1
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. eLife 2024; 12:RP90949. [PMID: 38241182 PMCID: PMC10945605 DOI: 10.7554/elife.90949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Orthopaedics, University of Maryland School of MedicineBaltimoreUnited States
- Research and Development Service, Baltimore Veterans Administration Medical CenterBaltimoreUnited States
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
2
|
Sarver DC, Garcia-Diaz J, Saqib M, Riddle RC, Wong GW. Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551694. [PMID: 37577461 PMCID: PMC10418210 DOI: 10.1101/2023.08.02.551694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first two weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted GH/IGF-1 axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling a wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jean Garcia-Diaz
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Cell and Molecular Medicine graduate program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Domené S, Domené HM. The role of acid-labile subunit (ALS) in the modulation of GH-IGF-I action. Mol Cell Endocrinol 2020; 518:111006. [PMID: 32861700 DOI: 10.1016/j.mce.2020.111006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Acid-labile subunit (ALS) deficiency (ACLSD) constitutes the first monogenic defect involving a member of the Insulin-like Growth Factor (IGF) binding protein system. The lack of ALS completely disrupts the circulating IGF system. Autocrine/paracrine action of local produced IGF-I could explain the mild effect on growth. In the present work we have revised the more relevant clinical and biochemical consequences of complete ACLSD in 61 reported subjects from 31 families. Low birth weight and/or length, reduced head circumference, height between -2 and -3 SD, pubertal delay and insulin resistance are commonly observed. Partial ACLSD could be present in children initially labeled as idiopathic short stature, presenting low IGF-I levels, suggesting that one functional IGFALS allele is insufficient to stabilize ternary complexes. Dysfunction of the GH-IGF axis observed in ACLSD may eventually result in increased risk for type-2 diabetes and tumor progression. Consequently, long term surveillance is recommended in these patients.
Collapse
Affiliation(s)
- Sabina Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá', (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas 'Dr César Bergadá', (CEDIE) CONICET, FEI, División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Landi E, Karabatas L, Scaglia P, Pisciottano F, Gutiérrez M, Ramírez L, Bergadá I, Rey RA, Jasper HG, Domené HM, Plazas PV, Domené S. Expression of acid-labile subunit (ALS) in developing and adult zebrafish and its role in dorso-ventral patterning during development. Gen Comp Endocrinol 2020; 299:113591. [PMID: 32828812 DOI: 10.1016/j.ygcen.2020.113591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/24/2022]
Abstract
Mammalian acid-labile subunit (ALS) is a serum protein that binds binary complexes between Insulin-like growth factors (IGFs) and Insulin-like growth factor-binding proteins (IGFBPs) extending their half-life and keeping them in the vasculature. Human ALS deficiency (ACLSD), due to homozygous or compound heterozygous mutations in IGFALS, leads to moderate short stature with reduced levels of IGF-I and IGFBP-3. There is only one corresponding zebrafish ortholog gene and it has not yet been studied. In this study we elucidate the role of igfals during zebrafish development. In zebrafish embryos igfals mRNA is expressed throughout development, mainly in the brain and subsequently also in the gut and swimbladder. To determine its role during development, we knocked down igfals gene product using morpholinos (MOs). Igfals morphant embryos displayed dorsalization in different degrees of severity, including a shortened trunk and loss of tail. Furthermore, co-injection of human IGFALS (hIGFALS) mRNA was able to rescue the MO-induced phenotype. Finally, overexpression of either hIGFALS or zebrafish igfals (zigfals) mRNA leads to ventralization of embryos including a reduced head and enlarged tail. These findings suggest that als plays an important role in dorso-ventral patterning during zebrafish development.
Collapse
Affiliation(s)
- Estefanía Landi
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Liliana Karabatas
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Paula Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Francisco Pisciottano
- Instituto de Biología y Medicina Experimental (IBYME), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina.
| | - Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Laura Ramírez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Héctor Guillermo Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Horacio Mario Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| | - Paola Viviana Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, C1425EFD Buenos Aires, Argentina.
| |
Collapse
|
5
|
Poyrazoğlu Ş, Hwa V, Baş F, Dauber A, Rosenfeld R, Darendeliler F. A Novel Homozygous Mutation of the Acid-Labile Subunit (IGFALS) Gene in a Male Adolescent. J Clin Res Pediatr Endocrinol 2019; 11:432-438. [PMID: 30717585 PMCID: PMC6878349 DOI: 10.4274/jcrpe.galenos.2019.2018.0301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Acid-labile subunit (ALS) forms ternary complexes with insulin like growth factor-1 (IGF-1) and IGF-binding protein-3 (IGFBP-3) and is essential for normal circulating IGF-1 levels. The IGFALS gene encodes the ALS and mutations in IGFALS cause ALS deficiency. We describe a patient with ALS deficiency with a novel homozygous frameshift mutation in IGFALS presenting with short stature and delayed puberty but ultimately achieving an adult height (AH) comparable to his target height (TH). A 15.25 year old boy presented with short stature (149.9 cm, -3.04 standard deviation score). The patient had a low circulating IGF-1 concentration, extremely low IGFBP-3 concentration, insulin resistance and osteopenia. The peak growth hormone (GH) response to GH stimulation test was high (31.6 ng/mL). Sequencing of IGFALS revealed a novel, homozygous, frameshift mutation (p.Ser555Thrfs.19). His mother and elder sister were heterozygous carriers. Although he had delayed puberty and short stature at the onset of puberty, he reached his TH and an AH similar to those of his heterozygous mother and sister. The heterozygous carriers had normal or low IGF-1 concentrations and low IGFBP-3 concentrations but not as markedly low as that of the patient. They had normally timed puberty, insulin metabolism and bone mineral density (BMD). The phenotype of ALS deficiency is quite variable. Despite short stature and delayed puberty, patients can achieve normal pubertal growth and AH. ALS deficiency may cause osteopenia and hyperinsulinemia. Heterozygous carriers may have normal prenatal growth, puberty, insulin metabolism and BMD.
Collapse
Affiliation(s)
- Şükran Poyrazoğlu
- İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey,* Address for Correspondence: İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey Phone: +90 212 414 20 00 E-mail:
| | - Vivian Hwa
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati Center for Growth Disorders, Cincinnati, Division of Endocrinology, Ohio, USA
| | - Firdevs Baş
- İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey
| | - Andrew Dauber
- Children’s National Healthy System, Division of Endocrinology, Washington, USA
| | - Ron Rosenfeld
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati Center for Growth Disorders, Cincinnati, Division of Endocrinology, Ohio, USA
| | - Feyza Darendeliler
- İstanbul University İstanbul Faculty of Medicine, Unit of Pediatric Endocrinology, İstanbul, Turkey
| |
Collapse
|
6
|
Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine Rich Repeat Proteins: Sequences, Mutations, Structures and Diseases. Protein Pept Lett 2019; 26:108-131. [PMID: 30526451 DOI: 10.2174/0929866526666181208170027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022]
Abstract
Mutations in the genes encoding Leucine Rich Repeat (LRR) containing proteins are associated with over sixty human diseases; these include high myopia, mitochondrial encephalomyopathy, and Crohn's disease. These mutations occur frequently within the LRR domains and within the regions that shield the hydrophobic core of the LRR domain. The amino acid sequences of fifty-five LRR proteins have been published. They include Nod-Like Receptors (NLRs) such as NLRP1, NLRP3, NLRP14, and Nod-2, Small Leucine Rich Repeat Proteoglycans (SLRPs) such as keratocan, lumican, fibromodulin, PRELP, biglycan, and nyctalopin, and F-box/LRR-repeat proteins such as FBXL2, FBXL4, and FBXL12. For example, 363 missense mutations have been identified. Replacement of arginine, proline, or cysteine by another amino acid, or the reverse, is frequently observed. The diverse effects of the mutations are discussed based on the known structures of LRR proteins. These mutations influence protein folding, aggregation, oligomerization, stability, protein-ligand interactions, disulfide bond formation, and glycosylation. Most of the mutations cause loss of function and a few, gain of function.
