department of Anatomy, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | | | - Chumpol Pholpramool
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Bangkok, Pathum-Thani 12120, Thailand
- Thammasat University Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum-Thani 12120, Thailand
| |
Collapse
|
10
|
Hatt AA, Kamal M, Mikhail AI, Fortino SA, Wageh M, Kumbhare D, Parise G. Nuclear-localized androgen receptor content following resistance exercise training is associated with hypertrophy in males but not females. FASEB J 2024; 38:e23403. [PMID: 38197297 DOI: 10.1096/fj.202301291rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Androgen receptor (AR) content has been implicated in the differential response between high and low responders following resistance exercise training (RET). However, the influence of AR expression on acute skeletal muscle damage and whether it may influence the adaptive response to RET in females is poorly understood. Thus, the purpose of this exploratory examination was to 1) investigate changes in AR content during skeletal muscle repair and 2) characterize AR-mediated sex-based differences following RET. A skeletal muscle biopsy from the vastus lateralis was obtained from 26 healthy young men (n = 13) and women (n = 13) at baseline and following 300 eccentric kicks. Subsequently, participants performed 10 weeks of full-body RET and a final muscle biopsy was collected. In the untrained state, AR mRNA expression was associated with paired box protein-7 (PAX7) mRNA in males. For the first time in human skeletal muscle, we quantified AR content in the myofiber and localized to the nucleus where AR has been shown to trigger cellular outcomes related to growth. Upon eccentric damage, nuclear-associated AR (nAR) content increased (p < .05) in males and not females. Males with the greatest increase in cross-sectional area (CSA) post-RET had more (p < .05) nAR content than females with the greatest gain CSA. Collectively, skeletal muscle damage and RET increased AR protein, and both gene and hypertrophy measures revealed sex differences in relation to AR. These findings suggest that AR content but more importantly, nuclear localization, is a factor that differentiates RET-induced hypertrophy between males and females.
Collapse
Affiliation(s)
- Aidan A Hatt
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Michael Kamal
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Andrew I Mikhail
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Stephen A Fortino
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Mai Wageh
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Dinesh Kumbhare
- Department of Medicine, Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Gianni Parise
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
11
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
12
|
Nielsen JL, Rasmussen JJ, Frandsen MN, Fredberg J, Brandt-Jacobsen NH, Aagaard P, Kistorp C. Higher Myonuclei Density in Muscle Fibers Persists Among Former Users of Anabolic Androgenic Steroids. J Clin Endocrinol Metab 2023; 109:e266-e273. [PMID: 37466198 DOI: 10.1210/clinem/dgad432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT No information exists on the long-lasting effects of supraphysiological anabolic androgenic steroids (AASs) usage on the myocellular properties of human skeletal muscle in previous AAS users. OBJECTIVE We hypothesized that former AAS users would demonstrate smaller myonuclei domains (ie, higher myonuclei density) than matched controls. METHODS A community-based cross-sectional study in men aged 18-50 years engaged in recreational strength training. Muscle biopsies were obtained from the m. vastus lateralis. Immunofluorescence analyses were performed to quantify myonuclei density and myofiber size. RESULTS Twenty-five males were included: 8 current and 7 previous AAS users and 10 controls. Median (25th-75th percentiles) accumulated duration of AAS use was 174 (101-206) and 140 (24-260) weeks in current and former AAS users, respectively (P = .482). Geometric mean (95% CI) elapsed duration since AAS cessation was 4.0 (1.2; 12.7) years among former AAS users. Type II muscle fibers in former AAS users displayed higher myonuclei density and DNA to cytoplasm ratio than controls, corresponding to smaller myonuclei domains (P = .013). Longer accumulated AAS use (weeks, log2) was associated with smaller myonuclei domains in previous AAS users: beta-coefficient (95% CI) -94 (-169; -18), P = .024. Type I fibers in current AAS users exhibited a higher amount of satellite cells per myofiber (P = .031) than controls. CONCLUSION Muscle fibers in former AAS users demonstrated persistently higher myonuclei density and DNA to cytoplasm ratio 4 years after AAS cessation suggestive of enhanced retraining capacity.
Collapse
Affiliation(s)
- Jakob Lindberg Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense DK-5230, Denmark
| | - Jon Jarløv Rasmussen
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Mikkel Nicklas Frandsen
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Jeppe Fredberg
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Niels Høegh Brandt-Jacobsen
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
| | - Per Aagaard
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense DK-5230, Denmark
| | - Caroline Kistorp
- Department of Medical Endocrinology, Copenhagen University Hospital, Rigshospitalet, Copenhagen DK-2200, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
13
|
Trumble BC, Pontzer H, Stieglitz J, Cummings DK, Wood B, Emery Thompson M, Raichlen D, Beheim B, Yetish G, Kaplan H, Gurven M. Energetic costs of testosterone in two subsistence populations. Am J Hum Biol 2023; 35:e23949. [PMID: 37365845 PMCID: PMC10749987 DOI: 10.1002/ajhb.23949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE Testosterone plays a role in mediating energetic trade-offs between growth, maintenance, and reproduction. Investments in a high testosterone phenotype trade-off against other functions, particularly survival-enhancing immune function and cellular repair; thus only individuals in good condition can maintain both a high testosterone phenotype and somatic maintenance. While these effects are observed in experimental manipulations, they are difficult to demonstrate in free-living animals, particularly in humans. We hypothesize that individuals with higher testosterone will have higher energetic expenditures than those with lower testosterone. METHODS Total energetic expenditure (TEE) was quantified using doubly labeled water in n = 40 Tsimane forager-horticulturalists (50% male, 18-87 years) and n = 11 Hadza hunter-gatherers (100% male, 18-65 years), two populations living subsistence lifestyles, high levels of physical activity, and high infectious burden. Urinary testosterone, TEE, body composition, and physical activity were measured to assess potential physical and behavioral costs associated with a high testosterone phenotype. RESULTS Endogenous male testosterone was significantly associated with energetic expenditure, controlling for fat free mass; a one standard deviation increase in testosterone is associated with the expenditure of an additional 96-240 calories per day. DISCUSSION These results suggest that a high testosterone phenotype, while beneficial for male reproduction, is also energetically expensive and likely only possible to maintain in healthy males in robust condition.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | | | - Daniel K Cummings
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, California, USA
| | - Brian Wood
- Department of Anthropology, University of California Los Angeles, Los Angeles, California, USA
| | | | - David Raichlen
- Department of Anthropology, University of Southern California, Los Angeles, California, USA
- Department of Biology, University of Southern California, Los Angeles, California, USA
| | - Bret Beheim
- Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gandhi Yetish
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, California, USA
| | - Hillard Kaplan
- Department of Health Economics and Anthropology, Economic Science Institute, Argyros School of Business and Economics, Chapman University, Orange, California, USA
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
14
|
Sakuma K, Hamada K, Yamaguchi A, Aoi W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023; 12:2422. [PMID: 37830636 PMCID: PMC10572610 DOI: 10.3390/cells12192422] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Sarcopenia is characterized by a gradual slowing of movement due to loss of muscle mass and quality, decreased power and strength, increased risk of injury from falls, and often weakness. This review will focus on recent research trends in nutritional and pharmacological approaches to controlling sarcopenia. Because nutritional studies in humans are fairly limited, this paper includes many results from nutritional studies in mammals. The combination of resistance training with supplements containing amino acids is the gold standard for preventing sarcopenia. Amino acid (HMB) supplementation alone has no significant effect on muscle strength or muscle mass in sarcopenia, but the combination of HMB and exercise (whole body vibration stimulation) is likely to be effective. Tea catechins, soy isoflavones, and ursolic acid are interesting candidates for reducing sarcopenia, but both more detailed basic research on this treatment and clinical studies in humans are needed. Vitamin D supplementation has been shown not to improve sarcopenia in elderly individuals who are not vitamin D-deficient. Myostatin inhibitory drugs have been tried in many neuromuscular diseases, but increases in muscle mass and strength are less likely to be expected. Validation of myostatin inhibitory antibodies in patients with sarcopenia has been positive, but excessive expectations are not warranted.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Kento Hamada
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
| |
Collapse
|
15
|
Barsky ST, Monks DA. Androgen action on myogenesis throughout the lifespan; comparison with neurogenesis. Front Neuroendocrinol 2023; 71:101101. [PMID: 37669703 DOI: 10.1016/j.yfrne.2023.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/07/2023]
Abstract
Androgens' pleiotropic actions in promoting sex differences present not only a challenge to providing a comprehensive account of their function, but also an opportunity to gain insights by comparing androgenic actions across organ systems. Although often overlooked by neuroscientists, skeletal muscle is another androgen-responsive organ system which shares with the nervous system properties of electrochemical excitability, behavioral relevance, and remarkable capacity for adaptive plasticity. Here we review androgenic regulation of mitogenic plasticity in skeletal muscle with the goal of identifying areas of interest to those researching androgenic mechanisms mediating sexual differentiation of neurogenesis. We use an organizational-activational framework to relate broad areas of similarity and difference between androgen effects on mitogenesis in muscle and brain throughout the lifespan, from early organogenesis, through pubertal organization, adult activation, and aging. The focus of the review is androgenic regulation of muscle-specific stem cells (satellite cells), which share with neural stem cells essential functions in development, plasticity, and repair, albeit with distinct, muscle-specific features. Also considered are areas of paracrine and endocrine interaction between androgen action on muscle and nervous system, including mediation of neural plasticity of innervating and distal neural populations by muscle-produced trophic factors.
Collapse
Affiliation(s)
- Sabrina Tzivia Barsky
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario, Canada.
| | - Douglas Ashley Monks
- Department of Cell & Systems Biology, Faculty of Arts & Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, Faculty of Arts & Science, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
16
|
Yoshimura Y, Hashimoto Y, Okada H, Takegami M, Nakajima H, Miyoshi T, Yoshimura T, Yamazaki M, Hamaguchi M, Fukui M. Changes in glycemic control and skeletal muscle mass indices after dapagliflozin treatment in individuals with type 1 diabetes mellitus. J Diabetes Investig 2023; 14:1175-1182. [PMID: 37424302 PMCID: PMC10512910 DOI: 10.1111/jdi.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 07/11/2023] Open
Abstract
AIMS/INTRODUCTION Dapagliflozin is used for individuals with type 1 diabetes, although the effect of this medication on skeletal muscle mass is not well established. In addition, there are few studies examining the effects of good glycemic control on skeletal muscle mass in type 1 diabetes patients. We investigated changes in glycemic control and skeletal muscle mass with dapagliflozin in individuals with type 1 diabetes, and the association between these changes. MATERIALS AND METHODS This was a post-hoc analysis of a multicenter, open-label, non-randomized, prospective, interventional study in individuals with type 1 diabetes. The participants received dapagliflozin at 5 mg/day for 4 weeks, and were reviewed before and after treatment. Weight- and height-corrected appendicular skeletal muscle mass (ASM) were calculated as indices of skeletal muscle mass using bioelectrical impedance analysis. RESULTS A total of 36 individuals were included in the analysis. After the 4 weeks of dapagliflozin treatment, ASM/height2 decreased in the body mass index <23 group (P = 0.004). ASM / weight decreased in all men aged >60 years. The change in ASM / weight (%) was negatively correlated with the change in glycated hemoglobin (%;P = 0.023). The change in ASM / height2 (kg/m2 ) was also positively correlated with the change in time within the glucose range of 70-180 mg/dL (P = 0.036). CONCLUSION Dapagliflozin treatment of individuals with type 1 diabetes, particularly non-obese individuals and older men, might result in loss of skeletal muscle mass. However, good glycemic control during treatment might prevent the onset and progression of sarcopenia.
