1
|
Mukhi D, Kolligundla LP, Maruvada S, Nishad R, Pasupulati AK. Growth hormone induces transforming growth factor-β1 in podocytes: Implications in podocytopathy and proteinuria. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119391. [PMID: 36400249 DOI: 10.1016/j.bbamcr.2022.119391] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/17/2022]
Abstract
Pituitary growth hormone (GH) is essential for growth, metabolism, and renal function. Overactive GH signaling is associated with impaired kidney function. Glomerular podocytes, a key kidney cell type, play an indispensable role in the renal filtration and express GH receptors (GHR), suggesting the direct action of GH on these cells. However, the precise mechanism and the downstream signaling events by which GH leads to diabetic nephropathy remain to be elucidated. Here we performed proteome analysis of the condition media from human podocytes and confirmed that GH-induces TGF-β1. Inhibition of GH/GHR stimulated-JAK2 signaling abrogates GH-induced TGF-β1 secretion. Mice administered with GH showed glomerular manifestations concomitant with proteinuria. Pharmacological inhibition of TGF-βR1 in mice prevented GH-induced TGF-β dependent SMAD signaling and proteinuria. Conditional deletion of GHR in podocytes protected mice from streptozotocin-induced diabetic nephropathy. GH and TGF-β1 signaling components expression was elevated in the kidneys of human diabetic nephropathy patients. Our study identifies that GH induces TGF-β1 in podocytes, contributing to diabetic nephropathy.
Collapse
Affiliation(s)
- Dhanunjay Mukhi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lakshmi P Kolligundla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Saikrishna Maruvada
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rajkishor Nishad
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Anil K Pasupulati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
2
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
3
|
Basu R, Qian Y, Mathes S, Terry J, Arnett N, Riddell T, Stevens A, Funk K, Bell S, Bokal Z, Batten C, Smith C, Mendez-Gibson I, Duran-Ortiz S, Lach G, Mora-Criollo PA, Kulkarni P, Davis E, Teaford E, Berryman DE, List EO, Neggers S, Kopchick JJ. Growth hormone receptor antagonism downregulates ATP-binding cassette transporters contributing to improved drug efficacy against melanoma and hepatocarcinoma in vivo. Front Oncol 2022; 12:936145. [PMID: 35865483 PMCID: PMC9296106 DOI: 10.3389/fonc.2022.936145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/14/2022] [Indexed: 01/06/2023] Open
Abstract
Knockdown of GH receptor (GHR) in melanoma cells in vitro downregulates ATP-binding cassette-containing (ABC) transporters and sensitizes them to anti-cancer drug treatments. Here we aimed to determine whether a GHR antagonist (GHRA) could control cancer growth by sensitizing tumors to therapy through downregulation of ABC transporters in vivo. We intradermally inoculated Fluc-B16-F10 mouse melanoma cells into GHA mice, transgenic for a GHR antagonist (GHRA), and observed a marked reduction in tumor size, mass and tumoral GH signaling. Moreover, constitutive GHRA production in the transgenic mice significantly improved the response to cisplatin treatment by suppressing expression of multiple ABC transporters and sensitizing the tumors to the drug. We confirmed that presence of a GHRA and not a mere absence of GH is essential for this chemo-sensitizing effect using Fluc-B16-F10 allografts in GH knockout (GHKO) mice, where tumor growth was reduced relative to that in GH-sufficient controls but did not sensitize the tumor to cisplatin. We extended our investigation to hepatocellular carcinoma (HCC) using human HCC cells in vitro and a syngeneic mouse model of HCC with Hepa1-6 allografts in GHA mice. Gene expression analyses and drug-efflux assays confirm that blocking GH significantly suppresses the levels of ABC transporters and improves the efficacy of sorafenib towards almost complete tumor clearance. Human patient data for melanoma and HCC show that GHR RNA levels correlate with ABC transporter expression. Collectively, our results validate in vivo that combination of a GHRA with currently available anti-cancer therapies can be effective in attacking cancer drug resistance.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Samuel Mathes
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Joseph Terry
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | - Nathan Arnett
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Russ College of Engineering, Ohio University, Athens, OH, United States
| | - Trent Riddell
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | - Austin Stevens
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | - Kevin Funk
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Stephen Bell
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Zac Bokal
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Courtney Batten
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Cole Smith
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | | | | | - Grace Lach
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
| | | | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Elizabeth Teaford
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Darlene E. Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Edward O. List
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - Sebastian Neggers
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, United States
- Molecular Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
- Translational Biological Sciences Program, Ohio University, Athens, OH, United States
- *Correspondence: John J. Kopchick,
| |
Collapse
|
4
|
Sui Y, Wu J, Chen J. The Role of Gut Microbial β-Glucuronidase in Estrogen Reactivation and Breast Cancer. Front Cell Dev Biol 2021; 9:631552. [PMID: 34458248 PMCID: PMC8388929 DOI: 10.3389/fcell.2021.631552] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/09/2021] [Indexed: 12/15/2022] Open
Abstract
Over the past decade, the gut microbiota has received considerable attention for its interactions with the host. Microbial β-glucuronidase generated by this community has hence aroused concern for its biotransformation activity to a wide range of exogenous (foreign) and endogenous compounds. Lately, the role of gut microbial β-glucuronidase in the pathogenesis of breast cancer has been proposed for its estrogen reactivation activity. This is plausible considering that estrogen glucuronides are the primary products of estrogens' hepatic phase II metabolism and are subject to β-glucuronidase-catalyzed hydrolysis in the gut via bile excretion. However, research in this field is still at its very preliminary stage. This review outlines the biology of microbial β-glucuronidase in the gastrointestinal tract and elaborates on the clues to the existence of microbial β-glucuronidase-estrogen metabolism-breast cancer axis. The research gaps in this field will be discussed and possible strategies to address these challenges are suggested.
Collapse
Affiliation(s)
- Yue Sui
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
5
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Lantvit DD, Unterberger CJ, Lazar M, Arneson PD, Longhurst CA, Swanson SM, Marker PC. Mammary Tumors Growing in the Absence of Growth Hormone Are More Sensitive to Doxorubicin Than Wild-Type Tumors. Endocrinology 2021; 162:bqab013. [PMID: 33475144 PMCID: PMC7881836 DOI: 10.1210/endocr/bqab013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Previously, we reported that N-methyl-N-nitrosourea (MNU)-induced mammary tumors could be established in mutant spontaneous dwarf rats (SDRs), which lack endogenous growth hormone (GH) by supplementing with exogenous GH, and almost all such tumors regressed upon GH withdrawal. When the highly inbred SDR line was outcrossed to wild-type (WT) Sprague-Dawley rats, MNU-induced mammary tumors could still be established in resulting outbred SDRs by supplementing with exogenous GH. However, unlike tumors in inbred SDRs, 65% of mammary tumors established in outbred SDRs continued growth after GH withdrawal. We further tested whether these tumors were more sensitive to doxorubicin than their WT counterparts. To accomplish this, MNU-induced mammary tumors were established in WT rats and in SDRs supplemented with exogenous GH. Once mammary tumors reached 1 cm3 in size, exogenous GH was withdrawn from SDRs, and the subset that harbored tumors that continued or resumed growth in the absence of GH were selected for doxorubicin treatment. Doxorubicin was then administered in 6 injections over 2 weeks at 2.5 mg/kg or 1.25 mg/kg for both the WT and SDR groups. The SDR mammary tumors that had been growing in the absence of GH regressed at both doxorubicin doses while WT tumors continued to grow robustly. The regression of SDR mammary tumors treated with 1.25 mg/kg doxorubicin was accompanied by reduced proliferation and dramatically higher apoptosis relative to the WT mammary tumors treated with 1.25 mg/kg doxorubicin. These data suggest that downregulating GH signaling may decrease the doxorubicin dose necessary to effectively treat breast cancer.