Collapse
Affiliation(s)
- Norio Matsushima
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan.,Institute of Tandem Repeats, Noboribetsu 059-0464, Japan
| | - Shintaro Takatsuka
- Center for Medical Education, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hiroki Miyashita
- Institute of Tandem Repeats, Noboribetsu 059-0464, Japan.,Hokubu Rinsho Co., Ltd, Sapporo 060-0061, Japan
| | - Robert H Kretsinger
- Department of Biology, University of Virginia, Charlottesville, VA 22904, United States
| |
Collapse
|
7
|
Scaglia PA, Keselman AC, Braslavsky D, Martucci LC, Karabatas LM, Domené S, Gutiérrez ML, Ballerini MG, Ropelato MG, Spinola-Castro A, Siviero-Miachon AA, Tartuci JS, Rodríguez Azrak MS, Rey RA, Jasper HG, Bergadá I, Domené HM. Characterization of four Latin American families confirms previous findings and reveals novel features of acid-labile subunit deficiency. Clin Endocrinol (Oxf) 2017; 87:300-311. [PMID: 28445628 DOI: 10.1111/cen.13361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/03/2017] [Accepted: 04/22/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Acid-labile subunit deficiency (ACLSD), caused by inactivating mutations in both IGFALS gene alleles, is characterized by marked reduction in IGF-I and IGFBP-3 levels associated with mild growth retardation. The aim of this study was to expand the known phenotype and genetic characteristics of ACLSD by reporting data from four index cases and their families. DESIGN Auxological data, biochemical and genetic studies were performed in four children diagnosed with ACLSD and all available relatives. METHODS Serum levels of IGF-I, IGFBP-3, acid-labile subunit (ALS), and in vitro ternary complex formation (ivTCF) were determined. After sequencing the IGFALS gene, pathogenicity of novel identified variants was evaluated by in vitro expression in transfected Chinese hamster ovarian (CHO) cells. ALS protein was detected in patients' sera and CHO cells conditioned media and lysates by Western immunoblot (WIB). RESULTS Four index cases and four relatives were diagnosed with ACLSD. The following variants were found: p.Glu35Glyfs*17, p.Glu35Lysfs*87, p.Leu213Phe, p.Asn276Ser, p.Leu409Phe, p.Ala475Val and p.Ser490Trp. ACLSD patients presented low IGF-I and low or undetectable levels of IGFBP-3 and ALS. Seven out of 8 patients did not form ivTCF. CONCLUSIONS This study confirms previous findings in ACLSD, such as the low IGF-I and a more severe reduction in IGFBP-3 levels, and a gene dosage effect observed in heterozygous carriers (HC). In addition, father-to-son transmission (father compound heterozygous and mother HC), preservation of male fertility, and marginal ALS expression with potential involvement in preserved responsiveness to rhGH treatment, are all novel aspects, not previously reported in this condition.
Collapse
Affiliation(s)
- Paula A Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Ana C Keselman
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Débora Braslavsky
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Lucía C Martucci
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana M Karabatas
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Mariana L Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María G Ballerini
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - María G Ropelato
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Angela Spinola-Castro
- Division of Pediatric Endocrinology, Federal University of Sao Paulo, UNIFESP/EPM, Sao Paulo, Brazil
| | - Adriana A Siviero-Miachon
- Division of Pediatric Endocrinology, Federal University of Sao Paulo, UNIFESP/EPM, Sao Paulo, Brazil
| | - Juliana Saito Tartuci
- Division of Pediatric Endocrinology, Federal University of Sao Paulo, UNIFESP/EPM, Sao Paulo, Brazil
| | - María Sol Rodríguez Azrak
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Héctor G Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Ignacio Bergadá
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET -FEI - División de Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| |
Collapse
|
8
|
Işık E, Haliloglu B, van Doorn J, Demirbilek H, Scheltinga SA, Losekoot M, Wit JM. Clinical and biochemical characteristics and bone mineral density of homozygous, compound heterozygous and heterozygous carriers of three novel IGFALS mutations. Eur J Endocrinol 2017; 176:657-667. [PMID: 28249955 DOI: 10.1530/eje-16-0999] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Acid-labile subunit (ALS) deficiency (ACLSD), caused by homozygous or compound heterozygous IGFALS mutations, is associated with moderate short stature, delayed puberty, low serum IGF-I and ALS and extremely low serum IGFBP-3. Its effect on birth weight, head circumference, bone mineral density (BMD), serum IGF-II and IGFBP-2 is uncertain, as well as the phenotype of heterozygous carriers of IGFALS mutations (partial ACLSD). DESIGN From all available members of five Turkish families, carrying three mutations in exon 2 of IGFALS (c.1462G > A, p.Asp488Asn (families A, B, E); c.251A > G, p.Asn84Ser (families C and E) and c.1477del, p.Arg493fs (family D)), clinical, laboratory and BMD data were collected. METHODS Auxological and biochemical findings were expressed as SDS for age and gender. Ternary complex formation in serum was investigated by size-exclusion chromatography. BMD using DXA bone densitometry was adjusted for height and age (Ha-BMD z-score). RESULTS In ACLSD (n = 24), mean ± s.d. height SDS (-2.7 ± 1.2), head circumference SDS (-2.3 ± 0.5) and body mass index (BMI) (-0.6 ± 1.0 SDS) were lower than those in partial ACLSD (n = 26, P ≤ 0.01) and birth weight SDS (n = 7) tended to be lower (-2.2 ± 1.1 vs -0.6 ± 0.3 in partial ACLSD (P = 0.07)). Serum IGF-I was -3.7 ± 1.4 vs -1.0 ± 1.0, IGF-II: -5.6 ± 0.7 vs -1.3 ± 0.7, ALS: <-4.4 ± 1.2 vs -2.1 ± 0.9 and IGFBP-3: -9.0 ± 1.9 vs -1.6 ± 0.8 SDS respectively (P < 0.001). Ha-BMD z-score was similar and normal in both groups. CONCLUSIONS To the known phenotype of ACLSD (i.e. short stature, reduced serum levels of IGF-I and ALS, extremely low serum IGFBP-3 and disturbed ternary complex formation), we add reduced birth weight, head circumference and serum IGF-II.
Collapse
Affiliation(s)
- Emregül Işık
- Department of Pediatric EndocrinologyGaziantep Children's Hospital, Gaziantep, Turkey
| | - Belma Haliloglu
- Department of Pediatric EndocrinologyYeditepe University School of Medicine, İstanbul, Turkey
| | - Jaap van Doorn
- Department of GeneticsUniversity Medical Center Utrecht, The Netherlands
| | - Hüseyin Demirbilek
- Department of Pediatric EndocrinologyHacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | - Jan M Wit
- Departments of PediatricsLeiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Martucci LC, Gutiérrez ML, Karabatas LM, Scaglia PA, Rey RA, Domené HM, Jasper HG, Domené S. Assessment of pathogenicity of natural IGFALS gene variants by in silico bioinformatics tools and in vitro functional studies. Mol Cell Endocrinol 2016; 429:19-28. [PMID: 27018247 DOI: 10.1016/j.mce.2016.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/02/2016] [Accepted: 03/23/2016] [Indexed: 11/25/2022]
Abstract
Acid-labile subunit (ALS) is essential for stabilization of IGF-I and IGFBP-3 in ternary complexes within the vascular system. ALS deficient (ALS-D) patients and a subset of children with idiopathic short stature (ISS), presenting IGFALS gene variants, show variable degree of growth retardation associated to IGF-I and IGFBP-3 deficiencies. The aim of this study was to evaluate the potential pathogenicity of eleven IGFALS variants identified in ALS-D and ISS children using in silico and in vitro approaches. We were able to classify seven of these variants as pathogenic since they present impaired synthesis (p.Glu35Lysfs*87, p.Glu35Glyfs*17, p.Asn276Ser, p.Leu409Phe, p.Ser490Trp and p.Cys540Arg), or partial impairment of synthesis and lack of secretion (p.Leu213Phe). We also observed significant reduction of secreted protein for variants p.Ala330Asp, Ala475Val and p.Arg548Trp, while still retaining their ability to form ternary complexes. These findings provide an approach to test the pathogenicity of IGFALS gene variants.