Collapse
Affiliation(s)
- Yuta Yoshimura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Metabolism and ImmunologySaiseikai Suita HospitalSuitaJapan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Diabetes and EndocrinologyMatsushita Memorial HospitalMoriguchiJapan
| | - Hiroshi Okada
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Maya Takegami
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Hanako Nakajima
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Tomoki Miyoshi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Takashi Yoshimura
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Masahiro Yamazaki
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
- Department of Metabolism and ImmunologyJapanese Red Cross Kyoto Daini HospitalKyotoJapan
| | - Masahide Hamaguchi
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| | - Michiaki Fukui
- Department of Endocrinology and MetabolismKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan
| |
Collapse
|
17
|
Yan Z, Xu Y, Li K, Liu L. Association between genetically proxied HMGCR inhibition and male reproductive health: A Mendelian randomization study. Medicine (Baltimore) 2023; 102:e34690. [PMID: 37773823 PMCID: PMC10545124 DOI: 10.1097/md.0000000000034690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND The causal associations between statin use and male sex hormone levels and related disorders have not been fully understood. In this study, we employed Mendelian randomization for the first time to investigate these associations. METHODS In two-sample Mendelian randomization framework, genetic proxies for hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) inhibition were identified as variants in the HMGCR gene that were associated with both levels of gene expression and low density lipoprotein cholesterol (LDL-C). We assessed the causal relationship between HMGCR inhibitor and 5 sex hormone levels/2 male-related diseases. Additionally, we investigated the association between 4 circulating lipid traits and outcomes. The "inverse variance weighting" method was used as the primary approach, and we assessed for potential heterogeneity and pleiotropy. In a secondary analysis, we revalidated the impact of HMGCR on 7 major outcomes using the summary-data-based Mendelian randomization method. RESULTS Our study found a significant causal association between genetic proxies for HMGCR inhibitor and decreased levels of total testosterone (TT) (LDL-C per standard deviation = 38.7mg/dL, effect = -0.20, 95% confidence interval [CI] = -0.25 to -0.15) and bioavailable testosterone (BT) (effect = -0.15, 95% CI = -0.21 to -0.10). Obesity-related factors were found to mediate this association. Furthermore, the inhibitor were found to mediate a reduced risk of prostate cancer (odds ratio = 0.81, 95%CI = 0.7-0.93) by lowering bioavailable testosterone levels, without increasing the risk of erectile dysfunction (P = .17). On the other hand, there was a causal association between increased levels of LDL-C, total cholesterol, triglycerides (TG) and decreased levels of TT, sex hormone-binding globulin, and estradiol. CONCLUSIONS The use of HMGCR inhibitor will reduce testosterone levels and the risk of prostate cancer without the side effect of erectile dysfunction. LDL-C, total cholesterol, and TG levels were protective factors for TT, sex hormone-binding globulin, and estradiol.
Collapse
Affiliation(s)
- Zhaoqi Yan
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Yifeng Xu
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Keke Li
- Jiangxi University of Traditional Chinese Medicine, Graduate School, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Pneumology Department, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Denben B, Sripinyowanich S, Ruangthai R, Phoemsapthawee J. Beneficial Effects of Asparagus officinalis Extract Supplementation on Muscle Mass and Strength following Resistance Training and Detraining in Healthy Males. Sports (Basel) 2023; 11:175. [PMID: 37755852 PMCID: PMC10537221 DOI: 10.3390/sports11090175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
The phytoecdysteroid 20-hydroxyecdysone (20E) is widely used for resistance training (RT). Little is known about its potential ergogenic value and detraining effects post-RT. This study aimed to examine the effects of 20E extracted from Asparagus officinalis (A. officinalis) on muscle strength and mass, as well as anabolic and catabolic hormones following RT and detraining. Twenty males, aged 20.1 ± 1.1 years, were matched and randomly assigned to consume double-blind supplements containing either a placebo (PLA) or 30 mg/day of 20E for 12 weeks of RT and detraining. Before and after RT and detraining, muscle strength and mass and anabolic and catabolic hormones were measured. This study found that 20E reduced cortisol levels significantly (p < 0.05) compared to the PLA, yet no effect was observed on muscle mass, strength, or anabolic hormones after RT. Subsequent to 6 weeks of detraining, the 20E demonstrated a lower percentage change in 1RM bench press/FFM than the PLA (p < 0.05). Compared to the PLA, detraining throughout the 12 weeks resulted in a lower percentage change in thigh (p < 0.05) and chest (p < 0.01) circumferences, as well as reduced cortisol levels (p < 0.01), with 20E. Our findings demonstrate that 20E supplementation is a promising way to maintain muscle mass and strength during detraining. Accordingly, 20E may prevent muscle mass and strength loss due to detraining by lowering catabolic hormone levels.
Collapse
Affiliation(s)
- Barakat Denben
- Department of Sports Science and Health, Faculty of Sports Science, Kasetsart University, Nakhon Pathom 73140, Thailand; (B.D.); (R.R.)
| | - Siriporn Sripinyowanich
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand;
| | - Ratree Ruangthai
- Department of Sports Science and Health, Faculty of Sports Science, Kasetsart University, Nakhon Pathom 73140, Thailand; (B.D.); (R.R.)
| | - Jatuporn Phoemsapthawee
- Department of Sports Science and Health, Faculty of Sports Science, Kasetsart University, Nakhon Pathom 73140, Thailand; (B.D.); (R.R.)
| |
Collapse
|
19
|
Lima G, Kolliari-Turner A, Wang G, Ho P, Meehan L, Roeszler K, Seto J, Malinsky FR, Karanikolou A, Eichhorn G, Tanisawa K, Ospina-Betancurt J, Hamilton B, Kumi PYO, Shurlock J, Skiadas V, Twycross-Lewis R, Kilduff L, Guppy FM, North K, Pitsiladis Y, Fossati C, Pigozzi F, Borrione P. The MMAAS Project: An Observational Human Study Investigating the Effect of Anabolic Androgenic Steroid Use on Gene Expression and the Molecular Mechanism of Muscle Memory. Clin J Sport Med 2023; 33:e115-e122. [PMID: 35533133 DOI: 10.1097/jsm.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 03/20/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE It remains unknown whether myonuclei remain elevated post anabolic-androgenic steroid (AAS) usage in humans. Limited data exist on AAS-induced changes in gene expression. DESIGN Cross-sectional/longitudinal. SETTING University. PARTICIPANTS Fifty-six men aged 20 to 42 years. INDEPENDENT VARIABLES Non-resistance-trained (C) or resistance-trained (RT), RT currently using AAS (RT-AS), of which if AAS usage ceased for ≥18 weeks resampled as Returning Participants (RP) or RT previously using AAS (PREV). MAIN OUTCOME MEASURES Myonuclei per fiber and cross-sectional area (CSA) of trapezius muscle fibers. RESULTS There were no significant differences between C (n = 5), RT (n = 15), RT-AS (n = 17), and PREV (n = 6) for myonuclei per fiber. Three of 5 returning participants (RP1-3) were biopsied twice. Before visit 1, RP1 ceased AAS usage 34 weeks before, RP2 and RP3 ceased AAS usage ≤2 weeks before, and all had 28 weeks between visits. Fiber CSA decreased for RP1 and RP2 between visits (7566 vs 6629 μm 2 ; 7854 vs 5677 μm 2 ) while myonuclei per fiber remained similar (3.5 vs 3.4; 2.5 vs 2.6). Respectively, these values increased for RP3 between visits (7167 vs 7889 μm 2 ; 2.6 vs 3.3). CONCLUSIONS This cohort of past AAS users did not have elevated myonuclei per fiber values, unlike previous research, but reported AAS usage was much lower. Training and AAS usage history also varied widely among participants. Comparable myonuclei per fiber numbers despite decrements in fiber CSA postexposure adheres with the muscle memory mechanism, but there is variation in usage relative to sampling date and low numbers of returning participants.
Collapse
Affiliation(s)
- Giscard Lima
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | | | - Guan Wang
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
| | - Patrick Ho
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Lyra Meehan
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Kelly Roeszler
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Jane Seto
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | | | - Antonia Karanikolou
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
| | - Gregor Eichhorn
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, United Kingdom
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Blair Hamilton
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
- Centre for Stress and Age-related Disease, University of Brighton, Brighton, United Kingdom
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, United Kingdom
| | - Paulette Y O Kumi
- Centre for Sports and Exercise Medicine, William Harvey Research Institute, Queen Mary University of London, United Kingdom
| | | | - Vasileios Skiadas
- University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
- University College of Football Business (UCFB Wembley Campus), Wembley, London, United Kingdom ; and
| | - Liam Kilduff
- Applied Sports, Technology, Exercise, and Medicine Research Centre (A-STEM), College of Engineering, Swansea University, Swansea, Wales
| | - Fergus M Guppy
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
- Centre for Stress and Age-related Disease, University of Brighton, Brighton, United Kingdom
| | - Kathryn North
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Australia
| | - Yannis Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| |
Collapse
|
20
|
Wang G, Zhang L, Ji T, Zhang W, Peng L, Shen S, Liu X, Shi Y, Chen X, Chen Q, Li Y, Ma L. A protocol for randomized controlled trial on multidisciplinary interventions for mobility limitation in the older adults (M-MobiLE). BMC Geriatr 2023; 23:476. [PMID: 37553604 PMCID: PMC10410791 DOI: 10.1186/s12877-023-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/16/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mobility limitation-the loss of exercise capacity or independent living ability-is a common geriatric syndrome in older adults. As a potentially reversible precursor to disability, mobility limitation is influenced by various factors. Moreover, its complex physiological mechanism hinders good therapeutic outcomes with a single-factor intervention. Most hospitals have not incorporated the diagnosis and evaluation of mobility limitation into medical routines nor developed a multidisciplinary team (MDT) treatment plan. We aim to conduct a clinical trial titled "A Multidisciplinary-team approach for management of Mobility Limitation in Elderly (M-MobiLE)" to explore the effect of the MDT decision-making intervention for mobility limitation. METHODS The M-MobiLE study will be a multicenter, randomized, and controlled trial. We will recruit a minimum of 66 older inpatients with mobility limitation from at least five hospitals. Older patients with mobility limitation admitted to the geriatrics department will be included. Short-Physical Performance Battery (SPPB), Activities of Daily Living (ADL), Function Impairment Screening Tool (FIST), Geriatric Depression Scale (GDS-15), Short Form - 12 (SF-12), Fried frailty phenotype, social frailty, Morse Fall Risk Scale, SARC-CalF, Mini-Mental State Examination (MMSE), Mini-Nutritional Assessment Short-Form (MNA-SF), and intrinsic capacity will be assessed. The intervention group will receive an exercise-centered individualized MDT treatment, including exercise, educational, nutritional, medical, and comorbidity interventions; the control group will receive standard medical treatment. The primary outcome is the change in the SPPB score, and the secondary outcomes include increased SF-12, ADL, FIST, MMSE, MNA-SF, and intrinsic capacity scores and decreased GDS-15 and SARC-CalF scores. CONCLUSION Our results will help develop a multidisciplinary decision-making clinical pathway for inpatients with mobility limitation, which can be used to identify patients with mobility limitation more effectively, improve mobility, and reduce the risk of falls, frailty, and death in older inpatients. The implementation of this MDT strategy may standardize the treatment of mobility limitation, reduce adverse prognosis, and improve quality of life. TRIAL REGISTRATION ChiCTR, ChiCTR2200056756, Registered 19 February 2022.