Collapse
Affiliation(s)
- Daniel D Lantvit
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Unterberger
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle Lazar
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paige D Arneson
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin A Longhurst
- School of Medicine and Public Health, Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven M Swanson
- College of Pharmacy, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, USA
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| | - Paul C Marker
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
de Groot S, Röttgering B, Gelderblom H, Pijl H, Szuhai K, Kroep JR. Unraveling the Resistance of IGF-Pathway Inhibition in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12123568. [PMID: 33260481 PMCID: PMC7759976 DOI: 10.3390/cancers12123568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The insulin-like growth factor-1 receptor (IGF1R) is a receptor commonly overexpressed and overactivated in a variety of cancers, including Ewing sarcoma, and promotes cell growth and survival. After promising results with targeting and inhibiting the receptor in vitro, multiple different IGF1R targeting compounds have been clinically tried but showed limited efficacy. Here we discuss several possible resistance mechanisms which could explain why IGF1R targeting fails in the clinic and discuss possible ways to overcome these resistances. Abstract Insulin-like growth factor-1 receptor (IGF1R) inhibitors are effective in preclinical studies, but so far, no convincing benefit in clinical studies has been observed, except in some rare cases of sustained response in Ewing sarcoma patients. The mechanism of resistance is unknown, but several hypotheses are proposed. In this review, multiple possible mechanisms of resistance to IGF-targeted therapies are discussed, including activated insulin signaling, pituitary-driven feedback loops through growth hormone (GH) secretion and autocrine loops. Additionally, the outcomes of clinical trials of IGF1-targeted therapies are discussed, as well as strategies to overcome the possible resistance mechanisms. In conclusion, lowering the plasma insulin levels or blocking its activity could provide an additional target in cancer therapy in combination with IGF1 inhibition. Furthermore, because Ewing sarcoma cells predominantly express the insulin receptor A (IRA) and healthy tissue insulin receptor B (IRB), it may be possible to synthesize a specific IRA inhibitor.
Collapse
Affiliation(s)
- Stefanie de Groot
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.d.G.); (H.G.)
| | - Bas Röttgering
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.d.G.); (H.G.)
| | - Hanno Pijl
- Department of Endocrinology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
- Correspondence: (K.S.); (J.R.K.); Tel.: +31-715266922 (K.S.); +31-715263464 (J.R.K.)
| | - Judith R. Kroep
- Department of Medical Oncology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; (S.d.G.); (H.G.)
- Correspondence: (K.S.); (J.R.K.); Tel.: +31-715266922 (K.S.); +31-715263464 (J.R.K.)
| |
Collapse
|
8
|
Coker-Gurkan A, Ozakaltun B, Akdeniz BS, Ergen B, Obakan-Yerlikaya P, Akkoc T, Arisan ED. Proinflammatory cytokine profile is critical in autocrine GH-triggered curcumin resistance engulf by atiprimod cotreatment in MCF-7 and MDA-MB-231 breast cancer cells. Mol Biol Rep 2020; 47:8797-8808. [PMID: 33130987 DOI: 10.1007/s11033-020-05928-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/16/2020] [Indexed: 01/01/2023]
Abstract
Active growth hormone (GH) signaling triggers cellular growth and invasion-metastasis in colon, breast, and prostate cancer. Curcumin, an inhibitor of NF-ҡB pathway, is assumed to be a promising anti-carcinogenic agent. Atiprimod is also an anti-inflammatory, anti-carcinogenic agent that induces apoptotic cell death in hepatocellular carcinoma, multiple myeloma, and pituitary adenoma. We aimed to demonstrate the potential additional effect of atiprimod on curcumin-induced apoptotic cell death via cytokine expression profiles in MCF-7 and MDA-MB-231 cells with active GH signaling. The effect of curcumin and/or atiprimod on IL-2, IL-4, and IL-17A levels were measured by ELISA assay. MTT cell viability, trypan blue exclusion, and colony formation assays were performed to determine the effect of combined drug exposure on cell viability, growth, and colony formation, respectively. Alteration of the NF-ҡB signaling pathway protein expression profile was determined following curcumin and/or atiprimod exposure by RT-PCR and immunoblotting. Finally, the effect of curcumin with/without atiprimod treatment on Reactive Oxygen Species (ROS) generation and apoptotic cell death was examined by DCFH-DA and Annexin V/PI FACS flow analysis, respectively. Autocrine GH-mediated IL-6, IL-8, IL-10 expressions were downregulated by curcumin treatment. Atiprimod co-treatment increased the inhibitory effect of curcumin on cell viability, proliferation and also increased the curcumin-triggered ROS generation in each GH+ breast cancer cells. Combined drug exposure increased apoptotic cell death through acting on IL-2, IL-4, and IL-17A secretion. Forced GH-triggered curcumin resistance might be overwhelmed by atiprimod and curcumin co-treatment via modulating NF-ҡB-mediated inflammatory cytokine expression in MCF-7 and MDA-MB-231 cells.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Science and Letter Faculty, Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Buse Ozakaltun
- Science and Letter Faculty, Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Berre-Serra Akdeniz
- Science and Letter Faculty, Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Berfin Ergen
- Science and Letter Faculty, Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pınar Obakan-Yerlikaya
- Science and Letter Faculty, Department of Molecular Biology and Genetics, Istanbul Kültür University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Tunc Akkoc
- Department of Pediatric Allergy-Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Elif-Damla Arisan
- Institution of Biotechnology, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
9
|
Abstract
DNA damage response (DDR) and DNA repair pathways determine neoplastic cell transformation and therapeutic responses, as well as the aging process. Altered DDR functioning results in accumulation of unrepaired DNA damage, increased frequency of tumorigenic mutations, and premature aging. Recent evidence suggests that polypeptide hormones play a role in modulating DDR and DNA damage repair, while DNA damage accumulation may also affect hormonal status. We review the available reports elucidating involvement of insulin-like growth factor 1 (IGF1), growth hormone (GH), α-melanocyte stimulating hormone (αMSH), and gonadotropin-releasing hormone (GnRH)/gonadotropins in DDR and DNA repair as well as the current understanding of pathways enabling these actions. We discuss effects of DNA damage pathway mutations, including Fanconi anemia, on endocrine function and consider mechanisms underlying these phenotypes. (Endocrine Reviews 41: 1 - 19, 2020).
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
10
|
Chesnokova V, Melmed S. Growth hormone in the tumor microenvironment. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:568-575. [PMID: 31939481 PMCID: PMC7025769 DOI: 10.20945/2359-3997000000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Tumor development is a multistep process whereby local mechanisms enable somatic mutations during preneoplastic stages. Once a tumor develops, it becomes a complex organ composed of multiple cell types. Interactions between malignant and non-transformed cells and tissues create a tumor microenvironment (TME) comprising epithelial cancer cells, cancer stem cells, non-tumorous cells, stromal cells, immune-inflammatory cells, blood and lymphatic vascular network, and extracellular matrix. We review reports and present a hypothesis that postulates the involvement of growth hormone (GH) in field cancerization. We discuss GH contribution to TME, promoting epithelial-to-mesenchymal transition, accumulation of unrepaired DNA damage, tumor vascularity, and resistance to therapy. Arch Endocrinol Metab. 2019;63(6):568-75.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
11
|
Basu R, Kopchick JJ. The effects of growth hormone on therapy resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:827-846. [PMID: 32382711 PMCID: PMC7204541 DOI: 10.20517/cdr.2019.27] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pituitary derived and peripherally produced growth hormone (GH) is a crucial mediator of longitudinal growth, organ development, metabolic regulation with tissue specific, sex specific, and age-dependent effects. GH and its cognate receptor (GHR) are expressed in several forms of cancer and have been validated as an anti-cancer target through a large body of in vitro, in vivo and epidemiological analyses. However, the underlying molecular mechanisms of GH action in cancer prognosis and therapeutic response had been sparse until recently. This review assimilates the critical details of GH-GHR mediated therapy resistance across different cancer types, distilling the therapeutic implications based on our current understanding of these effects.