Collapse
Affiliation(s)
- Lucía C Martucci
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Mariana L Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Liliana M Karabatas
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Paula A Scaglia
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Rodolfo A Rey
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Horacio M Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Héctor G Jasper
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| | - Sabina Domené
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Gallo 1330 - C1425EFD, Buenos Aires, Argentina
| |
Collapse
|
10
|
Storr HL, Prasad R, Temple IK, Metherell LA, Savage MO, Walker JM. Heterogeneity of the growth phenotype and birth size in acid-labile subunit (ALS) deficiency. J Endocrinol Invest 2015; 38:407-12. [PMID: 25352235 DOI: 10.1007/s40618-014-0195-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The IGFALS gene encodes the acid-labile subunit (ALS) protein, which regulates circulating IGF-1. Human IGFALS mutations cause growth hormone insensitivity (GHI) associated with ALS, IGF-1 and IGFBP-3 deficiencies and mild to moderate postnatal growth impairment (height SDS -2 to -4). Prenatal growth impairment is not a recognised feature of this disorder, but heterozygous carriers may show an intermediate phenotype. METHODS We report a family of five subjects, including three children born small for gestational age, who were investigated for IGFALS gene mutations. RESULTS The proband, an 8.7 years female with pre- and postnatal growth failure (BW SDS -3.04, Ht SDS -3.86) and biochemical features of GHI, had a homozygous mutation of IGFALS, c.401T>A; p.L134Q. Her 6.1 years brother (BW SDS -2.11, Ht SDS -2.0) had the same homozygous IGFALS mutation. Both parents [adult height SDS -1.76 (father) and -1.82 (mother)] and her 2.7 years sister (BW SDS -2.60, Ht SDS -2.04) were heterozygous for the IGFALS mutation. CONCLUSION Significant phenotypic heterogeneity was observed between family members, in particular varying degrees of prenatal growth retardation were present in the three siblings, which may have contributed to the variation in the postnatal growth phenotype.
Collapse
Affiliation(s)
- H L Storr
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| | - R Prasad
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - I K Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - L A Metherell
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - M O Savage
- Centre for Endocrinology, John Vane Science Centre, William Harvey Research Institute (WHRI), Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - J M Walker
- Department of Paediatric Endocrinology, Portsmouth Hospitals National Health Service Trust, Portsmouth, UK
| |
Collapse
|
11
|
Yoo HJ, Kim K, Kim IH, Rho SH, Park JE, Lee KY, Kim SA, Choi BY, Kim N. Whole exome sequencing for a patient with Rubinstein-Taybi syndrome reveals de novo variants besides an overt CREBBP mutation. Int J Mol Sci 2015; 16:5697-713. [PMID: 25768348 PMCID: PMC4394500 DOI: 10.3390/ijms16035697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/16/2015] [Accepted: 02/28/2015] [Indexed: 11/16/2022] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare condition with a prevalence of 1 in 125,000–720,000 births and characterized by clinical features that include facial, dental, and limb dysmorphology and growth retardation. Most cases of RSTS occur sporadically and are caused by de novo mutations. Cytogenetic or molecular abnormalities are detected in only 55% of RSTS cases. Previous genetic studies have yielded inconsistent results due to the variety of methods used for genetic analysis. The purpose of this study was to use whole exome sequencing (WES) to evaluate the genetic causes of RSTS in a young girl presenting with an Autism phenotype. We used the Autism diagnostic observation schedule (ADOS) and Autism diagnostic interview revised (ADI-R) to confirm her diagnosis of Autism. In addition, various questionnaires were used to evaluate other psychiatric features. We used WES to analyze the DNA sequences of the patient and her parents and to search for de novo variants. The patient showed all the typical features of Autism, WES revealed a de novo frameshift mutation in CREBBP and de novo sequence variants in TNC and IGFALS genes. Mutations in the CREBBP gene have been extensively reported in RSTS patients, while potential missense mutations in TNC and IGFALS genes have not previously been associated with RSTS. The TNC and IGFALS genes are involved in central nervous system development and growth. It is possible for patients with RSTS to have additional de novo variants that could account for previously unexplained phenotypes.
Collapse
Affiliation(s)
- Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul 110-744, Korea.
| | - Kyung Kim
- Epigenomics Research Center, Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
- Department of Biomedical Informatics, Ajou University, School of Medicine, Suwon 443-749, Korea.
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon 443-749, Korea.
| | - In Hyang Kim
- Department of Psychiatry, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
| | | | - Jong-Eun Park
- Department of Psychiatry, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
| | - Ki Young Lee
- Department of Biomedical Informatics, Ajou University, School of Medicine, Suwon 443-749, Korea.
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon 443-749, Korea.
| | - Soon Ae Kim
- Department of Pharmacology, Eulji University College of Medicine, Daejeon 301-746, Korea.
| | - Byung Yoon Choi
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul 110-744, Korea.
- Department of Otolaryngology, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
| | - Namshin Kim
- Epigenomics Research Center, Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
| |
Collapse
|
12
|
Poukoulidou T, Kowalczyk J, Metherell L, De Schepper J, Maes M. A novel homozygous mutation of the IGFALS gene in a female adolescent: indirect evidence for a contributing role of the circulating IGF-I pool in the pubertal growth spurt. Horm Res Paediatr 2015; 81:422-7. [PMID: 24819402 DOI: 10.1159/000358329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mutations of the IGFALS gene have been reported since 2004 in 24 patients, but only 5 of these are females. CASE REPORT We describe a 14.7-year-old female of a consanguineous Moroccan family with growth retardation and normal-onset but slow progression of puberty without manifest pubertal height gain. RESULTS At age 3.2 years, the patient's height was 85.5 cm (-2.9 SDS) and her weight 9.9 kg (-2.9 SDS) with a head circumference of 44.5 cm (-3.3 SDS). Serum IGF-I and IGFBP-3 concentrations were low with normal basal and stimulated growth hormone (GH) levels. An IGF-I generation test confirmed a lack of response to GH administration. While onset of puberty occurred at a normal age, no significant pubertal growth acceleration was observed despite progression of breast development. Sequencing of the IGFALS gene revealed a novel homozygous frameshift mutation (c.1291delT) with a stop codon (p.W431GfsX10) leading to undetectable serum levels of acid-labile subunit. CONCLUSION We report the phenotype of an adolescent girl with primary IGF-I deficiency due to a novel homozygous mutation of the IGFALS gene, who presented with growth delay, normal pubertal onset with slow progression and no pubertal growth acceleration indirectly suggesting a contributing role of the circulating IGF-I pool in the pubertal growth spurt.
Collapse
Affiliation(s)
- Thekla Poukoulidou
- Division of Pediatric Endocrinology, Department of Pediatrics, Cliniques Universitaires Saint-Luc, Catholic University of Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
13
|
Domené HM, Scaglia PA, Martínez AS, Keselman AC, Karabatas LM, Pipman VR, Bengolea SV, Guida MC, Ropelato MG, Ballerini MG, Lescano EM, Blanco MA, Heinrich JJ, Rey RA, Jasper HG. Heterozygous IGFALS gene variants in idiopathic short stature and normal children: impact on height and the IGF system. Horm Res Paediatr 2014; 80:413-23. [PMID: 24335034 DOI: 10.1159/000355412] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/16/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In acid-labile subunit (ALS)-deficient families, heterozygous carriers of IGFALS gene mutations are frequently shorter than their wild-type relatives, suggesting that IGFALS haploinsufficiency could result in short stature. We have characterized IGFALS gene variants in idiopathic short stature (ISS) and in normal children, determining their impact on height and the IGF system. PATIENTS AND METHODS In 188 normal and 79 ISS children levels of IGF-1, IGFBP-3, ALS, ternary complex formation (TCF) and IGFALS gene sequence were determined. RESULTS In sum, 9 nonsynonymous or frameshift IGFALS variants (E35Gfs*17, G83S, L97F, R277H, P287L, A330D, R493H, A546V and R548W) were found in 10 ISS children and 6 variants (G170S, V239M, N276S, R277H, G506R and R548W) were found in 7 normal children. If ISS children were classified according to the ability for TCF enhanced by the addition of rhIGFBP-3 (TCF+), carriers of pathogenic IGFALS gene variants were shorter and presented lower levels of IGF-1, IGFBP-3 and ALS in comparison to carriers of benign variants. In ISS families, subjects carrying pathogenic variants were shorter and presented lower IGF-1, IGFBP-3 and ALS levels than noncarriers. CONCLUSIONS These findings suggest that heterozygous IGFALS gene variants could be responsible for short stature in a subset of ISS children with diminished levels of IGF-1, IGFBP-3 and ALS.