Collapse
Affiliation(s)
- Guanzhen Wang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Li Zhang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Tong Ji
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Wanshu Zhang
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Linlin Peng
- Department of Geriatrics, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shanshan Shen
- Department of Geriatrics, Zhejiang hospital, Hangzhou, China
| | - Xiaolei Liu
- Department of Geriatrics, West China Hospital Sichuan University, Chengdu, China
| | - Yanqing Shi
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xujiao Chen
- Department of Geriatrics, Zhejiang hospital, Hangzhou, China
| | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Li
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Lina Ma
- Department of Geriatrics, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
21
|
del-Cuerpo I, Jerez-Mayorga D, Chirosa-Ríos LJ, Morenas-Aguilar MD, Mariscal-Arcas M, López-Moro A, Delgado-Floody P. Males Have a Higher Energy Expenditure than Females during Squat Training. Nutrients 2023; 15:3455. [PMID: 37571392 PMCID: PMC10421381 DOI: 10.3390/nu15153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The main objective of this study was to determine the differences in energy expenditure (EE) according to sex during and after two different squat training protocols in a group of healthy young adults. Twenty-nine Sports Sciences students volunteered to participate in this study. They attended the laboratory on four different days and completed four sessions: two sessions with 3 sets of 12 repetitions at 75% of their one-repetition maximum (RM) and two sessions with 3 sets of 30 repetitions at 50% of their 1RM. Energy expenditure was evaluated using an indirect calorimeter. Males consistently demonstrated higher EE in all sessions and intensities. The linear regression model identified a significant association between sex, BMI, and total EE across all sessions and intensities. In conclusion, males exhibited higher EE in both protocols (50% and 75% of 1RM) throughout all sessions. Furthermore, sex and BMI were found to influence EE in healthy young adults. Therefore, coaches should consider sex when assessing EE, as the metabolic response differs between males and females.
Collapse
Affiliation(s)
- Indya del-Cuerpo
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
| | - Daniel Jerez-Mayorga
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile
| | - Luis Javier Chirosa-Ríos
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
| | - María Dolores Morenas-Aguilar
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Strength & Conditioning Laboratory, CTS-642 Research Group, Department Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain
| | - Miguel Mariscal-Arcas
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.M.-A.); (A.L.-M.)
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), 18071 Granada, Spain
| | - Alejandro López-Moro
- Department of Nutrition and Food Science, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.M.-A.); (A.L.-M.)
| | - Pedro Delgado-Floody
- Department of Physical Education and Sports, Faculty of Sports Sciences, University of Granada, 18071 Granada, Spain; (I.d.-C.); (D.J.-M.); (L.J.C.-R.); (M.D.M.-A.)
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
22
|
Margolis LM, Marlatt KL, Berryman CE, Howard EE, Murphy NE, Carrigan CT, Harris MN, Beyl RA, Ravussin E, Pasiakos SM, Rood JC. Metabolic Adaptations and Substrate Oxidation are Unaffected by Exogenous Testosterone Administration during Energy Deficit in Men. Med Sci Sports Exerc 2023; 55:661-669. [PMID: 36563086 PMCID: PMC11801180 DOI: 10.1249/mss.0000000000003089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION/PURPOSE The effects of testosterone on energy and substrate metabolism during energy deficit are unknown. The objective of this study was to determine the effects of weekly testosterone enanthate (TEST; 200 mg·wk -1 ) injections on energy expenditure, energy substrate oxidation, and related gene expression during 28 d of energy deficit compared with placebo (PLA). METHODS After a 14-d energy balance phase, healthy men were randomly assigned to TEST ( n = 24) or PLA ( n = 26) for a 28-d controlled diet- and exercise-induced energy deficit (55% below total energy needs by reducing energy intake and increasing physical activity). Whole-room indirect calorimetry and 24-h urine collections were used to measure energy expenditure and energy substrate oxidation during balance and deficit. Transcriptional regulation of energy and substrate metabolism was assessed using quantitative reverse transcription-polymerase chain reaction from rested/fasted muscle biopsy samples collected during balance and deficit. RESULTS Per protocol design, 24-h energy expenditure increased ( P < 0.05) and energy intake decreased ( P < 0.05) in TEST and PLA during deficit compared with balance. Carbohydrate oxidation decreased ( P < 0.05), whereas protein and fat oxidation increased ( P < 0.05) in TEST and PLA during deficit compared with balance. Change (∆; deficit minus balance) in 24-h energy expenditure was associated with ∆activity factor ( r = 0.595), but not ∆fat-free mass ( r = 0.147). Energy sensing (PRKAB1 and TP53), mitochondria (TFAM and COXIV), fatty acid metabolism (CD36/FAT, FABP, CPT1b, and ACOX1) and storage (FASN), and amino acid metabolism (BCAT2 and BCKHDA) genes were increased ( P < 0.05) during deficit compared with balance, independent of treatment. CONCLUSIONS These data demonstrate that increased physical activity and not exogenous testosterone administration is the primary determinate of whole-body and skeletal muscle metabolic adaptations during diet- and exercise-induced energy deficit.
Collapse
Affiliation(s)
- Lee M Margolis
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | | | | - Emily E Howard
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Nancy E Murphy
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | - Christopher T Carrigan
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | | - Robbie A Beyl
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA
| | - Stefan M Pasiakos
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA
| | | |
Collapse
|
23
|
Yuneldi RF, Airin CM, Saragih HTS, Sarmin S, Astuti P, Alimon AR. Growth, pectoralis muscle performance, and testis of pelung cockerels (Gallus gallus gallus [Linnaeus, 1758]) supplemented with blood clam shell powder (Anadara granosa [Linnaeus, 1758]). Vet World 2023; 16:474-482. [PMID: 37041827 PMCID: PMC10082742 DOI: 10.14202/vetworld.2023.474-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 03/19/2023] Open
Abstract
Background and Aim: Pelung cockerels (Gallus gallus gallusGallus gallus gallus [Linnaeus, 1758]) are different from other native cockerels in that they have a long and unique voice, in addition to their tall, large, and sturdy body with a relatively heavy body weight (BW). The sound quality of pelung cockerels is affected by the structure of the syrinx and their large and strong chest muscles. The performance of the chest muscles, and subsequently its voice, is influenced by the hormone testosterone. The shell of blood clams (Anadara granosa Linnaeus, 1758), a saltwater bivalve is known to contain a natural aromatase blocker (NAB) capable of blocking the aromatase enzyme from converting testosterone to estradiol. This generates consistently high levels of testosterone. This study aimed to determine the effect of blood clam shell powder (BCSP) as an NAB on the growth, pectoralis muscle performance, and testes of pelung cockerels.
Materials and Methods: The study design was a completely randomized design, with 16 pelung cockerels aged 40–56 weeks divided into four treatment groups: T0 (control); T1 (BCSP [A. granosa] 0.9 mg/kg BW); T2 (zinc sulfate [ZnSO4] 0.9 mg/kg BW); and T3 (testosterone 3 mg/day). The animals were acclimatized for 7 days and then given dietary treatments for 56 days. The measurement of the comb, wattle, and chest circumference (CC) of pelung cockerels was performed on days 0, 14, 28, 42, and 56. At the end of the treatment, the pelung cockerels were sacrificed and the data of the pectoralis muscle weight (PMW), testis weight (TW), and area of the pectoralis muscle (APM) were measured. Samples of pectoralis muscle and testes were taken and fixed in 10% neutral buffer formalin for histology. The proliferating cell nuclear antigen (PCNA) was identified by immunohistochemical staining. To measure fascicle area (FA), myofiber area (MA), and enumerate, the fascicle myofibers (NM) histology preparations were stained with hematoxylin and eosin (H and E). Testicular preparations were stained with H and E to measure the diameter of the seminiferous tubules (DST) using ImageJ software.
Results: The growth performance on day 56 showed significantly (p < 0.05) higher differences of CC in T1 compared to T2 and T0, in T1 and T3 compared to T0, and in T3 and T2 compared to T0. Pectoralis muscle results, that is, FA, NM, MA, and PCNA-positive cells, showed that cockerels on treatment T3 had significantly higher results than other treatments, T1 was significantly different from T2 and T0, and T2 was significantly different from T0. In addition, the TW and DST measurement of cockerels on treatment T3 were significantly reduced (p < 0.05) than the other treatment groups.
Conclusion: The oral administration of BCSP in the role of a NAB at a dose of 0.9 mg/kg BW for 56 days improved the growth performance and pectoralis muscle, especially the CC, FA, NM, MA, and PCNA-positive cells parameters, but did not affect the PMW, APM, and testis of pelung cockerels. The administration of testosterone at 3 mg/day for 56 days contributed to the decrease in TW and DST, as well as atrophy of the seminiferous tubules of pelung cockerels.
Keywords: growth performance, muscle, natural aromatase blocker, pelung, testis.
Collapse
Affiliation(s)
- Rizki Fitrawan Yuneldi
- Post-Doctoral Program, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Claude Mona Airin
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendry T. S. Saragih
- Laboratory of Animal Development Structure, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sarmin Sarmin
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Pudji Astuti
- Department of Physiology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Abdul Razak Alimon
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
24
|
Higuchi S, Orban M, Adamo M, Giannini C, Melica B, Karam N, Praz F, Kalbacher D, Lubos E, Stolz L, Braun D, Näbauer M, Wild M, Doldi P, Neuss M, Butter C, Kassar M, Ruf T, Petrescu A, Schofer N, Pfister R, Iliadis C, Unterhuber M, Thiele H, Baldus S, von Bardeleben RS, Massberg S, Windecker S, Lurz P, Petronio AS, Metra M, Hausleiter J. Sex-specific impact of anthropometric parameters on outcomes after transcatheter edge-to-edge repair for secondary mitral regurgitation. Int J Cardiol 2023; 371:312-318. [PMID: 36115443 DOI: 10.1016/j.ijcard.2022.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Body surface area (BSA) has been reported to be the stronger predictor for prognosis than body mass index in heart failure (HF) patients. The sex-specific association of BSA with mortality has been unclear. METHODS EuroSMR, a European multicenter registry, included patients who underwent edge-to-edge repair (TEER) for secondary mitral regurgitation (SMR). The outcome was two-year all-cause mortality. RESULTS The present cohort included 1594 HF patients (age, 74 ± 10 years; male, 66%). Association of calculated BSA with two-year all-cause mortality was evaluated. Patients were classified into three BSA groups: the lowest 10% (S), the highest 10% (L), and intermediate between S and L (M). Mean BSA was 1.87 ± 0.21 m2 (male, 1.94 ± 0.18 m2; female, 1.73 ± 0.18 m2). The association of BSA with the endpoint in females showed a U-shaped curve, indicating worse prognosis for both S and L. The association in males followed a linear regression, demonstrating better prognosis for L. Hazard ratio (HR) of L to S in males was 0.43 (95% confidence interval [CI], 0.25-0.74; p = 0.002), whereas HR of L to M in females was 1.76 (95% CI, 1.11-2.78; p = 0.016) (p for interaction = 0.003). CONCLUSIONS Sex-specific association patterns demonstrate the complex influence of anthropomorphic factors in HF patients scheduled for TEER. Further investigation beyond simple evaluation of weight and height is needed for better comprehension of the obesity paradox and better prediction of the results of transcatheter therapy in HF patients.