Collapse
Affiliation(s)
- Reetobrata Basu
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Ohio University, Athens, OH 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
12
|
Chesnokova V, Zonis S, Barrett RJ, Gleeson JP, Melmed S. Growth Hormone Induces Colon DNA Damage Independent of IGF-1. Endocrinology 2019; 160:1439-1447. [PMID: 31002310 PMCID: PMC6530523 DOI: 10.1210/en.2019-00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022]
Abstract
DNA damage occurs as a result of environmental insults and aging and, if unrepaired, may lead to chromosomal instability and tumorigenesis. Because GH suppresses ataxia-telangiectasia mutated kinase phosphorylation, decreases DNA repair, and increases DNA damage accumulation, we elucidated whether GH effects on DNA damage are mediated through induced IGF-1. In nontumorous human colon cells, GH, but not IGF-1, increased DNA damage. Stably disrupted IGF-1 receptor (IGF-1R) by lentivirus-expressing short hairpin RNA in vitro or treatment with the IGF-1R phosphorylation inhibitor picropodophyllotoxin (PPP) in vitro and in vivo led to markedly induced GH receptor (GHR) abundance, rendering cells more responsive to GH actions. Suppressing IGF-1R triggered DNA damage in both normal human colon cells and three-dimensional human intestinal organoids. DNA damage was further increased when cells with disrupted IGF-1R were treated with GH. Because GH induction of DNA damage accumulation appeared to be mediated not by IGF-1R but probably by more abundant GH receptor expression, we injected athymic mice with GH-secreting xenografts and then treated them with PPP. In these mice, high circulating GH levels were associated with increased colon DNA damage despite disrupted IGF-1R activity (P < 0.01), whereas GHR levels were also induced. Further confirming that GH effects on DNA damage are directly mediated by GHR signaling, GHR-/- mice injected with PPP did not show increased DNA damage, whereas wild-type mice with intact GHR exhibited increased colon DNA damage in the face of IGF-1 signaling suppression. The results indicate that GH directly induces DNA damage independent of IGF-1.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert J Barrett
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - John P Gleeson
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Correspondence: Shlomo Melmed, MD, Academic Affairs, Room 2015, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048. E-mail:
| |
Collapse
|
13
|
Gadelha MR, Kasuki L, Lim DST, Fleseriu M. Systemic Complications of Acromegaly and the Impact of the Current Treatment Landscape: An Update. Endocr Rev 2019; 40:268-332. [PMID: 30184064 DOI: 10.1210/er.2018-00115] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/26/2018] [Indexed: 12/19/2022]
Abstract
Acromegaly is a chronic systemic disease with many complications and is associated with increased mortality when not adequately treated. Substantial advances in acromegaly treatment, as well as in the treatment of many of its complications, mainly diabetes mellitus, heart failure, and arterial hypertension, were achieved in the last decades. These developments allowed change in both prevalence and severity of some acromegaly complications and furthermore resulted in a reduction of mortality. Currently, mortality seems to be similar to the general population in adequately treated patients with acromegaly. In this review, we update the knowledge in complications of acromegaly and detail the effects of different acromegaly treatment options on these complications. Incidence of mortality, its correlation with GH (cumulative exposure vs last value), and IGF-I levels and the shift in the main cause of mortality in patients with acromegaly are also addressed.
Collapse
Affiliation(s)
- Mônica R Gadelha
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuropathology and Molecular Genetics Laboratory, Instituto Estadual do Cérebro Paulo Niemeyer, Rio de Janeiro, Brazil
| | - Leandro Kasuki
- Neuroendocrinology Research Center/Endocrine Section and Medical School, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Neuroendocrine Section, Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, Brazil.,Endocrine Unit, Hospital Federal de Bonsucesso, Rio de Janeiro, Brazil
| | - Dawn S T Lim
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Maria Fleseriu
- Department of Endocrinology, Diabetes and Metabolism, Oregon Health and Science University, Portland, Oregon.,Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon.,Northwest Pituitary Center, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
14
|
Arumugam A, Subramani R, Nandy SB, Terreros D, Dwivedi AK, Saltzstein E, Lakshmanaswamy R. Silencing growth hormone receptor inhibits estrogen receptor negative breast cancer through ATP-binding cassette sub-family G member 2. Exp Mol Med 2019; 51:1-13. [PMID: 30617282 PMCID: PMC6323053 DOI: 10.1038/s12276-018-0197-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Growth hormone receptor (GHR) plays a vital role in breast cancer chemoresistance and metastasis but the mechanism is not fully understood. We determined if GHR could be a potential therapeutic target for estrogen receptor negative (ER-ve) breast cancer, which are highly chemoresistant and metastatic. GHR was stably knocked down in ER-ve breast cancer cells and its effect on cell proliferation, metastatic behavior, and chemosensitivity to docetaxel (DT) was assessed. Microarray analysis was performed to identify potential GHR downstream targets involved in chemoresistance. GHR and ATP-binding cassette sub-family G member 2 (ABCG2) overexpression and knockdown studies were performed to investigate the mechanism of GHR-induced chemoresistance. Patient-derived xenografts was used to study the effect of GHR and ABCG2. Immunohistochemical data was used to determine the correlation between GHR, pAKT, pmTOR, and ABCG2 expressions. GHR silencing drastically reduced the chemoresistant and metastatic behavior of ER-ve breast cancer cells and also inhibited AKT/mTOR pathway. In contrast, activation, or overexpression of GHR increased chemoresistance and metastasis by increasing the expression and promoter activity, of ABCG2. Inhibition of JAK2/STAT5 signaling repressed GHR-induced ABCG2 promoter activity and expression. Further, ABCG2 knockdown significantly increased the chemosensitivity. Finally, patient-derived xenograft studies revealed the role of GHR in chemoresistance. Overall, these findings demonstrate that targeting GHR could be a novel therapeutic approach to overcome chemoresistance and associated metastasis in aggressive ER-ve breast cancers.
Collapse
Affiliation(s)
- Arunkumar Arumugam
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Ramadevi Subramani
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Sushmita Bose Nandy
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Daniel Terreros
- Research Core Laboratory, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Alok Kumar Dwivedi
- Division of Biostatistics & Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Edward Saltzstein
- University Breast Care Center, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA. .,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
15
|
Coker-Gurkan A, Celik M, Ugur M, Arisan ED, Obakan-Yerlikaya P, Durdu ZB, Palavan-Unsal N. Curcumin inhibits autocrine growth hormone-mediated invasion and metastasis by targeting NF-κB signaling and polyamine metabolism in breast cancer cells. Amino Acids 2018; 50:1045-1069. [PMID: 29770869 DOI: 10.1007/s00726-018-2581-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/27/2018] [Indexed: 02/05/2023]
Abstract
Curcumin is assumed to be a plant-derived therapeutic drug that triggers apoptotic cell death in vitro and in vivo by affecting different molecular targets such as NF-κB. Phase I/II trial of curcumin alone or with chemotherapeutic drugs has been accomplished in pancreatic, colon, prostate and breast cancer cases. Recently, autocrine growth hormone (GH) signaling-induced cell growth, metastasis and drug resistance have been demonstrated in breast cancer. In this study, our aim was to investigate the potential therapeutic effect of curcumin by evaluating the molecular machinery of curcumin-triggered apoptotic cell death via focusing on NF-κB signaling and polyamine (PA) metabolism in autocrine GH-expressing MCF-7, MDA-MB-453 and MDA-MB-231 breast cancer cells. For this purpose, a pcDNA3.1 (+) vector with a GH gene insert was transfected by a liposomal agent in all breast cancer cells and then selection was conducted in neomycin (G418) included media. Autocrine GH-induced curcumin resistance was overcome in a dose-dependent manner and curcumin inhibited cell proliferation, invasion-metastasis and phosphorylation of p65 (Ser536), and thereby partly prevented its DNA binding activity in breast cancer cells. Moreover, curcumin induced caspase-mediated apoptotic cell death by activating the PA catabolic enzyme expressions, which led to generation of toxic by-products such as H2O2 in MCF-7, MDA-MB-453 and MDA-MB-231 GH+ breast cancer cells. In addition, transient silencing of SSAT prevented curcumin-induced cell viability loss and apoptotic cell death in each breast cancer cells. In conclusion, curcumin could overcome the GH-mediated resistant phenotype via modulating cell survival, death-related signaling routes and activating PA catabolic pathway.