Collapse
Affiliation(s)
- Horacio M Domené
- Centro de Investigaciones Endocrinológicas 'Dr. César Bergadá' (CEDIE), CONICET - FEI - División de Endocrinología, Hospital de Niños 'Ricardo Gutiérrez', Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Genetic variations in insulin-like growth factor binding protein acid labile subunit gene associated with growth traits in beef cattle (Bos taurus) in China. Gene 2014; 540:246-50. [DOI: 10.1016/j.gene.2014.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 11/17/2022]
|
15
|
Högler W, Martin DD, Crabtree N, Nightingale P, Tomlinson J, Metherell L, Rosenfeld R, Hwa V, Rose S, Walker J, Shaw N, Barrett T, Frystyk J. IGFALS gene dosage effects on serum IGF-I and glucose metabolism, body composition, bone growth in length and width, and the pharmacokinetics of recombinant human IGF-I administration. J Clin Endocrinol Metab 2014; 99:E703-12. [PMID: 24423360 DOI: 10.1210/jc.2013-3718] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Acid labile subunit (ALS) deficiency, caused by IGFALS mutations, is a subtype of primary IGF-I deficiency (PIGFD) and has been associated with insulin resistance (IR) and osteopenia. Whether patients respond to recombinant human IGF-I (rhIGF-I) is unknown. OBJECTIVE AND DESIGN This study determined the 14-hour pharmacokinetic response of free and total IGF-I and IGF binding protein 3 (IGFBP-3) to a single sc dose of rhIGF-I (120 μg/kg) in four ALS-deficient patients, compared with severe PIGFD, moderate PIGFD, and controls. Intravenous glucose tolerance tests, fasting blood levels, dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and metacarpal radiogrammetry were performed in the four patients and 12 heterozygous family members. RESULTS IGF-I and IGFBP-3 increased above baseline (P < .05) for 2.5 hours, returning to baseline 7 hours after rhIGF-I injection. Mean (SD) IGF-I Z-score increased by 2.49 (0.90), whereas IGFBP-3 Z-score increased by 0.57 (0.10) only. IGF-I elimination rates in ALS deficiency were similar, but the IGF-I increment was lower than those for severe PIGFD. Significant gene dosage effects were found for all IGF-I peptides, height, forearm muscle size, and metacarpal width. Bone analysis showed that ALS deficiency creates a phenotype of slender bones with normal size-corrected density. Abnormal glucose handling and IR was found in three of four patients and 6 of 12 carriers. CONCLUSIONS These gene dosage effects demonstrate that one functional IGFALS allele is insufficient to maintain normal ALS levels, endocrine IGF-I action, full growth potential, muscle size, and periosteal expansion. Similar gene dosage effects may exist for parameters of IR. Despite similar IGF-I elimination compared with severe PIGFD, ALS-deficient patients cannot mount a similar response. Alternative ways of rhIGF-I administration should be sought.
Collapse
Affiliation(s)
- Wolfgang Högler
- Departments of Endocrinology and Diabetes (W.H., N.S., T.B.) and Nuclear Medicine (N.C.), Birmingham Children's Hospital, B4 6NH Birmingham, United Kingdom; Department of Paediatric Endocrinology and Diabetes (D.D.M.), University Children's Hospital, D-72074 Tübingen, Germany; Wellcome Trust Clinical Research Facility (P.N.), Queen Elizabeth Hospital, Birmingham B15 2TH, United Kingdom; School of Clinical and Experimental Medicine (J.T., T.B.), University of Birmingham, Birmingham B15 2TT, United Kingdom; William Harvey Research Institute (L.M.), Barts and the London School of Medicine, Queen Mary University of London, London E1 1BB, United Kingdom; Department of Paediatrics (R.R.), Oregon Health Sciences University, Portland, Oregon 97239; Department of Paediatrics (S.R.), Heartlands Hospital, B9 5SS Birmingham, United Kingdom; Department of Paediatrics (J.W.), Portsmouth Hospital, Portsmouth PO6 3LY, United Kingdom; and Medical Research Laboratory (J.F.), Department of Clinical Medicine, Faculty of Health, Aarhus University, and Department of Endocrinology and Internal Medicine, Aarhus University Hospital, DK-8000 C Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kennedy OD, Sun H, Wu Y, Courtland HW, Williams GA, Cardoso L, Basta-Pljakic J, Schaffler MB, Yakar S. Skeletal response of male mice to anabolic hormone therapy in the absence of the Igfals gene. Endocrinology 2014; 155:987-99. [PMID: 24424061 PMCID: PMC3929729 DOI: 10.1210/en.2013-1819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I is a critical regulator of skeletal acquisition, which acts in endocrine and autocrine/paracrine modes. In serum, IGF-I is carried by the IGF-binding proteins in binary complexes. Further stabilization of these complexes is achieved by binding to the acid labile subunit (ALS) in a ternary complex (of IGF-I-IGF-binding protein 3/5-ALS). Ablation of the Igfals gene in humans (ALS deficiency) and mice (ALS knockout [ALSKO]) leads to markedly decreased serum IGF-I levels, growth retardation, and impaired skeletal acquisition. To investigate whether hormonal replacement therapy would improve the skeletal phenotype in cases of Igfals gene ablation, we treated male ALSKO mice with GH, IGF-I, or a combination of both. Treatments were administered to animals between 4 and 16 weeks of age or from 8 to 16 weeks of age. Although all treatment groups showed an increase (20%) in serum IGF-I levels, there was no increase in body weight, weight gain, or bone length in either age group. Despite the blunted linear growth in response to hormone therapy, ALSKO mice treated with GH showed radial bone growth, which contributed to bone strength tested by 4-point bending. We found that ALSKO mice treated with GH showed increased total cross-sectional area, cortical bone area, and cortical thickness by microtomography. Dynamic histomorphometry showed that although GH and double treatment groups resulted in trends towards increased bone formation parameters, these did not reach significance. However, bone resorption parameters were significantly increased in all treatment groups. ALSKO mice treated between 4 and 16 weeks of age showed minor differences in bone traits compared with vehicle-treated mice. In conclusion, treatment with GH and IGF-I do not work synergistically to rescue the stunted growth found in mice lacking the Igfals gene. Although GH alone appears to increase bone parameters slightly, it does not affect body weight or linear growth.
Collapse
Affiliation(s)
- Oran D Kennedy
- Department of Biomedical Engineering (O.D.K., L.C., J.B.-P., M.B.S.), City College of New York, New York 10031; David B. Kriser Dental Center (H.S., Y.W., G.A.W., S.Y.), Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010-4086; and Division of Endocrinology (H.-W.C., S.Y.), Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, New York 10029-6547
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hess O, Khayat M, Hwa V, Heath KE, Teitler A, Hritan Y, Allon-Shalev S, Tenenbaum-Rakover Y. A novel mutation in IGFALS, c.380T>C (p.L127P), associated with short stature, delayed puberty, osteopenia and hyperinsulinaemia in two siblings: insights into the roles of insulin growth factor-1 (IGF1). Clin Endocrinol (Oxf) 2013; 79:838-44. [PMID: 23488611 DOI: 10.1111/cen.12200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/17/2013] [Accepted: 03/08/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND The acid-labile subunit (ALS) protein is crucial for maintaining the circulating IGF/IGFBP system. Inactivating mutations of IGFALS result in IGF1 deficiency associated with growth retardation. Although the first IGFALS mutation in humans was described in 2004, only 16 mutations have been reported since. Moreover, the phenotype of affected patients as a consequence of ALS deficiency is still highly variable. We assessed whether children with idiopathic short stature (ISS) harbour mutations in IGFALS and characterized affected patients' phenotype. DESIGN Sixty-five children with ISS were enrolled in the study. Serum ALS levels were measured by ELISA, and IGFALS was sequenced. RESULTS A novel homozygous mutation in IGFALS, c.380T>C (p.L127P), was identified in two siblings of a consanguineous family. The proband, a 17·75-year-old male, was -1·9 SDS in height and -4·5 SDS in weight. Exaggerated stimulated GH (38 ng/ml) and extremely low IGF1 and IGFBP3 (<25 and <500 ng/ml, respectively) indicated GH insensitivity. Both affected siblings had low or no ALS (43 and 0 mU/ml, respectively). They were also mildly small for gestational age, severely underweight and showed osteopenia, insulin insensitivity and delayed and slow puberty progression. CONCLUSIONS Acid-labile subunit deficiency due to IGFALS mutations is a rare cause of growth retardation in children. The unique combination of features presented by the two affected siblings emphasizes the important role of IGF1 in bone formation, insulin regulation and the pubertal process, in addition to its crucial effect on growth. Long-term follow-up is indicated since the clinical outcome with respect to osteoporosis, diabetes mellitus and fertility has not been recognized.