Collapse
Affiliation(s)
- Satoshi Higuchi
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - Mathias Orban
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | - Marianna Adamo
- Cardiac Catheterization Laboratory and Cardiology, ASST Spedali Civili and Department of medical and surgical specialties, radiological sciences and public health, University of Brescia, Brescia, Italy
| | - Cristina Giannini
- Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Bruno Melica
- Cardiology Department, Centro Hospitalar Vila Nova de Gaia e Espinho, Portugal
| | - Nicole Karam
- Paris University, PARCC, INSERM, F-75015, European Hospital Georges Pompidou, Paris, France
| | - Fabien Praz
- Universitätsklinik für Kardiologie, Inselspital Bern, Switzerland
| | - Daniel Kalbacher
- Universitäres Herz- und Gefäßzentrum Hamburg, Klinik für Kardiologie, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Edith Lubos
- Universitäres Herz- und Gefäßzentrum Hamburg, Klinik für Kardiologie, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Germany
| | - Lukas Stolz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - Daniel Braun
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | - Michael Näbauer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - Mirjam Wild
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Universitätsklinik für Kardiologie, Inselspital Bern, Switzerland
| | - Philipp Doldi
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | - Michael Neuss
- Herzzentrum Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Bernau, Germany
| | - Christian Butter
- Herzzentrum Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Bernau, Germany
| | - Mohammad Kassar
- Universitätsklinik für Kardiologie, Inselspital Bern, Switzerland
| | - Tobias Ruf
- Zentrum für Kardiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Aniela Petrescu
- Zentrum für Kardiologie, Johannes Gutenberg-Universität, Mainz, Germany
| | - Niklas Schofer
- Universitäres Herz- und Gefäßzentrum Hamburg, Klinik für Kardiologie, Germany
| | - Roman Pfister
- Department III of Internal Medicine, Heart Center, University of Cologne, Cologne, Germany
| | - Christos Iliadis
- Department III of Internal Medicine, Heart Center, University of Cologne, Cologne, Germany
| | - Matthias Unterhuber
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Stephan Baldus
- Department III of Internal Medicine, Heart Center, University of Cologne, Cologne, Germany
| | | | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany
| | | | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany
| | - Anna Sonia Petronio
- Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, University of Pisa, Pisa, Italy
| | - Marco Metra
- Cardiac Catheterization Laboratory and Cardiology, ASST Spedali Civili and Department of medical and surgical specialties, radiological sciences and public health, University of Brescia, Brescia, Italy
| | - Jörg Hausleiter
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany; Munich Heart Alliance, Partner Site German Center for Cardiovascular Disease (DZHK), Munich, Germany.
| |
Collapse
|
25
|
Abstract
Cachexia is a complex wasting syndrome, accompanying a variety of end-stage chronic diseases, such as cancer, heart failure and human immunodeficiency virus (HIV) infection/acquired immunodeficiency syndrome (AIDS). It significantly affects patients' quality of life and survival. Multiple therapeutic approaches have been studied over time. However, despite promising results, no drug has been approved to date. In this review, we examine and discuss the available data on the therapeutic effects of androgens and selective androgen receptor modulators (SARMs) for cachexia.
Collapse
Affiliation(s)
- Luca Giovanelli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20100, Milan, Italy; Department of Endocrine and Metabolic Medicine, IRCCS Istituto Auxologico Italiano, 20100, Milan, Italy; Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, NE1 4LP, UK.
| | - Richard Quinton
- Department of Endocrinology, Diabetes & Metabolism, Newcastle-upon-Tyne Hospitals, NE1 4LP, UK; Translational & Clinical Research Institute, University of Newcastle-upon-Tyne, NE1 3BZ, UK.
| |
Collapse
|
26
|
O'Bryan SM, Connor KR, Drummer DJ, Lavin KM, Bamman MM. Considerations for Sex-Cognizant Research in Exercise Biology and Medicine. Front Sports Act Living 2022; 4:903992. [PMID: 35721874 PMCID: PMC9204149 DOI: 10.3389/fspor.2022.903992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
As the fields of kinesiology, exercise science, and human movement developed, the majority of the research focused on male physiology and extrapolated findings to females. In the medical sphere, basing practice on data developed in only males resulted in the removal of drugs from the market in the late 1990s due to severe side effects (some life-threatening) in females that were not observed in males. In response to substantial evidence demonstrating exercise-induced health benefits, exercise is often promoted as a key modality in disease prevention, management, and rehabilitation. However, much like the early days of drug development, a historical literature knowledge base of predominantly male studies may leave the exercise field vulnerable to overlooking potentially key biological differences in males and females that may be important to consider in prescribing exercise (e.g., how exercise responses may differ between sexes and whether there are optimal approaches to consider for females that differ from conventional approaches that are based on male physiology). Thus, this review will discuss anatomical, physiological, and skeletal muscle molecular differences that may contribute to sex differences in exercise responses, as well as clinical considerations based on this knowledge in athletic and general populations over the continuum of age. Finally, this review summarizes the current gaps in knowledge, highlights the areas ripe for future research, and considerations for sex-cognizant research in exercise fields.
Collapse
Affiliation(s)
- Samia M. O'Bryan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kathleen R. Connor
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Devin J. Drummer
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kaleen M. Lavin
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Marcas M. Bamman
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- The Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- *Correspondence: Marcas M. Bamman
| |
Collapse
|
27
|
Liu QQ, Xie WQ, Luo YX, Li YD, Huang WH, Wu YX, Li YS. High Intensity Interval Training: A Potential Method for Treating Sarcopenia. Clin Interv Aging 2022; 17:857-872. [PMID: 35656091 PMCID: PMC9152764 DOI: 10.2147/cia.s366245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia, an age-related disease characterized by loss of muscle strength and muscle mass, has attracted the attention of medical experts due to its severe morbidity, low living quality, high expenditure of health care, and mortality. Traditionally, persistent aerobic exercise (PAE) is considered as a valid way to attenuate muscular atrophy. However, nowadays, high intensity interval training (HIIT) has emerged as a more effective and time-efficient method to replace traditional exercise modes. HIIT displays comprehensive effects on exercise capacity and skeletal muscle metabolism, and it provides a time-out for the recovery of cardiopulmonary and muscular functions without causing severe adverse effects. Studies demonstrated that compared with PAE, HIIT showed similar or even higher effects in improving muscle strength, enhancing physical performances and increasing muscle mass of elder people. Therefore, HIIT might become a promising way to cope with the age-related loss of muscle mass and muscle function. However, it is worth mentioning that no study of HIIT was conducted directly on sarcopenia patients, which is attributed to the suspicious of safety and validity. In this review, we will assess the effects of different training parameters on muscle and sarcopenia, summarize previous papers which compared the effects of HIIT and PAE in improving muscle quality and function, and evaluate the potential of HIIT to replace the status of PAE in treating old people with muscle atrophy and low modality; and point out drawbacks of temporary experiments. Our aim is to discuss the feasibility of HIIT to treat sarcopenia and provide a reference for clinical scientists who want to utilize HIIT as a new way to cope with sarcopenia.
Collapse
Affiliation(s)
- Qian-Qi Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Yu-Xuan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Yi-Dan Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410083, People’s Republic of China
| | - Wei-Hong Huang
- Mobile Health Ministry of Education - China Mobile Joint Laboratory, Xiangya Hospital Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Yu-Xiang Wu
- Department of Health and Kinesiology, School of Physical Education, Jianghan University, Wuhan, Hubei, 430056, People’s Republic of China
- Yu-Xiang Wu, Department of Health and Kinesiology, School of Physical Education, Jianghan University, No. 8, Sanjiaohu Road, Wuhan, Hubei, 430056, People’s Republic of China, Tel +86 27 8422 6921, Email
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- Correspondence: Yu-Sheng Li, Department of Orthopedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, People’s Republic of China, Tel +86-13975889696, Email
| |
Collapse
|
28
|
Di Filippo L, De Lorenzo R, Giustina A, Rovere-Querini P, Conte C. Vitamin D in Osteosarcopenic Obesity. Nutrients 2022; 14:1816. [PMID: 35565781 PMCID: PMC9100750 DOI: 10.3390/nu14091816] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcopenic obesity is a unique clinical condition where low bone and muscle mass coexist in individuals with obesity. Alterations in adipose tissue, skeletal muscle and bone are strictly interconnected, and vitamin D plays key roles in several metabolic pathways that are involved in maintaining musculoskeletal health and glucose homeostasis. We reviewed the available literature on mechanisms underlying osteosarcopenic obesity, with a focus on the role of vitamin D in the pathogenesis and treatment of the condition. We found that, although evidence from large observational studies and pre-clinical experiments strongly supports a role of vitamin D deficiency in the pathogenesis of osteosarcopenic obesity, the common belief that vitamin D improves musculoskeletal health lacks solid clinical evidence, as trials specifically aimed at assessing the effects of vitamin D supplementation in patients with osteosarcopenic obesity are not available, and trials that investigated the role of vitamin D on muscle and bone health in other patient populations either showed no or even detrimental effects. We conclude that large observational and interventional studies including individuals with osteosarcopenic obesity representative of different sex, age and race are needed to better define the role of vitamin D in the pathogenesis and treatment of this condition.
Collapse
Affiliation(s)
- Luigi Di Filippo
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy; (L.D.F.); (R.D.L.); (A.G.); (P.R.-Q.)
- Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Hospital, Via Olgettina 60, 00132 Milan, Italy
| | - Rebecca De Lorenzo
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy; (L.D.F.); (R.D.L.); (A.G.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital, Via Olgettina 60, 00132 Milan, Italy
| | - Andrea Giustina
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy; (L.D.F.); (R.D.L.); (A.G.); (P.R.-Q.)
- Institute of Endocrine and Metabolic Sciences, IRCCS San Raffaele Hospital, Via Olgettina 60, 00132 Milan, Italy
| | - Patrizia Rovere-Querini
- School of Medicine, Vita-Salute San Raffaele University, Via Olgettina 58, 00132 Milan, Italy; (L.D.F.); (R.D.L.); (A.G.); (P.R.-Q.)
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Hospital, Via Olgettina 60, 00132 Milan, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166 Rome, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Via Milanese 300, Sesto San Giovanni, 20900 Milan, Italy
| |
Collapse
|
29
|
Liu Q, Tang Q, Liao L, Li D, Zhu W, Zhao C. Translational therapy from preclinical animal models for muscle degeneration after rotator cuff injury. J Orthop Translat 2022; 35:13-22. [PMID: 35846726 PMCID: PMC9260436 DOI: 10.1016/j.jot.2022.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic rotator cuff tears are debilitating diseases which significantly affect patients’ quality of life and pose substantial financial burden to the society. The intraoperative reparability of injured tendon and postoperative probability of tendon retear are highly associated with the quality of torn muscles, specifically, the severity of muscle atrophy and fatty infiltration. Animal models that reproduce the characteristic muscle pathology after rotator cuff injury have been developed and used to provide insight into the underlying biology and pathophysiology. In this review, we briefly summarize the current information obtained from preclinical animal studies regarding the degenerative change of cuff muscle subsequent to tendon release and/or suprascapular nerve denervation. Importantly, we focus on the potential translational therapeutic targets or agents for the prevention or reversal of muscle atrophy and fatty infiltration. While further studies are warranted to assess the safety and efficacy of novel therapies derived from these preclinical animal research, we believe that their clinical translation for the treatment of rotator cuff disorders is on the horizon. The Translational potential of this article Novel therapeutic strategies described in this review from preclinical animal studies hold a great translational potential for preventing or reversing rotator cuff muscle pathology, while further assessments on their safety and efficacy are warranted.
Collapse
|
30
|
Lourenço Í, Krause Neto W, Amorim LDSP, Ortiz VMM, Geraldo VL, Ferreira GHDS, de Lima JT, Massoni AAR, Oliveira BM, Anaruma CA, Ciena AP, Gama EF, Caperuto ÉC. Previous short-term use of testosterone propionate enhances muscle hypertrophy in Wistar rats submitted to ladder-based resistance training. Tissue Cell 2022; 75:101741. [DOI: 10.1016/j.tice.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
|
31
|
Dos Santos MR, Storer TW. Testosterone Treatment As a Function-Promoting Therapy in Sarcopenia Associated with Aging and Chronic Disease. Endocrinol Metab Clin North Am 2022; 51:187-204. [PMID: 35216716 DOI: 10.1016/j.ecl.2021.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sarcopenia is characterized by loss of muscle strength and physical ability because of aging and/or chronic disease. Supplemental testosterone and other androgenic-anabolic steroids have been investigated as countermeasures to ameliorate the negative consequences of sarcopenia; these trials show dose-related improvements in lean body mass, maximal voluntary strength, stair climbing power, aerobic capacity, hemoglobin, and self-reported function, but less consistent improvements in walking speed. Randomized clinical trials with large cohorts and patient-important outcome measures are needed to determine long-term efficacy and safety of testosterone treatment in improving physical function and reducing physical disability, falls, and fractures in older adults with sarcopenia.