Collapse
Affiliation(s)
- Ajda Coker-Gurkan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey.
| | - Merve Celik
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Merve Ugur
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Elif-Damla Arisan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Pinar Obakan-Yerlikaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Zeynep Begum Durdu
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| | - Narcin Palavan-Unsal
- Department of Molecular Biology and Genetics, Science and Literature Faculty, Istanbul Kultur University, Atakoy Campus, 34156, Istanbul, Turkey
| |
Collapse
|
16
|
Basu R, Qian Y, Kopchick JJ. MECHANISMS IN ENDOCRINOLOGY: Lessons from growth hormone receptor gene-disrupted mice: are there benefits of endocrine defects? Eur J Endocrinol 2018; 178:R155-R181. [PMID: 29459441 DOI: 10.1530/eje-18-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
Growth hormone (GH) is produced primarily by anterior pituitary somatotroph cells. Numerous acute human (h) GH treatment and long-term follow-up studies and extensive use of animal models of GH action have shaped the body of GH research over the past 70 years. Work on the GH receptor (R)-knockout (GHRKO) mice and results of studies on GH-resistant Laron Syndrome (LS) patients have helped define many physiological actions of GH including those dealing with metabolism, obesity, cancer, diabetes, cognition and aging/longevity. In this review, we have discussed several issues dealing with these biological effects of GH and attempt to answer the question of whether decreased GH action may be beneficial.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| |
Collapse
|
17
|
Abstract
The growth hormone (GH) and insulin-like growth factor-1 (IGF1) axis is the key regulator of longitudinal growth, promoting postnatal bone and muscle growth. The available data suggest that GH expression by tumour cells is associated with the aetiology and progression of various cancers such as endometrial, breast, liver, prostate, and colon cancer. Accordingly there has been increased interest in targeting GH-mediated signal transduction in a therapeutic setting. Because GH has endocrine, autocrine, and paracrine actions, therapeutic strategies will need to take into account systemic and local functions. Activation of related hormone receptors and crosstalk with other signalling pathways are also key considerations.
Collapse
Affiliation(s)
- Jo K Perry
- Liggins Institute, University of Auckland, 1023 Auckland, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, 1023 Auckland, New Zealand
| | - Zheng-Sheng Wu
- Department of Pathology, Anhui Medical University, Hefei, Anhui, PR China
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de Lyon, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1052-Centre National de la Recherche Scientifique (CNRS) 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, 117456 Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School, Shenzhen, PR China.
| |
Collapse
|
18
|
Gentilin E, Minoia M, Bondanelli M, Tagliati F, Degli Uberti EC, Zatelli MC. Growth Hormone differentially modulates chemoresistance in human endometrial adenocarcinoma cell lines. Endocrine 2017; 56:621-632. [PMID: 27585662 DOI: 10.1007/s12020-016-1085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
Growth Hormone may influence neoplastic development of endometrial epithelium towards endometrial adenocarcinoma, which is one of the most occurring tumors in acromegalic patients. Since chemoresistance often develops in advanced endometrial adenocarcinoma, we investigated whether Growth Hormone might influence the development of chemoresistance to drugs routinely employed in endometrial adenocarcinoma treatment, such as Doxorubicin, Cisplatin, and Paclitaxel. Growth Hormone and Growth Hormone receptor expression was assessed by immunofluorescence in two endometrial adenocarcinoma cell lines, AN3 CA and HEC-1-A cells. Growth Hormone effects were assessed investigating cell viability, caspase3/7 activation, ERK1/2, and protein kinase C delta protein expression. AN3 CA and HEC-1-A cells display Growth Hormone and Growth Hormone receptor. Growth Hormone does not influence cell viability in both cells lines, but significantly reduces caspase 3/7 activation in AN3 CA cells, an effect blocked by a Growth Hormone receptor antagonist. Growth Hormone rescues AN3 CA cells from the inhibitory effects of Doxorubicin and Cisplatin on cell viability, while it has no effect on Paclitaxel. Growth Hormone does not influence the pro-apoptotic effects of Doxorubicin, but is capable of rescuing AN3 CA cells from the pro-apoptotic effects of Cisplatin. On the other hand, Growth Hormone did not influence the effects of Doxorubicin and Paclitaxel on HEC-1A cell viability. The protective action of Growth Hormone towards the effects of Doxorubicin may be mediated by ERK1/2 activation, while the pro-apoptotic effects of Cisplatin may be mediated by protein kinase C delta inhibition. All together our results indicate that Growth Hormone may differentially contribute to endometrial adenocarcinoma chemoresistance. This may provide new insights on novel therapies against endometrial adenocarcinoma chemoresistant aggressive tumors.
Collapse
Affiliation(s)
- Erica Gentilin
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mariella Minoia
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marta Bondanelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Federico Tagliati
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ettore C Degli Uberti
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology and Internal Medicine, Dept. of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Laboratorio in rete del Tecnopolo "Tecnologie delle terapie avanzate" (LTTA) of the University of Ferrara, Ferrara, Italy.
| |
Collapse
|
19
|
Basu R, Baumgaertel N, Wu S, Kopchick JJ. Growth Hormone Receptor Knockdown Sensitizes Human Melanoma Cells to Chemotherapy by Attenuating Expression of ABC Drug Efflux Pumps. HORMONES & CANCER 2017; 8:143-156. [PMID: 28293855 PMCID: PMC10355985 DOI: 10.1007/s12672-017-0292-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
Abstract
Melanoma remains one of the most therapy-resistant forms of human cancer despite recent introductions of highly efficacious targeted therapies. The intrinsic therapy resistance of human melanoma is largely due to abundant expression of a repertoire of xenobiotic efflux pumps of the ATP-binding cassette (ABC) transporter family. Here, we report that GH action is a key mediator of chemotherapeutic resistance in human melanoma cells. We investigated multiple ABC efflux pumps (ABCB1, ABCB5, ABCB8, ABCC1, ABCC2, ABCG1, and ABCG2) reportedly associated with melanoma drug resistance in different human melanoma cells and tested the efficacy of five different anti-cancer compounds (cisplatin, doxorubicin, oridonin, paclitaxel, vemurafenib) with decreased GH action. We found that GH treatment of human melanoma cells upregulates expression of multiple ABC transporters and increases the EC50 of melanoma drug vemurafenib. Also, vemurafenib-resistant melanoma cells had upregulated levels of GH receptor (GHR) expression as well as ABC efflux pumps. GHR knockdown (KD) using siRNA in human melanoma cells treated with sub-EC50 doses of anti-tumor compounds resulted in significantly increased drug retention, decreased cell proliferation and increased drug efficacy, compared to mock-transfected controls. Our set of findings identify an unknown mechanism of GH regulation in mediating melanoma drug resistance and validates GHR as a unique therapeutic target for sensitizing highly therapy-resistant human melanoma cells to lower doses of anti-cancer drugs.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA
| | - Nicholas Baumgaertel
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Konneker Research Laboratory 206, Ohio University, Athens, OH, 45701, USA.
- Molecular and Cell Biology Program, Ohio University, Athens, OH, USA.
- Heritage College of Osteopathic Medicine, Athens, OH, USA.
| |
Collapse
|
20
|
Subramani R, Nandy SB, Pedroza DA, Lakshmanaswamy R. Role of Growth Hormone in Breast Cancer. Endocrinology 2017; 158:1543-1555. [PMID: 28379395 DOI: 10.1210/en.2016-1928] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is one of the most common cancers diagnosed in women. Approximately two-thirds of all breast cancers diagnosed are classified as hormone dependent, which indicates that hormones are the key factors that drive the growth of these breast cancers. Ovarian and pituitary hormones play a major role in the growth and development of normal mammary glands and breast cancer. In particular, the effect of the ovarian hormone estrogen has received much attention in regard to breast cancer. Pituitary hormones prolactin and growth hormone have also been associated with breast cancer. Although the role of these pituitary hormones in breast cancers has been studied, it has not been investigated extensively. In this review, we attempt to compile basic information from most of the currently available literature to understand and demonstrate the significance of growth hormone in breast cancer. Based on the available literature, it is clear that growth hormone plays a significant role in the development, progression, and metastasis of breast cancer by influencing tumor angiogenesis, stemness, and chemoresistance.