Collapse
Affiliation(s)
- Ora Hess
- Pediatric Endocrine Institute, Ha'Emek Medical Center, Afula, Israel
| | | | | | | | | | | | | | | |
Collapse
|
18
|
David A, Kelley LA, Sternberg MJE. A new structural model of the acid-labile subunit: pathogenetic mechanisms of short stature-causing mutations. J Mol Endocrinol 2012; 49:213-20. [PMID: 22991227 DOI: 10.1530/jme-12-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The acid-labile subunit (ALS) is the main regulator of IGF1 and IGF2 bioavailability. ALS deficiency caused by mutations in the ALS (IGFALS) gene often results in mild short stature in adulthood. Little is known about the ALS structure-function relationship. A structural model built in 1999 suggested a doughnut shape, which has never been observed in the leucine-rich repeat (LRR) superfamily, to which ALS belongs. In this study, we built a new ALS structural model, analysed its glycosylation and charge distribution and studied mechanisms by which missense mutations affect protein structure. We used three structure prediction servers and integrated their results with information derived from ALS experimental studies. The ALS model was built at high confidence using Toll-like receptor protein templates and resembled a horseshoe with an extensively negatively charged concave surface. Enrichment in prolines and disulphide bonds was found at the ALS N- and C-termini. Moreover, seven N-glycosylation sites were identified and mapped. ALS mutations were predicted to affect protein structure by causing loss of hydrophobic interactions (p.Leu134Gln), alteration of the amino acid backbone (p.Leu241Pro, p.Leu172Phe and p.Leu244Phe), loss of disulphide bridges (p.Cys60Ser and p.Cys540Arg), change in structural constrains (p.Pro73Leu), creation of novel glycosylation sites (p.Asp440Asn) or alteration of LRRs (p.Asn276Ser). In conclusion, our ALS structural model was identified as a highly confident prediction by three independent methods and disagrees with the previously published ALS model. The new model allowed us to analyse the ALS core and its caps and to interpret the potential structural effects of ALS mutations.
Collapse
Affiliation(s)
- Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | |
Collapse
|
19
|
Backeljauw PF, Chernausek SD. The insulin-like growth factors and growth disorders of childhood. Endocrinol Metab Clin North Am 2012; 41:265-82, v. [PMID: 22682630 DOI: 10.1016/j.ecl.2012.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific lesions of the growth hormone (GH)/insulin-like growth factor (IGF) axis have been identified in humans, each of which has distinctive auxologic and biochemical features. Measures of circulating IGF-I are useful in diagnosing growth disorders in childhood and in evaluating response to GH therapy. Recombinant human IGF-I is an effective treatment of severe primary IGF deficiency, which is typical of patients with GH receptor defects (Laron syndrome). Such treatment has been limited to a few severely affected patients. Future studies will provide new insight into IGF-I as treatment and into the nature of growth disorders that involve the IGF axis.
Collapse
Affiliation(s)
- Philippe F Backeljauw
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnett Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
20
|
Saenger P, Reiter E. Genetic factors associated with small for gestational age birth and the use of human growth hormone in treating the disorder. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2012; 2012:12. [PMID: 22587301 PMCID: PMC3511163 DOI: 10.1186/1687-9856-2012-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 03/19/2012] [Indexed: 12/31/2022]
Abstract
The term small for gestational age (SGA) refers to infants whose birth weights and/or lengths are at least two standard deviation (SD) units less than the mean for gestational age. This condition affects approximately 3%–10% of newborns. Causes for SGA birth include environmental factors, placental factors such as abnormal uteroplacental blood flow, and inherited genetic mutations. In the past two decades, an enhanced understanding of genetics has identified several potential causes for SGA. These include mutations that affect the growth hormone (GH)/insulin-like growth factor (IGF)-1 axis, including mutations in the IGF-1 gene and acid-labile subunit (ALS) deficiency. In addition, select polymorphisms observed in patients with SGA include those involved in genes associated with obesity, type 2 diabetes, hypertension, ischemic heart disease and deletion of exon 3 growth hormone receptor (d3-GHR) polymorphism. Uniparental disomy (UPD) and imprinting effects may also underlie some of the phenotypes observed in SGA individuals. The variety of genetic mutations associated with SGA births helps explain the diversity of phenotype characteristics, such as impaired motor or mental development, present in individuals with this disorder. Predicting the effectiveness of recombinant human GH (hGH) therapy for each type of mutation remains challenging. Factors affecting response to hGH therapy include the dose and method of hGH administration as well as the age of initiation of hGH therapy. This article reviews the results of these studies and summarizes the success of hGH therapy in treating this difficult and genetically heterogenous disorder.
Collapse
Affiliation(s)
- Paul Saenger
- Albert Einstein College of Medicine, Winthrop University Hospital, 120 Mineola Boulevard, Mineola, NY, 13501, USA.
| | | |
Collapse
|
21
|
David A, Hwa V, Metherell LA, Netchine I, Camacho-Hübner C, Clark AJL, Rosenfeld RG, Savage MO. Evidence for a continuum of genetic, phenotypic, and biochemical abnormalities in children with growth hormone insensitivity. Endocr Rev 2011; 32:472-97. [PMID: 21525302 DOI: 10.1210/er.2010-0023] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GH insensitivity (GHI) presents in childhood as growth failure and in its severe form is associated with dysmorphic and metabolic abnormalities. GHI may be caused by genetic defects in the GH-IGF-I axis or by acquired states such as chronic illness. This article discusses the former category. The field of GHI due to mutations affecting GH action has evolved considerably since the original description of the extreme phenotype related to homozygous GH receptor (GHR) mutations over 40 yr ago. A continuum of genetic, phenotypic, and biochemical abnormalities can be defined associated with clinically relevant defects in linear growth. The role and mechanisms of the GH-IGF-I axis in normal human growth is discussed, followed by descriptions of mutations in GHR, STAT5B, PTPN11, IGF1, IGFALS, IGF1R, and GH1 defects causing bioinactive GH or anti-GH antibodies. These defects are associated with a range of genetic, clinical, and hormonal characteristics. Genetic abnormalities causing growth failure that is less severe than the extreme phenotype are emphasized, together with an analysis of height and serum IGF-I across the spectrum of different types of GHR defects. An overall view of genotype and phenotype relationships is presented, together with an updated approach to the assessment of the patient with GHI, focusing on investigation of the GH-IGF-I axis and relevant molecular studies contributing to this diagnosis.
Collapse
Affiliation(s)
- Alessia David
- Department of Endocrinology, Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The acid-labile subunit (ALS) protein is crucial for maintaining the integrity of the circulating IGF/IGFBP system. In humans, complete ALS deficiency is characterized by severely reduced serum IGF-I and IGFBP-3 concentrations that is incongruent with the associated mild growth retardation (height SDS -2 to -3 SDS before and during puberty). Twenty-one patients have been described with ALS deficiency, representing 16 unique homozygous or compound heterozygous inactivating mutations of the IGFALS gene. Pubertal delay in boys and insulin insensitivity are common findings. In the assessment of a child with short stature ALS deficiency should be consider in those patients presenting: 1) a normal response to GH stimulation test, 2) low IGF-I levels associated with more profoundly reduced IGFBP-3 levels, 3) a mild growth retardation, apparently out of proportion to the degree of IGF-I and IGFBP-3 deficits, 4) lack of response to an IGF generation test and 5) insulin insensitivity.