Collapse
Affiliation(s)
- Marcelo Rodrigues Dos Santos
- Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, |Faculdade de Medicina, Universidade de São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 44, Sao Paulo 05403-900 Brazil
| | - Thomas W Storer
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, 221 Longwood Avenue, 5th Floor, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Horwath O, Moberg M, Hirschberg AL, Ekblom B, Apró W. Molecular Regulators of Muscle Mass and Mitochondrial Remodeling Are Not Influenced by Testosterone Administration in Young Women. Front Endocrinol (Lausanne) 2022; 13:874748. [PMID: 35498440 PMCID: PMC9046720 DOI: 10.3389/fendo.2022.874748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/18/2022] [Indexed: 01/07/2023] Open
Abstract
Testosterone (T) administration has previously been shown to improve muscle size and oxidative capacity. However, the molecular mechanisms underlying these adaptations in human skeletal muscle remain to be determined. Here, we examined the effect of moderate-dose T administration on molecular regulators of muscle protein turnover and mitochondrial remodeling in muscle samples collected from young women. Forty-eight healthy, physically active, young women (28 ± 4 years) were assigned in a random double-blind fashion to receive either T (10 mg/day) or placebo for 10-weeks. Muscle biopsies collected before and after the intervention period were divided into sub-cellular fractions and total protein levels of molecular regulators of muscle protein turnover and mitochondrial remodeling were analyzed using Western blotting. T administration had no effect on androgen receptor or 5α-reductase levels, nor on proteins involved in the mTORC1-signaling pathway (mTOR, S6K1, eEF2 and RPS6). Neither did it affect the abundance of proteins associated with proteasomal protein degradation (MAFbx, MuRF-1 and UBR5) and autophagy-lysosomal degradation (AMPK, ULK1 and p62). T administration also had no effect on proteins in the mitochondria enriched fraction regulating mitophagy (Beclin, BNIP3, LC3B-I, LC3B-II and LC3B-II/I ratio) and morphology (Mitofilin), and it did not alter the expression of mitochondrial fission- (FIS1 and DRP1) or fusion factors (OPA1 and MFN2). In summary, these data indicate that improvements in muscle size and oxidative capacity in young women in response to moderate-dose T administration cannot be explained by alterations in total expression of molecular factors known to regulate muscle protein turnover or mitochondrial remodeling.
Collapse
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
- *Correspondence: Oscar Horwath,
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Angelica Lindén Hirschberg
- Department of Women´s and Children´s Health, Division of Neonatology, Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynaecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, Swedish School of Sport and Health Sciences, Stockholm, Sweden
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
The Effects of Tetrapeptides Designed to Fit the Androgen Binding Site of ZIP9 on Myogenic and Osteogenic Cells. BIOLOGY 2021; 11:biology11010019. [PMID: 35053017 PMCID: PMC8772937 DOI: 10.3390/biology11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Pro-androgenic substances such as testosterone are often used to treat muscle- or bone-related disorders. Their interactions with the classical androgen receptor, however, can trigger a number of undesirable effects. It would therefore be of great benefit if the positive androgenic effects could be obtained by circumventing the classical androgen receptor. ZIP9 is a recently identified membrane-bound androgen receptor of physiological significance. Using in silico methods, we identified and verified the extracellular localization of its androgen binding site and designed small peptides that fit in it that do not interact with the AR. All peptides were found to be pro-androgenic; they stimulate mineralization in osteoblastic cells and myogenesis in myoblasts. Thus, these peptides might serve as testosterone surrogates in the treatment of osteogenic or myogenic disorders. Abstract ZIP9 is a recently identified membrane-bound androgen receptor of physiological significance that may mediate certain physiological responses to androgens. Using in silico methods, six tetrapeptides with the best docking properties at the testosterone binding site of ZIP9 were synthesized and further investigated. All tetrapeptides displaced T-BSA-FITC, a membrane-impermeable testosterone analog, from the surface of mouse myogenic L6 cells that express ZIP9 but not the classical androgen receptor (AR). Silencing the expression of ZIP9 with siRNA prevented this labeling. All tetrapeptides were found to be pro-androgenic; in L6 cells they stimulated the expression of myogenin, triggered activation of focal adhesion kinase, and prompted the fusion of L6 myocytes to syncytial myotubes. In human osteoblastic SAOS-2 cells that express AR and ZIP9, they reduced the expression of alkaline phosphatase and stimulated mineralization. These latter effects were prevented by silencing ZIP9 expression, indicating that the osteoblast/osteocyte conversion is exclusively mediated through ZIP9. Our results demonstrate that the synthetic tetrapeptides, by acting as ZIP9-specific androgens, have the potential to replace testosterone or testosterone analogs in the treatment of bone- or muscle-related disorders by circumventing the undesirable effects mediated through the classical AR.
Collapse
|
34
|
Petrelli M. Sarcopenia, malnutrition, and frailty: disease implications for geriatric DM patients. JOURNAL OF GERONTOLOGY AND GERIATRICS 2021. [DOI: 10.36150/2499-6564-n449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Commun Biol 2021; 4:1264. [PMID: 34737380 PMCID: PMC8569015 DOI: 10.1038/s42003-021-02790-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 10/15/2021] [Indexed: 12/28/2022] Open
Abstract
Skeletal muscles display sexually dimorphic features. Biochemically, glycolysis and fatty acid β-oxidation occur preferentially in the muscles of males and females, respectively. However, the mechanisms of the selective utilization of these fuels remains elusive. Here, we obtain transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes. Analyses of the transcriptomes unveil two genes, Pfkfb3 (phosphofructokinase-2) and Pdk4 (pyruvate dehydrogenase kinase 4), that may function as switches between the two sexually dimorphic metabolic pathways. Interestingly, Pfkfb3 and Pdk4 show male-enriched and estradiol-enhanced expression, respectively. Moreover, the contribution of these genes to sexually dimorphic metabolism is demonstrated by knockdown studies with cultured type IIB muscle fibers. Considering that skeletal muscles as a whole are the largest energy-consuming organs, our results provide insights into energy metabolism in the two sexes, during the estrus cycle in women, and under pathological conditions involving skeletal muscles. Baba et al. analyzed the transcriptomes from quadriceps type IIB fibers of untreated, gonadectomized, and sex steroid-treated mice of both sexes and identified Pfkfb3 and Pdk4 as differentially regulated genes between males and diestrus females. The authors found that Pfkfb3 and Pdk4 may act as metabolic switches, showed male-enriched and estradiol-enhanced expression, respectively and contributed to sexually dimorphic metabolism.
Collapse
|
36
|
Christakoudi S, Tsilidis KK, Evangelou E, Riboli E. Association of body-shape phenotypes with imaging measures of body composition in the UK Biobank cohort: relevance to colon cancer risk. BMC Cancer 2021; 21:1106. [PMID: 34654381 PMCID: PMC8518225 DOI: 10.1186/s12885-021-08820-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Body mass index (BMI), waist and hip circumference are strongly correlated and do not reflect body composition. A Body Shape Index (ABSI) and Hip Index (HI) define waist and hip size among individuals with the same weight and height and would thus reflect body density. We examined differences in body composition between body-shape phenotypes defined with ABSI and HI and used this information to propose explanations for associations between body-shape phenotypes and colon cancer risk. Methods We used data from the UK Biobank Resource for 15,520 men, 16,548 women with dual-emission X-ray absorptiometry (DXA) measurements; 3997 men, 4402 women with magnetic resonance imaging (MRI) measurements; 200,289 men, 230,326 women followed-up for colon cancer. We defined body-shape phenotypes as: large-ABSI-small-HI (“apple”), small-ABSI-large-HI (“pear”), small-ABSI-small-HI (“slim”), large-ABSI-large-HI (“wide”). We evaluated differences in body composition in linear models and associations with colon cancer risk in Cox proportional hazards models adjusted for confounders and explored heterogeneity by BMI. Results Among individuals with the same height and weight, visceral adipose tissue (VAT) was lowest for “pear” and highest for “apple”, while abdominal subcutaneous adipose tissue (ASAT) was lowest for “slim” and highest for “wide” phenotype. In the gynoid region, differences between “apple” and “pear” phenotypes were accounted for mainly by fat mass in women but by lean mass in men. In men, lean mass was inversely associated with waist size, while the pattern of gynoid fat resembled ASAT in women. Lean and fat mass were higher for higher BMI, but not hand grip strength. Compared to normal weight “pear”, the risk of colon cancer in men (1029 cases) was higher for “apple” phenotype for normal weight (hazard ratio HR = 1.77; 95% confidence interval: 1.16–2.69) and comparably for overweight and obese, higher for “wide” phenotype for overweight (HR = 1.60; 1.14–2.24) and comparably for obese, but higher for “slim” phenotype only for obese (HR = 1.98; 1.35–2.88). Associations with colon cancer risk in women (889 cases) were weaker. Conclusions ABSI-by-HI body-shape phenotypes provide information for body composition. Colon cancer risk in men appears related to ASAT quantity for “slim” and “wide” but to factors determining VAT accumulation for “apple” phenotype. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08820-6.
Collapse
Affiliation(s)
- Sofia Christakoudi
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK. .,MRC Centre for Transplantation, King's College London, Great Maze Pond, London, SE1 9RT, UK.
| | - Konstantinos K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK.,Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK.,Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, St Mary's Campus, Norfolk place, London, W2 1PG, UK
| |
Collapse
|
37
|
Souza CGD. Pharmacological Treatment of Sarcopenia. Rev Bras Ortop 2021; 56:425-431. [PMID: 34483384 PMCID: PMC8405270 DOI: 10.1055/s-0040-1709732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/27/2020] [Indexed: 11/06/2022] Open
Abstract
Sarcopenia has been acquiring a growing importance in the scientific literature and in doctors' offices. As the population ages, it becomes increasingly essential to know, prevent, and treat this clinical condition. The purpose of the present review is to bring up the current evidence on the diagnosis of this pathology, in a practical way, as well as the main current treatment options.