Collapse
Affiliation(s)
- Ramadevi Subramani
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Sushmita B Nandy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
| | - Diego A Pedroza
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer Research, Department of Biomedical Sciences MSB1, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas 79905
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas 79905
| |
Collapse
|
21
|
Clinical studies in humans targeting the various components of the IGF system show lack of efficacy in the treatment of cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 772:105-122. [PMID: 28528684 DOI: 10.1016/j.mrrev.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
Abstract
The insulin-like growth factors (IGFs) system regulates cell growth, differentiation and energy metabolism and plays crucial role in the regulation of key aspects of tumor biology, such as cancer cell growth, survival, transformation and invasion. The current focus for cancer therapeutic approaches have shifted from the conventional treatments towards the targeted therapies and the IGF system has gained a great interest as anti-cancer therapy. The proliferative, anti-apoptotic and transformation effects of IGFs are mainly triggered by the ligation of the type I IGF receptor (IGF-IR). Thus, aiming at developing novel and effective cancer therapies, different strategies have been employed to target IGF system in human malignancies, including but not limited to ligand or receptor neutralizing antibodies and IGF-IR signaling inhibitors. In this review, we have focused on the clinical studies that have been conducted targeting the various components of the IGF system for the treatment of different types of cancer, providing a description and the challenges of each targeting strategy and the degree of success.
Collapse
|
22
|
Vouyovitch CM, Perry JK, Liu DX, Bezin L, Vilain E, Diaz JJ, Lobie PE, Mertani HC. WNT4 mediates the autocrine effects of growth hormone in mammary carcinoma cells. Endocr Relat Cancer 2016; 23:571-85. [PMID: 27323961 DOI: 10.1530/erc-15-0528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 06/20/2016] [Indexed: 12/27/2022]
Abstract
The expression of Wingless and Int-related protein (Wnt) ligands is aberrantly high in human breast cancer. We report here that WNT4 is significantly upregulated at the mRNA and protein level in mammary carcinoma cells expressing autocrine human growth hormone (hGH). Depletion of WNT4 using small interfering (si) RNA markedly decreased the rate of human breast cancer cell proliferation induced by autocrine hGH. Forced expression of WNT4 in the nonmalignant human mammary epithelial cell line MCF-12A stimulated cell proliferation in low and normal serum conditions, enhanced cell survival and promoted anchorage-independent growth and colony formation in soft agar. The effects of sustained production of WNT4 were concomitant with upregulation of proliferative markers (c-Myc, Cyclin D1), the survival marker BCL-XL, the putative WNT4 receptor FZD6 and activation of ERK1 and STAT3. Forced expression of WNT4 resulted in phenotypic conversion of MCF-12A cells, such that they exhibited the molecular and morphological characteristics of mesenchymal cells with increased cell motility. WNT4 production resulted in increased mesenchymal and cytoskeletal remodeling markers, promoted actin cytoskeleton reorganization and led to dissolution of cell-cell contacts. In xenograft studies, tumors with autocrine hGH expressed higher levels of WNT4 and FZD6 when compared with control tumors. In addition, Oncomine data indicated that WNT4 expression is increased in neoplastic compared with normal human breast tissue. Accordingly, immunohistochemical detection of WNT4 in human breast cancer biopsies revealed higher expression in tumor tissue vs normal breast epithelium. WNT4 is thus an autocrine hGH-regulated gene involved in the growth and development of the tumorigenic phenotype.
Collapse
Affiliation(s)
- Cécile M Vouyovitch
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Jo K Perry
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Dong Xu Liu
- Liggins InstituteUniversity of Auckland, Auckland, New Zealand
| | - Laurent Bezin
- Centre de Recherche en Neurosciences de LyonUMR INSERM U1028-CNRS5292, Université de Lyon, Lyon, France
| | - Eric Vilain
- Department of Human GeneticsUniversity of California, Los Angeles, California, USA
| | - Jean-Jacques Diaz
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of PharmacologyNational University of Singapore, Singapore, Republic of Singapore
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de LyonUMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| |
Collapse
|
23
|
Abdel-Wahab R, Shehata S, Hassan MM, Habra MA, Eskandari G, Tinkey PT, Mitchell J, Lee JS, Amin HM, Kaseb AO. Type I insulin-like growth factor as a liver reserve assessment tool in hepatocellular carcinoma. J Hepatocell Carcinoma 2015; 2:131-42. [PMID: 27508202 PMCID: PMC4918293 DOI: 10.2147/jhc.s81309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic liver diseases (CLDs) encompass a wide range of illnesses, including nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and viral hepatitis. Deterioration of liver capacity, with subsequent progression into cirrhosis and hepatocellular carcinoma (HCC), ultimately leads to a further decrease in the hepatic reserve. The Child-Turcotte-Pugh scoring system is the standard tool for assessing underlying liver reserve capacity in routine practice and in clinical trials of CLD and HCC. In this review, we highlight the clinical significance of insulin-like growth factor-I (IGF-I) and the growth hormone (GH) signaling pathway in HCC. IGF-I could be a marker for liver reserve capacity in CLDs and HCC in clinical practice. This approach could improve the risk assessment and stratifications of patients on the basis of their underlying liver reserve, either before active treatment in routine practice or before they are enrolled in clinical trials.
Collapse
Affiliation(s)
- Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Clinical Oncology, Assiut University Hospital, Assiut, Egypt
| | - Samir Shehata
- Department of Clinical Oncology, Assiut University Hospital, Assiut, Egypt
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mouhammed A Habra
- Department of Endocrinology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ghazaleh Eskandari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peggy T Tinkey
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Mitchell
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Ahmed O Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Sambugaro S, Di Ruvo M, Ambrosio MR, Pellegata NS, Bellio M, Guerra A, Buratto M, Foschini MP, Tagliati F, degli Uberti E, Zatelli MC. Early onset acromegaly associated with a novel deletion in CDKN1B 5'UTR region. Endocrine 2015; 49:58-64. [PMID: 25645465 DOI: 10.1007/s12020-015-0540-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Genetic alterations frequently are involved in the development of a pituitary adenoma in young age. We here characterize the functional role of a deletion in CDKN1B 5'-UTR region (c.-29_-26delAGAG) identified in an acromegalic patient that developed a growth hormone in pituitary adenoma during childhood. Our results show that the identified novel heterozygous deletion in the CDKN1B 5'-UTR region associates with a reduction in CDKN1B mRNA levels, a predicted altered secondary mRNA structure, and a reduced CDKN1B 5'-UTR transcriptional activity in vitro. The patient displayed loss of heterozygosity in the same CDKN1B 5'-UTR region at tissue level and the 5'UTR region containing the deleted sequence encompasses a GRE. These findings indicate that the identification of functional alterations of newly discovered genetic derangements need to be fully characterized and always correlated with the clinical manifestations.
Collapse
Affiliation(s)
- Silvia Sambugaro
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Beckwith H, Yee D. Insulin-like growth factors, insulin, and growth hormone signaling in breast cancer: implications for targeted therapy. Endocr Pract 2014; 20:1214-21. [PMID: 25297664 DOI: 10.4158/ep14208.ra] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE In recent decades, multiple therapeutics targeting the estrogen and human epidermal growth factor-2 (HER2) receptors have been approved for the treatment of breast cancer. METHODS This review discusses a number of growth factor pathways that have been implicated in resistance to both anti-estrogen and HER2-targeted therapies. The association between growth factors and breast cancer is well established. Over decades, numerous laboratories have studied the link between insulin-like growth factor (IGF), insulin, and growth hormone (GH) to the development and progression of breast cancer. RESULTS Although preclinical data demonstrates that blockade of these receptors inhibits breast cancer growth, progression, and drug resistance, therapies targeting the IGF, insulin, and GH receptors (GHRs) have not been successful in producing significant increases in progression-free, disease-free, or overall survival for patients with breast cancer. The failure to demonstrate a benefit of growth factor blockade in clinical trials can be attributed to redundancy in IGF, insulin, and GHR signaling pathways. All 3 receptors are able to activate oncogenic phosphoinositide-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. CONCLUSION Consequently, multitargeted blockade of growth factor receptors and their common downstream kinases will be necessary for the successful treatment of breast cancer.