Collapse
Affiliation(s)
- Horacio M Domené
- Centro de Investigaciones Endocrinológicas, División de Endocrinología, Hospital de Niños R Gutiérrez, Gallo 1330, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
23
|
Firth SM, Yan X, Baxter RC. D440N mutation in the acid-labile subunit of insulin-like growth factor complexes inhibits secretion and complex formation. Mol Endocrinol 2010; 25:307-14. [PMID: 21177759 DOI: 10.1210/me.2010-0295] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The acid-labile subunit (ALS) regulates IGF bioavailability by forming heterotrimeric complexes with IGFs and IGF-binding protein-3 (IGFBP-3). A homozygous missense mutation (D440N) resulting in undetectable circulating levels of ALS with a concomitant reduction in IGF-I and IGFBP-3 has been reported to cause mild growth retardation. To understand how this particular mutation affects ALS circulating levels and IGF-transport function, we expressed recombinant ALS and its variants, D440N-ALS, T442A-ALS, and D440N/T442A-ALS, using adenovirus vectors. Compared with wild-type ALS, the secretion of D440N-ALS was 80% lower. The D440N mutation was proposed to generate an N-glycosylation site additional to the seven existing motifs in ALS. D440N-ALS appeared larger than ALS, attributable to N-linked glycans because deglycosylation with N-glycosidase F reduced both proteins to the same molecular mass. When ALS was incubated with IGF-I and IGFBP-3, 70-80% of IGF-I was detected by gel-filtration chromatography in forms corresponding to the 150-kDa ternary complex. In contrast, when D440N-ALS was tested, less than 30% of IGF-I was found in high molecular mass complexes. Two other ALS variants mutated in the same putative glycosylation site, D440N/T442A-ALS and T442A-ALS, showed similar chromatographic profiles to wild-type ALS. The D440N mutation in ALS generates a hyperglycosylated form with impaired secretion and complex formation, potentially leading to dysregulation of endocrine IGF, thus contributing to the growth retardation observed in the affected patient. This is the first study to explain how a natural mutation, D440N, in ALS impairs its function.
Collapse
Affiliation(s)
- Sue M Firth
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia.
| | | | | |
Collapse
|
24
|
Courtland HW, DeMambro V, Maynard J, Sun H, Elis S, Rosen C, Yakar S. Sex-specific regulation of body size and bone slenderness by the acid labile subunit. J Bone Miner Res 2010; 25:2059-68. [PMID: 20499371 PMCID: PMC3118255 DOI: 10.1002/jbmr.94] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Insulin-like growth factor 1 (IGF-1) is a crucial mediator of body size and bone mass during growth and development. In serum, IGF-1 is stabilized by several IGF-1-binding proteins (IGFBPs) and the acid labile subunit (ALS). Previous research using ALS knockout (ALSKO) mice indicated a growth retardation phenotype, and clinical reports of humans have indicated short stature and low bone mineral density (BMD) in patients with ALS deficiency. To determine the temporal and sex-specific effects of ALS deficiency on body size and skeletal development during growth, we characterized control and ALSKO mice from 4 to 16 weeks of age. We found that female ALSKO mice had an earlier-onset reduction in body size (4 weeks) but that both female and male ALSKO mice were consistently smaller than control mice. Interestingly, skeletal analyses at multiple ages showed increased slenderness of ALSKO femurs that was more severe in females than in males. Both male and female ALSKO mice appeared to compensate for their more slender bones through increased bone formation on their endosteal surfaces during growth, but ALSKO females had increased endosteal bone formation compared with ALSKO males. This study revealed age- and sex-specific dependencies of body size and bone size on the ALS. These findings may explain the heterogeneity in growth and BMD measurements reported in human ALS-deficient patients.
Collapse
Affiliation(s)
- Hayden-William Courtland
- Division of Endocrinology, Diabetes and Bone Diseases, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Fofanova-Gambetti OV, Hwa V, Wit JM, Domene HM, Argente J, Bang P, Högler W, Kirsch S, Pihoker C, Chiu HK, Cohen L, Jacobsen C, Jasper HG, Haeusler G, Campos-Barros A, Gallego-Gómez E, Gracia-Bouthelier R, van Duyvenvoorde HA, Pozo J, Rosenfeld RG. Impact of heterozygosity for acid-labile subunit (IGFALS) gene mutations on stature: results from the international acid-labile subunit consortium. J Clin Endocrinol Metab 2010; 95:4184-91. [PMID: 20591980 DOI: 10.1210/jc.2010-0489] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT To date, 16 IGFALS mutations in 21 patients with acid-labile subunit (ALS) deficiency have been reported. The impact of heterozygosity for IGFALS mutations on growth is unknown. OBJECTIVE The study evaluates the impact of heterozygous expression of IGFALS mutations on phenotype based on data collected by the International ALS Consortium. SUBJECTS/METHODS Patient information was derived from the IGFALS Registry, which includes patients with IGFALS mutations and family members who were either heterozygous carriers or homozygous wild-type. Within each family, the effect of IGFALS mutations on stature was analyzed as follows: 1) effect of two mutant alleles (2ALS) vs. wild-type (WT); 2) effect of two mutant alleles vs. one mutant allele (1ALS); and 3) effect of one mutant allele vs. wild-type. The differences in height sd score (HtSDS) were then pooled and evaluated. RESULTS Mean HtSDS in 2ALS was -2.31 +/- 0.87 (less than -2 SDS in 62%); in 1ALS, -0.83 +/- 1.34 (less than -2 SDS in 26%); and in WT, -1.02 +/- 1.04 (less than -2 SDS in 12.5%). When analyses were performed within individual families and pooled, the difference in mean HtSDS between 2ALS and WT was -1.93 +/- 0.79; between 1ALS and WT, -0.90 +/- 1.53; and between 2ALS and 1ALS, -1.48 +/- 0.83. CONCLUSIONS Heterozygosity for IGFALS mutations results in approximately 1.0 SD height loss in comparison with wild type, whereas homozygosity or compound heterozygosity gives a further loss of 1.0 to 1.5 SD, suggestive of a gene-dose effect. Further studies involving a larger cohort are needed to evaluate the impact of heterozygous IGFALS mutations not only on auxology, but also on other aspects of the GH/IGF system.
Collapse
Affiliation(s)
- Olga V Fofanova-Gambetti
- Department of Pediatrics, NRC5, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239-3098, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
David A, Rose S, Miraki-Moud F, Metherell L, Savage M, Clark A, Camacho-Hübner C. Acid-labile subunit deficiency and growth failure: description of two novel cases. Horm Res Paediatr 2010; 73:328-34. [PMID: 20389102 PMCID: PMC2868526 DOI: 10.1159/000308164] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/07/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mutations in the acid-labile subunit (ALS) gene (IGFALS) have been associated with circulating insulin-like growth factor I (IGF-I) deficiency and short stature. Whether severe pubertal delay is also part of the phenotype remains controversial due to the small number of cases reported. We report 2 children with a history of growth failure due to novel IGFALS mutations. METHODS The growth hormone receptor gene (GHR) and IGFALS were analyzed by direct sequencing. Ternary complex formation was studied by size exclusion chromatography. RESULTS Two boys of 13.3 and 10.6 years, with pubertal stages 2 and 1, had mild short stature (-3.2 and -2.8 SDS, respectively) and a biochemical profile suggestive of growth hormone resistance. No defects were identified in the GHR. Patient 1 was homozygous for the IGFALS missense mutation P73L. Patient 2 was a compound heterozygote for the missense mutation L134Q and a novel GGC to AG substitution at position 546-548 (546-548delGGCinsAG). The latter causes a frameshift and the appearance of a premature stop codon. Size exclusion chromatography showed no peaks corresponding to ternary and binary complexes in either patient. CONCLUSION Screening of the IGFALS is important in children with short stature associated with low serum IGF-I, IGFBP-3 and ALS.