Collapse
Affiliation(s)
- Caio Gonçalves de Souza
- Grupo de Doenças Osteometabólicas, Instituto de Ortopedia e Traumatologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Sçao Paulo, SP, Brasil
| |
Collapse
|
38
|
Abou Sawan S, Hodson N, Babits P, Malowany JM, Kumbhare D, Moore DR. Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females. J Appl Physiol (1985) 2021; 131:871-880. [PMID: 34264129 DOI: 10.1152/japplphysiol.00424.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Satellite cells (SC) play an integral role in the recovery from skeletal muscle damage and supporting muscle hypertrophy. Acute resistance exercise typically elevates type I and type II SC content 24-96 h post exercise in healthy young males, although comparable research in females is lacking. We aimed to elucidate whether sex-based differences exist in fiber type-specific SC content after resistance exercise in the untrained (UT) and trained (T) states. Ten young males (23.0 ± 4.0 yr) and females (23.0 ± 4.8 yr) completed an acute bout of resistance exercise before and after 8 wk of whole body resistance training. Muscle biopsies were taken from the vastus lateralis immediately before and 24 and 48 h after each bout to determine SC and myonuclear content by immunohistochemistry. Males had greater SC associated with type II fibers (P ≤ 0.03). There was no effect of acute resistance exercise on SC content in either fiber type (P ≥ 0.58) for either sex; however, training increased SC in type II fibers (P < 0.01) irrespective of sex. The change in mean 0-48 h type II SC was positively correlated with muscle fiber hypertrophy in type II fibers (r = 0.47; P = 0.035). Furthermore, the change in myonuclei per fiber was positively correlated with type I and type II fiber hypertrophy (both r = 0.68; P < 0.01). Our results suggest that SC responses to acute and chronic resistance exercise are similar in males and females and that SC and myonuclear accretion is related to training-induced muscle fiber hypertrophy.NEW & NOTEWORTHY We demonstrate that training-induced increase in SC content in type II fibers and myonuclear content in type I and II fibers is similar between males and females. Furthermore, these changes are related to the extent of muscle fiber hypertrophy. Thus, SC and myonuclear accretion appear to contribute to muscle hypertrophy irrespective of sex, highlighting the importance of these muscle stem cells in human skeletal muscle growth.
Collapse
Affiliation(s)
- Sidney Abou Sawan
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Hodson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Paul Babits
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | - Julia M Malowany
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| | | | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Inagaki Y, Sato R, Uchiyama T, Kojima S, Morishita S, Qin W, Tsubaki A. Sex Differences in the Oxygenation of the Left and Right Prefrontal Cortex during Moderate-Intensity Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105212. [PMID: 34068936 PMCID: PMC8157032 DOI: 10.3390/ijerph18105212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Differences in cognitive performance with exercise between men and women have previously been reported. In this study, we evaluated between-sex differences in oxygenation of the prefrontal cortex (PFC) with moderate-intensity aerobic exercise (AE), which could contribute to noted differences in cognitive function. METHOD The subjects were ten men (age, 21.5 ± 0.5 years; height, 171.7 ± 4.8 cm; weight, 65.6 ± 5.6 kg) and ten women (age, 21.4 ± 0.5 years; height, 157.6 ± 4.9 cm; weight, 51.3 ± 6.5 kg). They completed our AE protocol, consisting of a 30-min leg-ergometer cycling at an intensity of 50% peak oxygen uptake, with an initial 4-min rest period for baseline measurement. Measures of the dynamics of cerebral oxygenation included: oxygenated hemoglobin (O2Hb) in the left and right PFC (LR-PFC) and deoxygenated hemoglobin (HHb). The 30-min exercise period was subdivided into six 5-min phases, with the average and peak values determined in each phase. RESULTS A significant interaction was found between LR-PFC HHb and sex (p < 0.001), with significantly higher values in men than in women in phases 3-6 (p < 0.05). CONCLUSION We report a significant sex effect of HHb in the LR-PFC.
Collapse
Affiliation(s)
- Yuta Inagaki
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (R.S.); (T.U.); (S.K.); (S.M.); (A.T.)
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe-city 650-0047, Japan
- Correspondence:
| | - Reo Sato
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (R.S.); (T.U.); (S.K.); (S.M.); (A.T.)
| | - Takashi Uchiyama
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (R.S.); (T.U.); (S.K.); (S.M.); (A.T.)
| | - Sho Kojima
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (R.S.); (T.U.); (S.K.); (S.M.); (A.T.)
| | - Shinichiro Morishita
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (R.S.); (T.U.); (S.K.); (S.M.); (A.T.)
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan;
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Weixiang Qin
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan;
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Atsuhiro Tsubaki
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata 950-3198, Japan; (R.S.); (T.U.); (S.K.); (S.M.); (A.T.)
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan;
- Graduate School of Health and Welfare, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| |
Collapse
|
40
|
Hamilton BR, Lima G, Barrett J, Seal L, Kolliari-Turner A, Wang G, Karanikolou A, Bigard X, Löllgen H, Zupet P, Ionescu A, Debruyne A, Jones N, Vonbank K, Fagnani F, Fossati C, Casasco M, Constantinou D, Wolfarth B, Niederseer D, Bosch A, Muniz-Pardos B, Casajus JA, Schneider C, Loland S, Verroken M, Marqueta PM, Arroyo F, Pedrinelli A, Natsis K, Verhagen E, Roberts WO, Lazzoli JK, Friedman R, Erdogan A, Cintron AV, Yung SHP, Janse van Rensburg DC, Ramagole DA, Rozenstoka S, Drummond F, Papadopoulou T, Kumi PYO, Twycross-Lewis R, Harper J, Skiadas V, Shurlock J, Tanisawa K, Seto J, North K, Angadi SS, Martinez-Patiño MJ, Borjesson M, Di Luigi L, Dohi M, Swart J, Bilzon JLJ, Badtieva V, Zelenkova I, Steinacker JM, Bachl N, Pigozzi F, Geistlinger M, Goulis DG, Guppy F, Webborn N, Yildiz BO, Miller M, Singleton P, Pitsiladis YP. Integrating Transwomen and Female Athletes with Differences of Sex Development (DSD) into Elite Competition: The FIMS 2021 Consensus Statement. Sports Med 2021; 51:1401-1415. [PMID: 33761127 PMCID: PMC7988249 DOI: 10.1007/s40279-021-01451-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 01/06/2023]
Abstract
Sport is historically designated by the binary categorization of male and female that conflicts with modern society. Sport’s governing bodies should consider reviewing rules determining the eligibility of athletes in the female category as there may be lasting advantages of previously high testosterone concentrations for transwomen athletes and currently high testosterone concentrations in differences in sex development (DSD) athletes. The use of serum testosterone concentrations to regulate the inclusion of such athletes into the elite female category is currently the objective biomarker that is supported by most available scientific literature, but it has limitations due to the lack of sports performance data before, during or after testosterone suppression. Innovative research studies are needed to identify other biomarkers of testosterone sensitivity/responsiveness, including molecular tools to determine the functional status of androgen receptors. The scientific community also needs to conduct longitudinal studies with specific control groups to generate the biological and sports performance data for individual sports to inform the fair inclusion or exclusion of these athletes. Eligibility of each athlete to a sport-specific policy needs to be based on peer-reviewed scientific evidence made available to policymakers from all scientific communities. However, even the most evidence-based regulations are unlikely to eliminate all differences in performance between cisgender women with and without DSD and transwomen athletes. Any remaining advantage held by transwomen or DSD women could be considered as part of the athlete’s unique makeup.
Collapse
Affiliation(s)
- Blair R Hamilton
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, UK
| | - Giscard Lima
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - James Barrett
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, UK
| | - Leighton Seal
- The Gender Identity Clinic Tavistock and Portman NHS Foundation Trust, London, UK
| | | | - Guan Wang
- Sport and Exercise Science and Sports Medicine Research and Enterprise Group, University of Brighton, Brighton, UK
| | - Antonia Karanikolou
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
| | - Xavier Bigard
- Union Cycliste Internationale (UCI), Aigle, Switzerland
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| | - Herbert Löllgen
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
| | - Petra Zupet
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
| | - Anca Ionescu
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
| | - Andre Debruyne
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
| | - Nigel Jones
- British Association Sport and Exercise Medicine, Doncaster, UK
- British Cycling and University of Liverpool, Liverpool, UK
| | - Karin Vonbank
- Department of Pneumology, Pulmonary Function Laboratory, Medicine Clinic (KIMII), University of Vienna, Vienna, Austria
| | - Federica Fagnani
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Rome, Italy
| | - Maurizio Casasco
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Italian Federation of Sports Medicine (FMSI), Rome, Italy
| | - Demitri Constantinou
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Centre for Exercise Science and Sports Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Bernd Wolfarth
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Sports Medicine, Humboldt University and Charité University School of Medicine, Berlin, Germany
| | - David Niederseer
- Department of Cardiology, University Hospital Zurich, University Heart Centre, University of Zurich, Zurich, Switzerland
| | - Andrew Bosch
- Division of Exercise Science and Sports Medicine, University of Cape Town, Cape Town, South Africa
| | - Borja Muniz-Pardos
- GENUD Research Group, FIMS Collaborating Center of Sports Medicine, Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
| | - José Antonio Casajus
- GENUD Research Group, FIMS Collaborating Center of Sports Medicine, Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
| | - Christian Schneider
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Orthopaedic Center Theresie, Munich, Germany
| | - Sigmund Loland
- Department of Sport and Social Sciences, Norwegian School of Sport Sciences, Oslo, Norway
| | - Michele Verroken
- Centre of Research and Innovation for Sport, Technology and Law (CRISTAL), De Montfort University, Leicester, UK
- Sporting Integrity Ltd, Stoke Mandeville, UK
| | - Pedro Manonelles Marqueta
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Sports Medicine, San Antonio Catholic University of Murcia, Murcia, Spain
| | - Francisco Arroyo
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- FIMS Collaborating Center of Sports Medicine, Guadalajara, Mexico
| | - André Pedrinelli
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Orthopaedics, University of São Paulo Medical School, São Paulo, Brazil
| | - Konstantinos Natsis
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Interbalkan Medical Center, FIMS Collaborating Center of Sports Medicine, Thessaloniki, Greece
- Department of Anatomy and Surgical Anatomy, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evert Verhagen
- Amsterdam Collaboration on Health and Safety in Sports, Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - William O Roberts
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Family Medicine and Community Health, University of Minnesota, Minneapolis, USA
| | - José Kawazoe Lazzoli
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Biomedical Institute, Fluminense Federal University Medical School, Niterói, Brazil
| | - Rogerio Friedman
- Universidade Federal do Rio Grande do Sul, Endocrine Unit, Hospital de Clinicas de Porto Alegre, Porto Alegre, Brazil
| | - Ali Erdogan
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Gloria Sports Arena, FIMS Collaborating Centre of Sports Medicine, Antalya, Turkey
| | - Ana V Cintron
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Puerto Rico Sports Medicine Federation, San Juan, Puerto Rico
| | - Shu-Hang Patrick Yung
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Asian Federation of Sports Medicine (AFSM), Hong Kong Center of Sports Medicine and Sports Science, Hong Kong, China
| | | | - Dimakatso A Ramagole
- Section Sports Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sandra Rozenstoka
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- FIMS Collaboration Centre of Sports Medicine, Sports laboratory, Riga, Latvia
| | - Felix Drummond
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- FIMS Collaboration Centre of Sports Medicine, Instituto de Medicina do Esporte, Porto Alegre, Brazil
| | - Theodora Papadopoulou
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Defence Medical Rehabilitation Centre, Stanford Hall, Loughborough, UK
| | - Paulette Y O Kumi
- Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK
| | - Richard Twycross-Lewis
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Joanna Harper
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Jane Seto
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Kathryn North
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Siddhartha S Angadi
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, USA
| | | | - Mats Borjesson
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, Center for Health and Performance, Goteborg University, Göteborg, Sweden
- Sahlgrenska University Hospital/Ostra, Region of Western Sweden, Göteborg, Sweden
| | - Luigi Di Luigi
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Michiko Dohi
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Sport Medical Center, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Jeroen Swart
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- UCT Research Unit for Exercise Science and Sports Medicine, Cape Town, South Africa
| | - James Lee John Bilzon
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Department for Health, University of Bath, Bath, UK
| | - Victoriya Badtieva
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia, Moscow, Russian Federation
- Moscow Research and Practical Center for Medical Rehabilitation, Restorative and Sports Medicine, Moscow Healthcare Department, Moscow, Russian Federation
| | - Irina Zelenkova
- GENUD Research Group, FIMS Collaborating Center of Sports Medicine, Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
| | - Juergen M Steinacker
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Division of Sports and Rehabilitation Medicine, Ulm University Hospital, Ulm, Germany
| | - Norbert Bachl
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Institute of Sports Science, University of Vienna, Vienna, Austria
- Austrian Institute of Sports Medicine, Vienna, Austria
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Rome, Italy
| | - Michael Geistlinger
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland
- Unit of International Law, Department of Constitutional, International and European Law, University of Salzburg, Salzburg, Salzburg, Austria
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fergus Guppy
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Nick Webborn
- School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Bulent O Yildiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hacettepe University School of Medicine, 06100, Ankara, Turkey
| | - Mike Miller
- World Olympian Association, Lausanne, Switzerland
| | | | - Yannis P Pitsiladis
- Centre for Exercise Sciences and Sports Medicine, FIMS Collaborating Centre of Sports Medicine, Rome, Italy.