Collapse
Affiliation(s)
- Heather Beckwith
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Douglas Yee
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota Department of Medicine, University of Minnesota, Minneapolis, Minnesota Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
Gahete MD, Córdoba-Chacón J, Lantvit DD, Ortega-Salas R, Sanchez-Sanchez R, Pérez-Jiménez F, López-Miranda J, Swanson SM, Castaño JP, Luque RM, Kineman RD. Elevated GH/IGF-I promotes mammary tumors in high-fat, but not low-fat, fed mice. Carcinogenesis 2014; 35:2467-73. [PMID: 25085903 DOI: 10.1093/carcin/bgu161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growth hormone (GH) and/or insulin-like growth factor I (IGF-I) are thought to promote breast cancer based on reports showing circulating IGF-I levels correlate, in epidemiological studies, with breast cancer risk. Also, mouse models with developmental GH/IGF-I deficiency/resistance are less susceptible to genetic- or chemical-induced mammary tumorigenesis. However, given the metabolic properties of GH, medical strategies have been considered to raise GH to improve body composition and metabolic function in elderly and obese patients. Since hyperlipidemia, inflammation, insulin resistance and obesity increase breast cancer risk, elevating GH may serve to exacerbate cancer progression. To better understand the role GH/IGF-I plays in tumor formation, this study used unique mouse models to determine if reducing GH/IGF-I in adults protects against 7,12-dimethylbenz[α]anthracene (DMBA)-induced mammary tumor development, and if moderate elevations in endogenous GH/IGF-I alter DMBA-induced tumorigenesis in mice fed a standard-chow diet or in mice with altered metabolic function due to high-fat feeding. We observed that adult-onset isolated GH-deficient mice, which also have reduced IGF-I levels, were less susceptible to DMBA-treatment. Specifically, fewer adult-onset isolated GH-deficient mice developed mammary tumors compared with GH-replete controls. In contrast, chow-fed mice with elevated endogenous GH/IGF-I (HiGH mice) were not more susceptible to DMBA-treatment. However, high-fat-fed, HiGH mice showed reduced tumor latency and increased tumor incidence compared with diet-matched controls. These results further support a role of GH/IGF-I in regulating mammary tumorigenesis but suggest the ultimate consequences of GH/IGF-I on breast tumor development are dependent on the diet and/or metabolic status.
Collapse
Affiliation(s)
- Manuel D Gahete
- Research and Development Division, Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Ave, Bldg. 11A, Suite 6215, MP151, Chicago, IL 60612, USA, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA, Lipid and Atherosclerosis Research Unit, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain, Department of Cell Biology, Physiology and Immunology, University of Cordoba, Reina Sofia University Hospital, IMIBIC and CIBERObn, Córdoba, Spain
| | - José Córdoba-Chacón
- Research and Development Division, Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Ave, Bldg. 11A, Suite 6215, MP151, Chicago, IL 60612, USA, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel D Lantvit
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA and
| | - Rosa Ortega-Salas
- Anatomical Pathology Service, Reina Sofia University Hospital, Cordoba, Spain
| | | | - Francisco Pérez-Jiménez
- Lipid and Atherosclerosis Research Unit, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain
| | - José López-Miranda
- Lipid and Atherosclerosis Research Unit, University of Cordoba, Reina Sofia University Hospital, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain
| | - Steven M Swanson
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60612, USA and
| | - Justo P Castaño
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Reina Sofia University Hospital, IMIBIC and CIBERObn, Córdoba, Spain
| | - Raúl M Luque
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Reina Sofia University Hospital, IMIBIC and CIBERObn, Córdoba, Spain
| | - Rhonda D Kineman
- Research and Development Division, Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Ave, Bldg. 11A, Suite 6215, MP151, Chicago, IL 60612, USA, Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA,
| |
Collapse
|
27
|
Tagliati F, Gagliano T, Gentilin E, Minoia M, Molè D, delgi Uberti EC, Zatelli MC. Magmas overexpression inhibits staurosporine induced apoptosis in rat pituitary adenoma cell lines. PLoS One 2013; 8:e75194. [PMID: 24069394 PMCID: PMC3775776 DOI: 10.1371/journal.pone.0075194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/14/2013] [Indexed: 12/22/2022] Open
Abstract
Magmas is a nuclear gene that encodes for the mitochondrial import inner membrane translocase subunit Tim16. Magmas is overexpressed in the majority of human pituitary adenomas and in a mouse ACTH-secreting pituitary adenoma cell line. Here we report that Magmas is highly expressed in two out of four rat pituitary adenoma cell lines and its expression levels inversely correlate to the extent of cellular response to staurosporine in terms of apoptosis activation and cell viability. Magmas over-expression in rat GH/PRL-secreting pituitary adenoma GH4C1 cells leads to an increase in cell viability and to a reduction in staurosporine-induced apoptosis and DNA fragmentation, in parallel with the increase in Magmas protein expression. These results indicate that Magmas plays a pivotal role in response to pro-apoptotic stimuli and confirm and extend the finding that Magmas protects pituitary cells from staurosporine-induced apoptosis, suggesting its possible involvement in pituitary adenoma development.
Collapse
Affiliation(s)
- Federico Tagliati
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Teresa Gagliano
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Erica Gentilin
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo “Tecnologie delle terapie avanzate” (LTTA) of the University of Ferrara, Ferrara, Italy
| | - Mariella Minoia
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daniela Molè
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ettore C. delgi Uberti
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo “Tecnologie delle terapie avanzate” (LTTA) of the University of Ferrara, Ferrara, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratorio in rete del Tecnopolo “Tecnologie delle terapie avanzate” (LTTA) of the University of Ferrara, Ferrara, Italy
- * E-mail:
| |
Collapse
|
28
|
Zekri A, Ghaffari SH, Yousefi M, Ghanizadeh-Vesali S, Mojarrad M, Alimoghaddam K, Ghavamzadeh A. Autocrine human growth hormone increases sensitivity of mammary carcinoma cell to arsenic trioxide-induced apoptosis. Mol Cell Endocrinol 2013; 377:84-92. [PMID: 23851143 DOI: 10.1016/j.mce.2013.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/14/2022]
Abstract
Human growth hormone (hGH) has been increasingly implicated in a variety of cancers; its up-regulation is observed in breast cancer and correlates with a poor outcome. Autocrine hGH promotes mammary carcinoma cell survival, proliferation, immortalization; it confers an invasive phenotype as a result of an epithelial-mesenchymal transition and contributes to chemoresistance and radioresistance. Arsenic trioxide (ATO) is being successfully used as a first and second line therapy for the treatment of patients with acute promyelocytic leukemia. It also inhibits tumor cell growth and induces apoptosis in a broad range of solid tumors. In the present study, we investigated the effect of hGH on sensitivity of a mammary adenocarcinoma cell to ATO, using a stable hGH-transfectant MCF-7 cell line, MCF7-hGH. Our results demonstrated for the first time that the overexpression of hGH increased sensitivity of the breast cancer cell line MCF-7 to ATO through apoptotic and anti-proliferative mechanisms. The effect of ATO on the transcriptional level of genes involved in survival (Bcl-2, Bax and Survivin), self-sufficiency in growth signals (c-Myc, ARF, Cdc25A, p53 and Bax), immortalization (hTERT) and invasion and metastasis (MMP-2 and MMP-9, uPA and uPAR and E-cadherin) was more pronounced in MCF7-hGH compared with its parental MCF-7 line. Our study may highlight the potential application of ATO for the treatment of patients with breast cancer, especially in those who have metastatic and chemoresistant tumor phenotype possibly due to the over expression of hGH.
Collapse
Affiliation(s)
- Ali Zekri
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Animals born with a deficiency in the cell surface receptor for growth hormone (GH) have a significantly reduced risk of developing cancer. Conversely, increased expression levels of GH and the GH receptor (GHR) are detectable in a variety of different human cancers. Here we discuss recent literature contributing to our understanding of the field. RECENT FINDINGS In addition to animal evidence, studies of individuals with Laron syndrome suggest that congenital GHR deficiency may also protect humans against cancer. GH expression in certain malignancies is correlated with clinicohistopathological parameters and may contribute the therapeutic resistance. Other recent studies have identified novel aspects of the GH signal transduction pathway, including receptor crosstalk and the involvement of microRNA in endocrine regulation of GH. SUMMARY Substantial evidence suggests the GH/insulin-like growth factor-1 axis initiates and promotes progression of cancer. However, important questions remain unanswered regarding the therapeutic utility of GH or GHR antagonism in cancer. Further clinical studies regarding the clinical association of GH expression with human malignancies and translational studies investigating GHR antagonism in animal models of human cancer are critical.