Collapse
Affiliation(s)
- A David
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - S.J. Rose
- Department of Paediatrics, Heartlands Hospital, Birmingham, UK
| | - F. Miraki-Moud
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - L.A. Metherell
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - M.O. Savage
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - A.J.L. Clark
- Centre for Endocrinology, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - C. Camacho-Hübner
- Division of Pediatric Endocrinology, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Qiu Q, Yan X, Bell M, Di J, Tsang BK, Gruslin A. Mature IGF-II prevents the formation of "big" IGF-II/IGFBP-2 complex in the human circulation. Growth Horm IGF Res 2010; 20:110-117. [PMID: 19962924 DOI: 10.1016/j.ghir.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 11/30/2022]
Abstract
IGF-II plays an important role in physiological and pathological processes involved in growth and metabolism. Despite the fact that "big" IGF-IIs, IGF-II(1-87) and IGF-II(1-104), have been identified in the circulation for decades in addition to "mature" IGF-II, the biological properties of these "big" IGF-IIs and the mechanisms regulating their bioavailability have not been fully elucidated. In this study we demonstrated that IGF-II (1-87), as an abundant "big" IGF-II form, exists at a molar ratio of 0.24 (CI 0.13-0.62) with respect to mature IGF-II in the normal human circulation. Mature and "big" IGF-II can equally form complexes with IGFBP-2 and IGFBP-3 in vitro, resulting in the inhibition of IGF-II's biological function. However, under physiological conditions which entails the presence of both "big" and mature IGF-II, "big" IGF-IIs preferably formed complexes with IGFBP-3 but not IGFBP-2, unlike mature IGF-II which was equally associated with both IGFBP-3 and IGFBP-2. "Big" IGF-II binding to IGFBP-2 was only evident when the "big"/mature IGF-II ratio approached 1 or higher. We concluded that mature IGF-II prevents the formation of "big" IGF-II/IGFBP-2 complex in the circulation of healthy human controls. This finding suggests the presence of previously unknown mechanisms in the regulation of IGF-II bioavailability. Elevation of the ratio of "big" to mature IGF-II in the circulation may result in altered bioavailability of "big" IGF-IIs. This mechanism is relevant in pathological conditions such as Non-Islet Cell Tumor-induced Hypoglycemia (NICTH) and Hepatitis C-associated Osteosclerosis (HCAO), in which "big" IGF-II(1-87) and IGF-II(1-104) are significantly elevated.
Collapse
Affiliation(s)
- Qing Qiu
- Chronic Disease Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Sonuga-Barke EJ, Schlotz W, Rutter M. VII. PHYSICAL GROWTH AND MATURATION FOLLOWING EARLY SEVERE INSTITUTIONAL DEPRIVATION: DO THEY MEDIATE SPECIFIC PSYCHOPATHOLOGICAL EFFECTS? Monogr Soc Res Child Dev 2010; 75:143-66. [DOI: 10.1111/j.1540-5834.2010.00554.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Backeljauw P, Bang P, Dunger DB, Juul A, Le Bouc Y, Rosenfeld R. Insulin-like growth factor-I in growth and metabolism. J Pediatr Endocrinol Metab 2010; 23:3-16. [PMID: 20432800 DOI: 10.1515/jpem.2010.23.1-2.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Deficiency of insulin-like growth factor-I (IGF-I) results in growth failure. A variety of molecular defects have been found to underlie severe primary IGF-I deficiency (IGFD), in which serum IGF-I concentrations are substantially decreased and fail to respond to GH therapy. Identification of more patients with primary or secondary IGFD is likely with investigative and diagnostic progress, particularly in the assessment of children with idiopathic short stature. Diagnosis of IGFD requires accurate and reliable IGF-I assays, adequate normative data for reference, and knowledge of IGF-I physiology for proper interpretation of data. Recombinant human IGF-I (rhIGF-I) treatment improves stature in patients with severe primary IGFD, and has also been shown to improve glycaemic control and insulin sensitivity in patients with severe insulin resistance. Ongoing studies of patients receiving rhIGF-I will allow further evaluation of the clinical utility of this treatment, with concurrent increase in our understanding of IGF-I and conditions of IGFD.
Collapse
Affiliation(s)
- P Backeljauw
- Division of Pediatric Endocrinology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
30
|
The Functions of Insulin-like Peptides in Insects. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2010. [DOI: 10.1007/978-3-642-04302-4_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Ohlsson C, Mohan S, Sjögren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr Rev 2009; 30:494-535. [PMID: 19589948 PMCID: PMC2759708 DOI: 10.1210/er.2009-0010] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
Collapse
Affiliation(s)
- Claes Ohlsson
- Division of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ueki I, Giesy SL, Harvatine KJ, Kim JW, Boisclair YR. The acid-labile subunit is required for full effects of exogenous growth hormone on growth and carbohydrate metabolism. Endocrinology 2009; 150:3145-52. [PMID: 19299456 PMCID: PMC2703525 DOI: 10.1210/en.2008-1740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal postnatal growth is dependent in part on overlapping actions of GH and IGF-I. These actions reflect GH stimulation of IGF-I production in liver and extrahepatic tissues, representing respectively the endocrine and autocrine/paracrine arms of the IGF system. Recent experiments in genetically modified mice show that each source of IGF-I can compensate for absence of the other but do not resolve their relative role in postnatal growth. In an effort to address this issue, we studied the GH responsiveness of mice harboring a null mutation of the acid-labile subunit (ALS). Null ALS mice have a substantial reduction in endocrine IGF-I but, unlike other models of plasma IGF-I deficiency, have no obvious additional endocrine defects. Wild type and null ALS mice of both sexes received daily sc injections of saline or recombinant bovine GH between d 35 and 63 of postnatal age. The GH-stimulated body weight gain of null ALS mice was reduced by more than 30% relative to wild type mice, irrespective of sex. Reductions in GH responsiveness were also seen for kidney and linear growth. Absence of ALS eliminated the ability of GH to increase plasma IGF-I despite intact GH-dependent stimulation of IGF-I expression in liver, adipose tissue, and skeletal muscle. GH treatment was also less efficient in antagonizing insulin action in null ALS mice. Overall, these results suggest that the GH effects mediated by endocrine IGF-I depends on ALS, and accordingly null ALS mice are less responsive to exogenous GH therapy.
Collapse
Affiliation(s)
- Iori Ueki
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Growth hormone (GH) exercises its growth effects by stimulating insulin-like growth factor I (IGF-I) synthesis in the liver (endocrine IGF-I) and by inducing chondrocyte differentiation/replication and local production of IGF-I (paracrine/autocrine IGF-I). Injectable recombinant human (rh)IGF-I (mecasermin) has been available for nearly 20 years for treatment of the rare instances of GH insensitivity caused by GH receptor defects or GH-inhibiting antibodies. Full restoration of normal growth, as occurs with rhGH replacement of GH deficiency, is not seen, presumably because only the endocrine deficiency is addressed. RhIGF-I has also been effective as an insulin-sensitizing agent in severe insulin-resistant conditions. Although the insulin-sensitizing effect may benefit both type 1 and type 2 diabetes, there are no ongoing clinical trials because of concern about risk of retinopathy and other complications. Promotion of rhIGF-I for treatment of idiopathic short stature has been intensive, with neither data nor rationale suggesting that there might be a better response than has been documented with rhGH. Other applications that have either been considered or are undergoing clinical trial are based on the ubiquitous tissue-building properties of IGF-I and include chronic liver disease, cystic fibrosis, wound healing, AIDS muscle wasting, burns, osteoporosis, Crohn's disease, anorexia nervosa, Werner syndrome, X-linked severe combined immunodeficiency, Alzheimer's disease, muscular dystrophy, amyotrophic lateral sclerosis, hearing loss prevention, spinal cord injury, cardiovascular protection, and prevention of retinopathy of prematurity. The most frequent side effect is hypoglycemia, which is readily controlled by administration with meals. Other common adverse effects involve hyperplasia of lymphoid tissue, which may require tonsillectomy/adenoidectomy, accumulation of body fat, and coarsening of facies. The anti-apoptotic properties of IGF-I are implicated in cancer pathogenesis-a concern for long-term therapy. It is unlikely that mecasermin will be useful beyond the orphan indications of severe insulin resistance and GH insensitivity.
Collapse
Affiliation(s)
- Arlan L Rosenbloom
- Department of Pediatrics, University of Florida College of Medicine, Children's Medical Services Center, Gainesville, FL 32608, USA.
| |
Collapse
|
34
|
|
35
|
Yakar S, Rosen CJ, Bouxsein ML, Sun H, Mejia W, Kawashima Y, Wu Y, Emerton K, Williams V, Jepsen K, Schaffler MB, Majeska RJ, Gavrilova O, Gutierrez M, Hwang D, Pennisi P, Frystyk J, Boisclair Y, Pintar J, Jasper H, Domene H, Cohen P, Clemmons D, LeRoith D. Serum complexes of insulin-like growth factor-1 modulate skeletal integrity and carbohydrate metabolism. FASEB J 2008; 23:709-19. [PMID: 18952711 DOI: 10.1096/fj.08-118976] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serum insulin-like growth factor (IGF) -1 is secreted mainly by the liver and circulates bound to IGF-binding proteins (IGFBPs), either as binary complexes or ternary complexes with IGFBP-3 or IGFBP-5 and an acid-labile subunit (ALS). The purpose of this study was to genetically dissect the role of IGF-1 circulatory complexes in somatic growth, skeletal integrity, and metabolism. Phenotypic comparisons of controls and four mouse lines with genetic IGF-1 deficits-liver-specific IGF-1 deficiency (LID), ALS knockout (ALSKO), IGFBP-3 (BP3) knockout, and a triply deficient LID/ALSKO/BP3 line-produced several novel findings. 1) All deficient strains had decreased serum IGF-1 levels, but this neither predicted growth potential or skeletal integrity nor defined growth hormone secretion or metabolic abnormalities. 2) IGF-1 deficiency affected development of both cortical and trabecular bone differently, effects apparently dependent on the presence of different circulating IGF-1 complexes. 3) IGFBP-3 deficiency resulted in increased linear growth. In summary, each IGF-1 complex constituent appears to play a distinct role in determining skeletal phenotype, with different effects on cortical and trabecular bone compartments.