- Centre for Stress and Age-Related Disease, University of Brighton, Brighton, UK.
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
- European Federation of Sports Medicine Associations (EFSMA), Lausanne, Switzerland.
- International Federation of Sports Medicine (FIMS), Lausanne, Switzerland.
| |
Collapse
|
41
|
Barnouin Y, Armamento-Villareal R, Celli A, Jiang B, Paudyal A, Nambi V, Bryant MS, Marcelli M, Garcia JM, Qualls C, Villareal DT. Testosterone Replacement Therapy Added to Intensive Lifestyle Intervention in Older Men With Obesity and Hypogonadism. J Clin Endocrinol Metab 2021; 106:e1096-e1110. [PMID: 33351921 DOI: 10.1210/clinem/dgaa917] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity and hypogonadism additively contribute to frailty in older men; however, appropriate treatment remains controversial. OBJECTIVE Determine whether testosterone replacement augments the effect of lifestyle therapy on physical function in older men with obesity and hypogonadism. DESIGN Randomized, double-blind, placebo-controlled trial. SETTING VA Medical Center. PARTICIPANTS 83 older (age ≥65 years) men with obesity (body mass index ≥30 kg/m2) and persistently low am testosterone (<10.4 nmol/L) associated with frailty. INTERVENTIONS Participants were randomized to lifestyle therapy (weight management and exercise training) plus either testosterone (LT+Test) or placebo (LT+Pbo) for 6 months. OUTCOME MEASURES Primary outcome was change in Physical Performance Test (PPT) score. Secondary outcomes included other frailty measures, body composition, hip bone mineral density (BMD), physical functions, hematocrit, prostate specific antigen (PSA), and sex hormones. RESULTS PPT score increased similarly in LT+Test and LT+Pbo group (17% vs. 16%; P = 0.58). VO2peak increased more in LT+Test than LT+Pbo (23% vs. 16%; P = 0.03). Despite similar -9% weight loss, lean body mass and thigh muscle volume decreased less in LT+Test than LT+Pbo (-2% vs. -3%; P = 0.01 and -2% vs -4%; P = 0.04). Hip BMD was preserved in LT+Test compared with LT+Pbo (0.5% vs -1.1%; P = 0.003). Strength increased similarly in LT+Test and LT+Pbo (23% vs 22%; P = 0.94). Hematocrit but not PSA increased more in LT+Test than LT+Pbo (5% vs 1%; P < 0.001). Testosterone levels increased more in LT+Test than LT+Pbo (167% vs 27%; P < 0.001). CONCLUSION In older, obese hypogonadal men, adding testosterone for 6 months to lifestyle therapy does not further improve overall physical function. However, our findings suggest that testosterone may attenuate the weight loss-induced reduction in muscle mass and hip BMD and may further improve aerobic capacity.
Collapse
Affiliation(s)
- Yoann Barnouin
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Reina Armamento-Villareal
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Alessandra Celli
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Bryan Jiang
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Arjun Paudyal
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Vijay Nambi
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Atherosclerosis and Vascular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mon S Bryant
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Pulmonary Section, Medical Care Line, Michael E DeBakey VA Medical Center
| | - Marco Marcelli
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| | - Jose M Garcia
- Geriatrics Research, Education, and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology & Geriatric Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Clifford Qualls
- Department of Mathematics and Statistics, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Dennis T Villareal
- Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston TX, USA
- Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Gharahdaghi N, Phillips BE, Szewczyk NJ, Smith K, Wilkinson DJ, Atherton PJ. Links Between Testosterone, Oestrogen, and the Growth Hormone/Insulin-Like Growth Factor Axis and Resistance Exercise Muscle Adaptations. Front Physiol 2021; 11:621226. [PMID: 33519525 PMCID: PMC7844366 DOI: 10.3389/fphys.2020.621226] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of skeletal muscle mass throughout the life course is key for the regulation of health, with physical activity a critical component of this, in part, due to its influence upon key hormones such as testosterone, estrogen, growth hormone (GH), and insulin-like growth factor (IGF). Despite the importance of these hormones for the regulation of skeletal muscle mass in response to different types of exercise, their interaction with the processes controlling muscle mass remain unclear. This review presents evidence on the importance of these hormones in the regulation of skeletal muscle mass and their responses, and involvement in muscle adaptation to resistance exercise. Highlighting the key role testosterone plays as a primary anabolic hormone in muscle adaptation following exercise training, through its interaction with anabolic signaling pathways and other hormones via the androgen receptor (AR), this review also describes the potential importance of fluctuations in other hormones such as GH and IGF-1 in concert with dietary amino acid availability; and the role of estrogen, under the influence of the menstrual cycle and menopause, being especially important in adaptive exercise responses in women. Finally, the downstream mechanisms by which these hormones impact regulation of muscle protein turnover (synthesis and breakdown), and thus muscle mass are discussed. Advances in our understanding of hormones that impact protein turnover throughout life offers great relevance, not just for athletes, but also for the general and clinical populations alike.
Collapse
Affiliation(s)
| | | | | | | | - Daniel J. Wilkinson
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| | - Philip J. Atherton
- Medical Research Council-Versus Arthritis Centre for Musculoskeletal Ageing Research and Nottingham National Institute for Health Research Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
43
|
Kolliari-Turner A, Oliver B, Lima G, Mills JP, Wang G, Pitsiladis Y, Guppy FM. Doping practices in international weightlifting: analysis of sanctioned athletes/support personnel from 2008 to 2019 and retesting of samples from the 2008 and 2012 Olympic Games. SPORTS MEDICINE - OPEN 2021; 7:4. [PMID: 33415428 PMCID: PMC7790029 DOI: 10.1186/s40798-020-00293-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND The pervasiveness of doping and findings of anti-doping corruption threaten weightlifting's position at the 2024 Olympic Games. Analysing the practices of doping in weightlifters could identify patterns in doping that assist in future detection. METHODS We analysed publicly available data on sanctioned athletes/support personnel from the International Weightlifting Federation between 2008 and 2019 and announced retrospective Anti-Doping Rule Violations (ADRVs) from the 2008 and 2012 Olympic Games. RESULTS There were 565 sanctions between 2008 and 2019 of which 82% related to the detection of exogenous Anabolic Androgenic Steroid (AAS) metabolites and markers indicating endogenous AAS usage. The detection of exogenous AAS metabolites, markers of endogenous AAS usage and other substance metabolites varied by IWF Continental Federation (p ≤ 0.05) with Europe (74%, 11%, 15%) and Asia (70%, 15%, 15%) showing a higher detection of exogenous AAS compared to Pan America (37%, 30%, 33%) and Africa (50%, 17%, 33%). When looking at the 10 most detected substances, the nations with the highest number of sanctions (range 17-35) all had at least one overrepresented substance that accounted for 38-60% of all detected substances. The targeted re-analysis of samples from the 2008 and 2012 Olympic Games due to the discovery of long-term metabolites for exogenous AAS resulted in 61 weightlifters producing retrospective ADRVs. This includes 34 original medallists (9 gold, 10 silver and 15 bronze), the highest of any sport identified by Olympic Games sample re-testing. The exogenous AAS dehydrochloromethyltestosterone and stanozolol accounted for 83% of detected substances and were present in 95% of these samples. CONCLUSION Based on these findings of regional differences in doping practices, weightlifting would benefit from the targeted testing of certain regions and continuing investment in long-term sample storage as the sensitivity and specificity of detection continues to improve.
Collapse
Affiliation(s)
| | - Brian Oliver
- Weightlifting Reporter for www.insidethegames.biz and Weightlifting Venue Media Manager London 2012 Olympic Games and Glasgow 2014 Commonwealth Games, Brighton, UK
| | - Giscard Lima
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico,”, Rome, Italy
| | - John P. Mills
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
| | - Guan Wang
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
| | - Yannis Pitsiladis
- Collaborating Centre of Sports Medicine, University of Brighton, Eastbourne, UK
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico,”, Rome, Italy
| | - Fergus M. Guppy
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton, UK
- Centre for Stress and Age-related Disease, University of Brighton, Huxley Building, Lewes Road, Brighton, UK
| |
Collapse
|
44
|
Duchateau J, Stragier S, Baudry S, Carpentier A. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance. Exerc Sport Sci Rev 2021; 49:2-14. [PMID: 33044332 DOI: 10.1249/jes.0000000000000234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Training with low-load exercise performed under blood flow restriction can augment muscle hypertrophy and maximal strength to a similar extent as the classical high-load strength training method. However, the blood flow restriction method elicits only minor neural adaptations. In an attempt to maximize training-related gains, we propose using other protocols that combine high voluntary activation, mechanical tension, and metabolic stress.
Collapse
Affiliation(s)
| | | | | | - Alain Carpentier
- Laboratory for Biometry and Exercise Nutrition, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
45
|
Shin HE, Walston JD, Kim M, Won CW. Sex-Specific Differences in the Effect of Free Testosterone on Sarcopenia Components in Older Adults. Front Endocrinol (Lausanne) 2021; 12:695614. [PMID: 34630322 PMCID: PMC8493256 DOI: 10.3389/fendo.2021.695614] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE The association of free testosterone (FT) with sarcopenia and its components is well known in men but incompletely understood in women. We examined the association of baseline FT with the prevalence and incidence of sarcopenia and its components in community-dwelling older adults. DESIGN Cross-sectional and longitudinal analysis from the prospective population-based Korean Frailty and Aging Cohort Study. METHODS A total of 1,879 community-dwelling older adults aged 70-84 years were enrolled for cross-sectional analysis and 1,583 subjects who participated in the 2-year follow-up survey were included for longitudinal analysis. Baseline FT levels was measured by radioimmunoassay. Skeletal muscle mass, handgrip strength, and physical performance tests were measured at baseline and after 2-year follow-up. Sarcopenia was defined by the diagnostic criteria of the Asian Working Group for Sarcopenia (AWGS). RESULTS Continuous FT levels was positively associated with the prevalence of sarcopenia in men (odds ratio [OR]=0.95; 95% confidence interval [CI]=0.89-1.00)] and women (OR=0.64, 95% CI=0.42-0.99) after adjusting for multiple confounders. In prospective analysis, low FT levels was associated with a decrease in handgrip strength in women (β=-0.61; p=0.010) and a reduction in Timed "Up and Go" (TUG) test (β=0.53; p=0.008) in men after 2 years. No significant correlations were found between FT levels and the incidence of sarcopenia. CONCLUSIONS Low levels of FT may be a significant determinant of decreases in muscle strength in women and declines in physical performance in men after 2 years. Low FT do not predict loss of muscle mass in both men and women.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jeremy D. Walston
- Division of Geriatric Medicine and Gerontology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Miji Kim
- Department of Biomedical Science and Technology, College of Medicine, East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea
- *Correspondence: Miji Kim, ; Chang Won Won,
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Miji Kim, ; Chang Won Won,
| |
Collapse
|
46
|
Dandona P, Dhindsa S, Ghanim H, Saad F. Mechanisms underlying the metabolic actions of testosterone in humans: A narrative review. Diabetes Obes Metab 2021; 23:18-28. [PMID: 32991053 DOI: 10.1111/dom.14206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
The role of testosterone in improving sexual symptoms in men with hypogonadism is well known. However, recent studies indicate that testosterone plays an important role in several metabolic functions in males. Multiple PubMed searches were conducted with the use of the terms testosterone, insulin sensitivity, obesity, type 2 diabetes, anaemia, bone density, osteoporosis, fat mass, lean mass and body composition. This narrative review is focused on detailing the mechanisms that underlie the metabolic aspects of testosterone therapy in humans. Testosterone enhances insulin sensitivity in obese men with hypogonadism by decreasing fat mass, increasing lean mass, decreasing free fatty acids and suppressing inflammation. At a cellular level, testosterone increases the expression of insulin receptor β subunit, insulin receptor substrate-1, protein kinase B and glucose transporter type 4 in adipose tissue and adenosine 5'-monophosphate-activated protein kinase expression and activity in skeletal muscle. Observational studies show that long-term therapy with testosterone prevents progression from prediabetes to diabetes and improves HbA1c. Testosterone increases skeletal muscle satellite cell activator, fibroblast growth factor-2 and decreases expression of the muscle growth suppressors, myostatin and myogenic regulatory factor 4. Testosterone increases haematocrit by suppressing hepcidin and increasing expression of ferroportin along with that of transferrin receptor and plasma transferrin concentrations. Testosterone also increases serum osteocalcin concentrations, which may account for its anabolic actions on bone. In conclusion, testosterone exerts a series of potent metabolic effects, which include insulin sensitization, maintenance and growth of the skeletal muscle, suppression of adipose tissue growth and maintenance of erythropoiesis and haematocrit.