Collapse
Affiliation(s)
- Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
30
|
Benabbou N, Mirshahi P, Cadillon M, Soria J, Therwath A, Mirshahi M. Hospicells promote upregulation of the ATP-binding cassette genes by insulin-like growth factor-I via the JAK2/STAT3 signaling pathway in an ovarian cancer cell line. Int J Oncol 2013; 43:685-94. [PMID: 23857432 PMCID: PMC3787860 DOI: 10.3892/ijo.2013.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/22/2013] [Indexed: 01/22/2023] Open
Abstract
Interaction between tumor cells and their microenvironment has a crucial role in the development, progression and drug resistance of cancer. Our objective was to confirm the role of Hospicells, which are stromal cells from the cancer microenvironment, in drug resistance and tumor cell growth. We demonstrated that soluble factors secreted by Hospicells activate several genes and upregulate the JAK/STAT signaling pathway in ovarian cancer cell lines. Hospicells express all insulin-like growth factor (IGF) family as detected by gene array, RT-PCR, protein array and immunocytochemistry. While focusing attention on the microenvironment, we considered the role of IGF-I in proliferation and survival of ovarian cancer cells. Indeed, IGF-I is a major regulator of different stages of cancer development. We studied the effect of exogenously added IGF-I on the regulation of ATP-binding cassette (ABC) genes (MDR1, MRP1, MRP2, MRP3, MRP5 and BCRP) in the ovarian cancer cell line OVCAR3 and validated the results obtained using the IGF-IR antagonist picropodophyllin. IGF-I regulates the expression of ABC genes in OVCAR3 cells via the PI3-kinase, MEK and JAK2/STAT3 signaling pathways. The OVCAR3 cell line when co-cultured with Hospicells showed a marked degree of drug resistance. The drug resistance observed could be amplified with exogenous IGF-I. Addition of IGF-IR inhibitor, however, reduced the degree of resistance in these exposed cells. Cells that were treated with anticancer drugs and then exposed to IGF-I showed an increase in drug resistance and, thereby, an increase in cell survival. This observation indicates that drug resistance of OVCAR3 cells increases when there is synergy between OVCAR3 cells and Hospicells and it is amplified when IGF-I was exogenously added. In conclusion, inhibition of IGF-IR and targeting of the JAK2/STAT3 signaling pathway can be a target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Nadia Benabbou
- National Institute for Medical Research (INSERM), Cordeliers Research Center (UMRS 872), University of Pierre and Marie Curie and University of Paris Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
31
|
Bianchi A, Valentini F, Iuorio R, Poggi M, Baldelli R, Passeri M, Giampietro A, Tartaglione L, Chiloiro S, Appetecchia M, Gargiulo P, Fabbri A, Toscano V, Pontecorvi A, De Marinis L. Long-term treatment of somatostatin analog-refractory growth hormone-secreting pituitary tumors with pegvisomant alone or combined with long-acting somatostatin analogs: a retrospective analysis of clinical practice and outcomes. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:40. [PMID: 23799893 PMCID: PMC3695848 DOI: 10.1186/1756-9966-32-40] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/14/2013] [Indexed: 02/07/2023]
Abstract
Background Pegvisomant (PEGV) is widely used, alone or with somatostatin analogs (SSA), for GH-secreting pituitary tumors poorly controlled by SSAs alone. No information is available on specific indications for or relative efficacies of PEGV?+?SSA versus PEGV monotherapy. Aim of our study was to characterize real-life clinical use of PEGV vs. PEGV?+?SSA for SSA-resistant acromegaly (patient selection, long-term outcomes, adverse event rates, doses required to achieve control). Methods A retrospective analysis of data collected in 2005–2010 in five hospital-based endocrinology centers in Rome was performed. Sixty-two adult acromegaly patients treated ≥6 months with PEGV (Group 1, n?=?35) or PEGV?+?SSA (Group 2, n?=?27) after unsuccessful maximal-dose SSA monotherapy (≥12 months) were enroled. Groups were compared in terms of clinical/biochemical characteristics at diagnosis and before PEGV or PEGV?+?SSA was started (baseline) and end-of-follow-up outcomes (IGF-I levels, adverse event rates, final PEGV doses). Results Group 2 showed higher IGF-I and GH levels and sleep apnea rates, higher rates residual tumor tissue at baseline, more substantial responses to SSA monotherapy and worse outcomes (IGF-I normalization rates, final IGF-I levels). Tumor growth and hepatotoxicity events were rare in both groups. Final daily PEGV doses were similar and significantly increased with treatment duration in both groups. Conclusions PEGV and PEGV?+?SSA are safe, effective solutions for managing SSA-refractory acromegaly. PEGV?+?SSA tends to be used for more aggressive disease associated with detectable tumor tissue. With both regimens, ongoing monitoring of responses is important since PEGV doses needed to maintain IGF-I control are likely to increase over time.
Collapse
Affiliation(s)
- Antonio Bianchi
- Department of Endocrinology, Catholic University, School of Medicine, Largo A, Gemelli 8, 00168, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Maiza JC, Castillo-Ros S, Matta M, Bennet A, Caron P. Tamoxifen enhances the control of acromegaly treated with somatostatin analog lanreotide. Pituitary 2012; 15 Suppl 1:S23-7. [PMID: 21221819 DOI: 10.1007/s11102-010-0287-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We present the case of a 51-year old female patient with acromegaly that was resistant to somatostatin analogs and dopamine agonists. The patient was diagnosed with breast cancer requiring treatment with the anti-estrogen tamoxifen. Prior to initiating the treatment with tamoxifen, the IGF-I level was very high at 415% of the upper limit of normal for the patient's age and sex. During the tamoxifen treatment, the level of IGF-I dropped spectacularly down to normal levels. This observation highlights the effect of an anti-estrogen treatment in certain female patients with acromegaly.
Collapse
Affiliation(s)
- Jean-Christophe Maiza
- Department of Endocrinology and Metabolic Diseases, CHU Larrey, 24 Chemin de Pourvouville, TSA 30030, 31059, Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
33
|
Minoia M, Gentilin E, Molè D, Rossi M, Filieri C, Tagliati F, Baroni A, Ambrosio MR, degli Uberti E, Zatelli MC. Growth hormone receptor blockade inhibits growth hormone-induced chemoresistance by restoring cytotoxic-induced apoptosis in breast cancer cells independently of estrogen receptor expression. J Clin Endocrinol Metab 2012; 97:E907-16. [PMID: 22442272 DOI: 10.1210/jc.2011-3340] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT GH and IGF-I play a role in breast cancer (BC) development. We previously demonstrated that GH protects the estrogen receptor (ER) positive BC-derived MCF7 cell line toward the cytotoxic effects of doxorubicin (D), independently of IGF-I. This issue may be important in ER negative BC cells that are more aggressive and more likely to develop chemoresistance. AIM OF THE STUDY The aim of this study was to evaluate whether GH may impact chemoresistance phenotype of ER-negative BC-derived MDA-MB-231 cell line and investigate the possible mechanisms implicated in the protective action of GH toward the cytotoxic effects of D in both ER-positive and ER-negative BC-derived cell lines. RESULTS GH protects ER-negative MDA-MB-231 cells from the cytotoxic effects of D and GH receptor antagonist pegvisomant reduces GH-induced DNA synthesis also in these cells. In both MDA-MB-231 and MCF7 cells, GH does not revert D-induced G2/M accumulation but significantly reduces basal and D-induced apoptosis, an effect blocked by pegvisomant. Glutathione S-transferase activity is not implicated in the protective effects of GH, whereas D-induced apoptosis depends on c-Jun N terminal kinase (JNK) activation. GH reduces both basal and D-stimulated JNK transcriptional activity and phosphorylation. CONCLUSIONS In human BC cell lines, GH directly promotes resistance to apoptosis induced by chemotherapeutic drugs independently of ER expression by modulating JNK, further broadening the concept that GH excess may hamper cytotoxic BC treatment. These findings support the hypothesis that blocking GH receptor may be viewed as a potential new therapeutic approach to overcome chemoresistance, especially in ER-negative BC.