Collapse
Affiliation(s)
- Shoshana Yakar
- Endocrinology/Diabetes and Bone Disease, The Mt. Sinai School of Medicine, One Gustave L Levy Place, Box 1055, New York, NY 10029-6574, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Heath KE, Argente J, Barrios V, Pozo J, Díaz-González F, Martos-Moreno GA, Caimari M, Gracia R, Campos-Barros A. Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. J Clin Endocrinol Metab 2008; 93:1616-24. [PMID: 18303074 DOI: 10.1210/jc.2007-2678] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Up to 90% of circulating IGF-I and IGF-II are carried bound to either IGF binding protein (IGFBP)-3 or IGFBP-5 and the acid-labile subunit (ALS) in the form of tertiary complexes that extend their circulating half-life. Three cases of complete ALS deficiency have been recently reported in short-stature patients with very low circulating IGF-I and IGFBP-3 levels who presented with homozygous or compound heterozygous mutations in the ALS encoding gene (IGFALS; 16p13.3), thus supporting a role for ALS in the regulation of the bioavailability of IGFs during postnatal growth. OBJECTIVE We present the molecular and clinical characterization of two novel IGFALS mutations that caused complete ALS deficiency in three unrelated patients with postnatal growth deficit, low IGF-I and IGFBP-3 levels, and no GH deficiency. RESULTS IGFALS mutation screening identified a novel homozygous IGFALS missense mutation, which altered a conserved residue, N276S, in two of the probands. The third proband presented a novel homozygous nonsense mutation, Q320X, that is predicted to generate a severely truncated ALS protein. The affected probands presented a similar phenotype characterized by a moderate postnatal growth deficit associated with undetectable ALS, low IGF-I, IGF-II, and IGFBP-3, and hyperinsulinemia, and, in two cases, delayed puberty. CONCLUSIONS Primary ALS deficiency due to IGFALS mutations should be considered as a possible cause of postnatal growth deficit in IGF-I-deficient patients in the absence of GH deficiency or insensitivity. Determination of serum ALS levels and basal insulinemia can be helpful in the differential diagnosis of patients with idiopathic IGF-I deficiency.
Collapse
Affiliation(s)
- Karen E Heath
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Arquier N, Géminard C, Bourouis M, Jarretou G, Honegger B, Paix A, Léopold P. Drosophila ALS regulates growth and metabolism through functional interaction with insulin-like peptides. Cell Metab 2008; 7:333-8. [PMID: 18396139 DOI: 10.1016/j.cmet.2008.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 12/21/2007] [Accepted: 02/08/2008] [Indexed: 11/26/2022]
Abstract
In metazoans, factors of the insulin family control growth, metabolism, longevity, and fertility in response to environmental cues. In Drosophila, a family of seven insulin-like peptides, called Dilps, activate a common insulin receptor. Some Dilp peptides carry both metabolic and growth functions, raising the possibility that various binding partners specify their functions. Here we identify dALS, the fly ortholog of the vertebrate insulin-like growth factor (IGF)-binding protein acid-labile subunit (ALS), as a Dilp partner that forms a circulating trimeric complex with one molecule of Dilp and one molecule of Imp-L2, an IgG-family molecule distantly related to mammalian IGF-binding proteins (IGFBPs). We further show that dALS antagonizes Dilp function to control animal growth as well as carbohydrate and fat metabolism. These results lead us to propose an evolutionary perspective in which ALS function appeared prior to the separation between metabolic and growth effects that are associated with vertebrate insulin and IGFs.
Collapse
Affiliation(s)
- Nathalie Arquier
- Université de Nice Sophia Antipolis, IBDC, CNRS UMR 6543, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The United States Food and Drug Administration (FDA) approved the use of subcutaneously injected rhIGF-I in late 2005 for treatment of children with severe short stature from growth hormone (GH) insensitivity due to genetic defects in the GH receptor or postreceptor mechanisms or from the development of GH inactivating antibodies. The approval was based on 15 years experience treating these rare conditions with rhIGF-I. Because of the very small numbers of children with these conditions, there has been an effort to justify and promote broader use for rhIGF-I. Attempts to identify GH unresponsiveness in children with idiopathic short stature (ISS) have yielded only a handful of patients with rare genetic disorders. IGF-I treatment for unequivocal GH insensitivity improves but does not correct growth failure, in contrast to the typical experience with GH replacement of GH deficiency. This emphasizes the importance of direct effects of GH at the growth plate, including the stimulation of maturation of cartilage precursor cells and local production of IGF-I, effects that cannot be duplicated by exogenous administration of rhIGF-I. Adverse effects testify to the more than adequate delivery of administered rhIGF-I to other tissues; these include lymphoid hyperplasia, coarsening of the facies, and increased percentage body fat. The absence of convincing evidence of GH insensitivity in a substantial number of children with ISS, the limited ability of endocrine IGF-I to restore normal growth in those with unequivocal GH unresponsiveness, the suppression of endogenous GH (and thereby, local GH effects on growth) that occurs with IGF-I administration, the risk profile, and the absence of data on efficacy in other than proven severe GH insensitivity, led the Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society to conclude that rhIGF-I use is only justified in conditions approved by the FDA and that other growth promotional use should only be investigational. Nonetheless, substantial numbers of children are being treated with rhIGF-I off-label, exuberant estimates of potentially eligible patients are projected, and several uncontrolled clinical trials have been undertaken which are not based on sound preliminary data or established growth principles, and a single four-arm study begun comparing monotherapy with rhGH to combination rhGH with three dosages of rhIGF-I as a single daily injection, a means of administration of rhIGF-I that has not been tested.
Collapse
Affiliation(s)
- Arlan L Rosenbloom
- Division of Endocrinology, Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
39
|
Banerjee I, Hanson D, Perveen R, Whatmore A, Black GC, Clayton PE. Constitutional delay of growth and puberty is not commonly associated with mutations in the acid labile subunit gene. Eur J Endocrinol 2008; 158:473-7. [PMID: 18362293 DOI: 10.1530/eje-07-0769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Constitutional delay of growth and puberty (CDGP) is a common clinical condition that may be inherited as an autosomal dominant, recessive or X-linked trait. However, single-gene defects underlying CDGP have not yet been identified. A small number of children (to date 10) with modest growth failure and in the majority delayed puberty, a phenotype similar to that of CDGP, have been reported to carry mutations in the IGF acid labile subunit (IGFALS) gene which encodes the ALS, a part of the ternary complex carrying IGF-I in the circulation. The aim of our study was to screen a well-characterised CDGP cohort exhibiting a range of growth retardation and pubertal delay for pathogenic sequence variants in IGFALS. DESIGN AND METHODS We used denaturing high performance liquid chromatography (dHPLC) to screen for IGFALS mutations in DNA samples from 90 children (80 males) with CDGP of predominantly White European origin. DNA fragments generating abnormal waveforms were directly sequenced. RESULTS No IGFALS mutation was identified in the coding sequences or exon-intron boundaries in our CDGP cohort. One abnormal waveform pattern in dHPLC in 15 children with CDGP was found to represent a recognised synonymous single-nucleotide polymorphism of the coding transcript in the second exon in residue 210 of IGFALS. CONCLUSIONS IGFALS sequence variants are unlikely to be a common association with pubertal delay in children with CDGP.
Collapse
Affiliation(s)
- I Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Pendlebury, Manchester M27 4HA, UK.
| | | | | | | | | | | |
Collapse
|