Collapse
Affiliation(s)
- Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York, USA
| | - Sandeep Dhindsa
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York, USA
- Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, St. Louis, Missouri, USA
| | - Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Williamsville, New York, USA
| | - Farid Saad
- Research Department, Gulf Medical University, Ajman, UAE
| |
Collapse
|
47
|
Kamińska A, Marek S, Pardyak L, Brzoskwinia M, Bilinska B, Hejmej A. Crosstalk between Androgen-ZIP9 Signaling and Notch Pathway in Rodent Sertoli Cells. Int J Mol Sci 2020; 21:ijms21218275. [PMID: 33167316 PMCID: PMC7663815 DOI: 10.3390/ijms21218275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Our recent study demonstrated altered expression of Notch ligands, receptors, and effector genes in testes of pubertal rats following reduced androgen production or signaling. Herein we aimed to explore the role of nuclear androgen receptor (AR) and membrane androgen receptor (Zrt- and Irt-like protein 9; ZIP9) in the regulation of Notch pathway activation in rodent Sertoli cells. Experiments were performed using TM4 and 15P-1 Sertoli cell lines and rat primary Sertoli cells (PSC). We found that testosterone (10-8 M-10-6 M) increased the expression of Notch1 receptor, its active form Notch1 intracellular domain (N1ICD) (p < 0.05, p < 0.01, p < 0.001), and the effector genes Hey1 (p < 0.05, p < 0.01, p < 0.001) and Hes1 (p < 0.05, p < 0.001) in Sertoli cells. Knockdown of AR or ZIP9 as well as antiandrogen exposure experiments revealed that (i) action of androgens via both AR and ZIP9 controls Notch1/N1ICD expression and transcriptional activity of recombination signal binding protein (RBP-J), (ii) AR-dependent signaling regulates Hey1 expression, (iii) ZIP9-dependent pathway regulates Hes1 expression. Our findings indicate a crosstalk between androgen and Notch signaling in Sertoli cells and point to cooperation of classical and non-classical androgen signaling pathways in controlling Sertoli cell function.
Collapse
Affiliation(s)
- Alicja Kamińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Sylwia Marek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Laura Pardyak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland
| | - Małgorzata Brzoskwinia
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
| | - Anna Hejmej
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland; (A.K.); (S.M.); (L.P.); (M.B.); (B.B.)
- Correspondence:
| |
Collapse
|
48
|
Levitt DE, Chalapati N, Prendergast MJ, Simon L, Molina PE. Ethanol-Impaired Myogenic Differentiation is Associated With Decreased Myoblast Glycolytic Function. Alcohol Clin Exp Res 2020; 44:2166-2176. [PMID: 32945016 PMCID: PMC7680427 DOI: 10.1111/acer.14453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myopathy affects nearly half of individuals with alcohol use disorder (AUD), and impaired skeletal muscle regenerative potential is a probable contributing factor. Previous findings from our laboratory indicate that chronic in vivo and in vitro ethanol (EtOH) treatment decreases myogenic potential of skeletal muscle myoblasts. Myogenesis, a highly coordinated process, requires shifts in cellular metabolic state allowing for myoblasts to proliferate and differentiate into mature myotubes. The objective of this study was to determine whether alcohol interferes with myoblast mitochondrial and glycolytic metabolism and impairs myogenic differentiation. METHODS Myoblasts were isolated from vastus lateralis muscle excised from alcohol-naïve adult male (n = 5) and female (n = 5) rhesus macaques. Myoblasts were proliferated for 3 days (day 0 differentiation; D0) and differentiated for 5 days (D5) with or without 50 mM EtOH. Metabolism was assessed using a mitochondrial stress test to measure oxygen consumption (OCR) and extracellular acidification (ECAR) rates at D0. Differentiation was examined at D5. Expression of mitochondrial and glycolytic genes and mitochondrial DNA (mtDNA) was measured at D0 and D5. RESULTS Ethanol significantly (p < 0.05) increased myoblast maximal OCR and decreased ECAR at D0, and decreased fusion index, myotubes per field, and total nuclei at D5. The EtOH-induced decrease in ECAR was associated with the EtOH-mediated decreases in fusion index and myotubes per field. EtOH did not alter the decrease in glycolytic gene expression and increase in mtDNA from D0 to D5. CONCLUSION During myoblast proliferation, EtOH decreased glycolytic metabolism and increased maximal OCR, suggesting that myoblast metabolic phenotype was dysregulated with EtOH. The EtOH-induced decrease in ECAR was associated with decreased differentiation. These findings suggest that EtOH-mediated shifts in metabolic phenotype may underlie impaired differentiation, which has important clinical implications for myogenesis in those affected by alcoholic myopathy.
Collapse
Affiliation(s)
- Danielle E. Levitt
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Naveena Chalapati
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Matthew J. Prendergast
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Liz Simon
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Patricia E. Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
49
|
Kruse R, Petersson SJ, Christensen LL, Kristensen JM, Sabaratnam R, Ørtenblad N, Andersen M, Højlund K. Effect of long-term testosterone therapy on molecular regulators of skeletal muscle mass and fibre-type distribution in aging men with subnormal testosterone. Metabolism 2020; 112:154347. [PMID: 32853647 DOI: 10.1016/j.metabol.2020.154347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long-term testosterone replacement therapy (TRT) increases muscle mass in elderly men with subnormal testosterone levels. However, the molecular mechanisms underlying this effect of TRT on protein balance in human skeletal muscle in vivo remain to be established. METHODS Here, we examined skeletal muscle biopsies obtained before and 24-h after the last dose of treatment with either testosterone gel (n = 12) or placebo (n = 13) for 6 months in aging men with subnormal bioavailable testosterone levels. The placebo-controlled, testosterone-induced changes (β-coefficients) in mRNA levels, protein expression and phosphorylation were examined by quantitative real-time PCR and western blotting. RESULTS Long-term TRT increased muscle mass by β = 1.6 kg (p = 0.01) but had no significant effect on mRNA levels of genes involved in myostatin/activin/SMAD or IGF1/FOXO3 signalling, muscle-specific E3-ubiquitin ligases, upstream transcription factors (MEF2C, PPARGC1A-4) or myogenic factors. However, TRT caused a sustained decrease in protein expression of SMAD2 (β = -36%, p = 0.004) and SMAD3 (β = -32%, p = 0.001), which was accompanied by reduced protein expression of the muscle-specific E3-ubiquitin ligases, MuRF1 (β = -26%, p = 0.004) and Atrogin-1/MAFbx (β = -20%, p = 0.04), but with no changes in FOXO3 signalling. Importantly, TRT did not affect muscle fibre type distribution between slow-oxidative (type 1), fast-oxidative (type 2a) and fast-glycolytic (type 2×) muscle fibres. CONCLUSIONS Our results indicate that long-term TRT of elderly men with subnormal testosterone levels increases muscle mass, at least in part, by decreasing protein breakdown through the ubiquitin proteasome pathway mediated by a sustained suppression of SMAD-signalling and muscle-specific E3-ubiquitin ligases.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Stine J Petersson
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Louise L Christensen
- Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Jonas M Kristensen
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark; Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Rugivan Sabaratnam
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, DK-5230 Odense, Denmark
| | - Marianne Andersen
- Department of Endocrinology, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark.
| |
Collapse
|
50
|
Howard EE, Margolis LM, Berryman CE, Lieberman HR, Karl JP, Young AJ, Montano MA, Evans WJ, Rodriguez NR, Johannsen NM, Gadde KM, Harris MN, Rood JC, Pasiakos SM. Testosterone supplementation upregulates androgen receptor expression and translational capacity during severe energy deficit. Am J Physiol Endocrinol Metab 2020; 319:E678-E688. [PMID: 32776828 PMCID: PMC7750513 DOI: 10.1152/ajpendo.00157.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Testosterone supplementation during energy deficit promotes whole body lean mass accretion, but the mechanisms underlying that effect remain unclear. To elucidate those mechanisms, skeletal muscle molecular adaptations were assessed from muscle biopsies collected before, 1 h, and 6 h after exercise and a mixed meal (40 g protein, 1 h postexercise) following 14 days of weight maintenance (WM) and 28 days of an exercise- and diet-induced 55% energy deficit (ED) in 50 physically active nonobese men treated with 200 mg testosterone enanthate/wk (TEST) or placebo (PLA) during the ED. Participants (n = 10/group) exhibiting substantial increases in leg lean mass and total testosterone (TEST) were compared with those exhibiting decreases in both of these measures (PLA). Resting androgen receptor (AR) protein content was higher and fibroblast growth factor-inducible 14 (Fn14), IL-6 receptor (IL-6R), and muscle ring-finger protein-1 gene expression was lower in TEST vs. PLA during ED relative to WM (P < 0.05). Changes in inflammatory, myogenic, and proteolytic gene expression did not differ between groups after exercise and recovery feeding. Mechanistic target of rapamycin signaling (i.e., translational efficiency) was also similar between groups at rest and after exercise and the mixed meal. Muscle total RNA content (i.e., translational capacity) increased more during ED in TEST than PLA (P < 0.05). These findings indicate that attenuated proteolysis at rest, possibly downstream of AR, Fn14, and IL-6R signaling, and increased translational capacity, not efficiency, may drive lean mass accretion with testosterone administration during energy deficit.
Collapse
Affiliation(s)
- Emily E Howard
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- University of Connecticut, Storrs, Connecticut
| | - Lee M Margolis
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Claire E Berryman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
- Florida State University, Tallahassee, Florida
| | - Harris R Lieberman
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - J Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Andrew J Young
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee
| | - Monty A Montano
- MyoSyntax Corporation, Worcester, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - William J Evans
- University of California at Berkeley, Berkeley, California
- Duke University, Durham, North Carolina
| | | | - Neil M Johannsen
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Kishore M Gadde
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Melissa N Harris
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jennifer C Rood
- Louisiana State University's Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Stefan M Pasiakos
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|