Collapse
Affiliation(s)
- Mariella Minoia
- Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara, Via Savonarola 9, 44121 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hubina E, Tóth A, Kovács GL, Dénes J, Kovács L, Góth M. [Growth hormone receptor antagonist in the treatment of acromegaly]. Orv Hetil 2011; 152:709-14. [PMID: 21498159 DOI: 10.1556/oh.2011.29101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exploration of construction, function and interaction of human growth hormone and growth hormone receptor in details resulted in the innovation of the new growth hormone receptor antagonist, pegvisomant. Pegvisomant with different mechanism of action extended the tools of medical management of acromegaly. Importance of the novel treatment modality is high. In one hand the necessity of the strict control of growth hormone/insulin-like growth factor-I axis has been proven regarding the mortality of the disease. On the other hand, despite the use of all current modes of treatment (surgery, radiotherapy, dopamine agonists, somatostatin analogs), a significant cohort of patients with acromegaly remains inadequately controlled. Pegvisomant has been registered in 2004. Since 2006, it has been used in Hungary for the treatment of acromegaly in patients who have had an inadequate response to surgery and/or radiation therapy and/or other medical therapies, or for whom these therapies are not appropriate. Clinical use of pegvisomant in the treatment of acromegaly is effective, well tolerated, and safe, based on international Acrostudy database. In order to improve the efficacy of therapy clinical trials started with pegvisomant and somatostatin analog combination treatment. Evidence of several further effects of the growth hormone/insulin-like growth factor-I axis suggests other potential uses of growth hormone receptor antagonists.
Collapse
Affiliation(s)
- Erika Hubina
- Honvédkórház-Állami Egészségügyi Központ II. Belgyógyászati Osztály Budapest Podmaniczky u. 109-111. 1062.
| | | | | | | | | | | |
Collapse
|
35
|
Idelman G, Jacobson EM, Tuttle TR, Ben-Jonathan N. Lactogens and estrogens in breast cancer chemoresistance. Expert Rev Endocrinol Metab 2011; 6:411-422. [PMID: 21731573 PMCID: PMC3125604 DOI: 10.1586/eem.11.19] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor resistance to chemotherapy in advanced breast cancer is a major impediment to treatment success. Resistance can be induced by the drugs themselves or result from the action of internal factors. The role of hormones in chemoresistance has received little attention. This article focuses on two classes of hormones: lactogens and estrogens. Lactogens include prolactin, growth hormone and placental lactogen, all of which can activate the prolactin receptor. Estrogens include endogenous steroids and nonsteroidal compounds from the environment termed endocrine disruptors, all of which can activate 'classical' estrogen receptors (ERα and ERβ), as well as other types of receptors. Both lactogens and estrogens antagonize cytotoxicity of multiple chemotherapeutic agents through complementary mechanisms. The implications of chemoresistance by these hormones to patients with breast cancer, and the potential benefits of developing combinatorial anti-lactogen/anti-estrogen treatment regimens, are discussed.
Collapse
Affiliation(s)
- Gila Idelman
- Department of Cancer and Cell Biology, University of Cincinnati, 7315 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | - Eric M Jacobson
- Department of Cancer and Cell Biology, University of Cincinnati, 7315 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | - Traci R Tuttle
- Department of Cancer and Cell Biology, University of Cincinnati, 7315 Eden Avenue, Cincinnati, OH 45267-0521, USA
| | - Nira Ben-Jonathan
- Department of Cancer and Cell Biology, University of Cincinnati, 7315 Eden Avenue, Cincinnati, OH 45267-0521, USA
| |
Collapse
|
36
|
O'Regan R, Hawk NN. mTOR inhibition in breast cancer: unraveling the complex mechanisms of mTOR signal transduction and its clinical implications in therapy. Expert Opin Ther Targets 2011; 15:859-72. [PMID: 21476875 DOI: 10.1517/14728222.2011.575362] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION The mammalian target of rapamycin (mTOR)/PI3K/Akt pathway is altered in breast cancer cells, as demonstrated by mutations in both the upstream and downstream regulators of mTOR, including phosphatase and tensin homolog deleted in chromosome 10 (PTEN) loss or Akt/PI3K activation, and potentially in the mTOR protein itself. This contributes to increased cell proliferation, as well as growth-factor independence and endocrine resistance. Thus, mTOR inhibition holds considerable promise as a rational therapeutic strategy in breast cancer. AREAS COVERED This review describes how dysregulation of the mTOR pathway in breast cancer may contribute to breast cancer pathogenesis, as well as discussing preclinical and clinical data that support mTOR inhibitor therapy. EXPERT OPINION Direct blockade of the mTOR pathway is a new and intriguing area in breast cancer therapy, with the potential to modulate growth-factor and estrogen-dependent and -independent pathways, that contribute to the pathogenesis and progression of breast tumors. mTOR inhibitors demonstrate significant biologic activity with manageable toxicities, in combination with hormonal therapy and chemotherapy, in both the neoadjuvant and metastatic breast cancer settings.
Collapse
Affiliation(s)
- Ruth O'Regan
- Emory University School of Medicine, Winship Cancer Institute, Department of Hematology and Medical Oncology, 1365 Clifton Road, Atlanta, GA 30322, USA.
| | | |
Collapse
|
37
|
Abstract
A substantial body of evidence supports a role for the growth hormone (GH)-IGF-1 axis in cancer incidence and progression. This includes epidemiological evidence relating elevated plasma IGF-1 to cancer incidence as well as a lack of cancers in GH/IGF-1 deficiency. Rodent models lacking GH or its receptor are strikingly resistant to the induction of a wide range of cancers, and treatment with the GH antagonist pegvisomant slows tumor progression. While GH receptor expression is elevated in many cancers, autocrine GH is present in several types, and overexpression of autocrine GH can induce cell transformation. While the mechanism of autocrine action is not clear, it does involve both STAT5 and STAT3 activation, and probably nuclear translocation of the GH receptor. Development of a more potent GH receptor antagonist or secretion inhibitor is warranted for cancer therapy.
Collapse
Affiliation(s)
- Yash Chhabra
- a The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld 4072, Australia
| | - Michael J Waters
- a The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld 4072, Australia
- b
| | - Andrew J Brooks
- a The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld 4072, Australia
| |
Collapse
|
38
|
Cheng L, Su XY, Lin Y, Li SY. Recombinant human growth hormone promotes tumor growth and VEGF expression in subcutaneous xenografts derived from human gastric carcinoma SGC-7901 cells in nude mice. Shijie Huaren Xiaohua Zazhi 2010; 18:536-541. [DOI: 10.11569/wcjd.v18.i6.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of recombinant human growth hormone (rhGH) on tumor growth and VEGF expression in subcutaneous xenografts derived from human gastric carcinoma SGC-7901 cells in nude mice.
METHODS: The expression of growth hormone receptor (GHR) in human gastric carcinoma cell line SGC-7901 was detected by immunocytochemistry. Thirty nude mice bearing subcutaneous xenografts derived from carcinoma SGC-7901 cells were randomly divided into three groups: control group, low-dose rhGH group and high-dose rhGH group. The low- and high-dose rhGH groups were injected with rhGH at doses of 0.5 and 2.5 U/(kg•d) once a day for two weeks, respectively, while the control group was injected with equal volumes of normal saline for the same duration. The changes in body weight and tumor volume were recorded. The content of serum VEGF in peripheral blood was analyzed by enzyme-linked immunosorbent assay (ELISA). The expression of VEGF mRNA and protein in tumor tissue was detected by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively.
RESULTS: GHR is highly expressed in SGC-7901 cells. After treatment with rhGH for three days, the tumor volume was significantly larger in the two rhGH groups than in the control group (both P < 0.05). High-dose rhGH revealed stronger tumor growth-promoting effect than low-dose one (P < 0.05). No significant difference was found in the body weight of nude mice among the three groups (all P > 0.05). The content of serum VEGF was elevated more obviously in the high-dose rhGH group than in the low-dose rhGH group and the control group. (252.94 ng/L ± 15.32 ng/L vs 167.60 ng/L ± 9.54 ng/L and 49.94 ng/L ± 5.73 ng/L, respectively; both P < 0.05). The expression level of VEGF protein in tumor tissue was significantly higher in the two rhGH groups than in the control group. The relative expression level of VEGF mRNA was much higher in the high-dose rhGH group than in the low-dose rhGH group and the control group (0.647 ± 0.0447 vs 0.412 ± 0.0351 and 0.323 ± 0.0258, respectively; both P < 0.05).
CONCLUSION: RhGH can promote tumor growth and VEGF expression in subcutaneous xenografts derived from human gastric carcinoma SGC-7901 cells in nude mice.
Collapse
|