1
|
Richter S, Constantinescu G, Fancello G, Paties CT, Mariani-Costantini R, Sanna M. Head and neck paragangliomas: Recent advances in translational and clinical research and guidelines for patient care. Best Pract Res Clin Endocrinol Metab 2024; 38:101951. [PMID: 39294042 DOI: 10.1016/j.beem.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Head and neck paragangliomas (HNPGLs), rare neuroendocrine tumors that mainly arise from parasympathetic ganglia along the cranial nerves, are challenging due to anatomic origin, tendency to aggressive neurovascular and skull base infiltration, unpredictable metastatic potential, radio-chemoresistance, and risk of multiplicity. Symptoms range from mild to life threatening depending on location/size, but rarely relate to catecholamine excess. Risk factors include female sex and pathogenic germline variants in genes affecting hypoxia signaling (foremost succinate dehydrogenase genes). Diagnostic work-up relies on imaging, measurements of plasma free metanephrines/methoxytyramine, genetic testing, and pathology/immunohistochemistry. Management is tailored to patient/tumor characteristics and encompasses wait-scan, upfront surgery, debulking surgery, and radiotherapy. Presurgical embolization is recommended, except for small tympanic and tympanomastoid tumors. Presurgical stenting is required for internal carotid artery involvement, and two-stage surgery for intradural extension. Current treatments for metastatic/inoperable HNPGL are non-curative, and long-term follow-up should be recommended for all patients to monitor local recurrence and new tumors.
Collapse
Affiliation(s)
- Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Georgiana Constantinescu
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Giuseppe Fancello
- Department of Otology and Skull Base Surgery, Gruppo Otologico, 29121 Piacenza, Italy
| | - Carlo T Paties
- Pathology Unit, San Raffaele Scientific Institute, IRCCS, 20132 Milan, Italy
| | - Renato Mariani-Costantini
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University, Via Luigi Polacchi 11, 66100 Chieti, Italy.
| | - Mario Sanna
- Department of Otology and Skull Base Surgery, Gruppo Otologico, 29121 Piacenza, Italy
| |
Collapse
|
2
|
Cascón A, Robledo M. Clinical and molecular markers guide the genetics of pheochromocytoma and paraganglioma. Biochim Biophys Acta Rev Cancer 2024; 1879:189141. [PMID: 38908536 DOI: 10.1016/j.bbcan.2024.189141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Over the past two decades, research into the genetic susceptibility behind pheochromocytoma and paraganglioma (PPGL) has surged, ranking them among the most heritable tumors. Massive sequencing combined with careful patient selection has so far identified more than twenty susceptibility genes, leading to an over-detection of variants of unknown significance (VUS) that require precise molecular markers to determine their pathogenic role. Moreover, some PPGL patients remain undiagnosed, possibly due to mutations in regulatory regions of already known genes or mutations in undiscovered genes. Accurate classification of VUS and identification of new genes require well-defined clinical and molecular markers that allow effective genetic diagnosis of most PPGLs.
Collapse
Affiliation(s)
- Alberto Cascón
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
3
|
De Leo A, Ruscelli M, Maloberti T, Coluccelli S, Repaci A, de Biase D, Tallini G. Molecular pathology of endocrine gland tumors: genetic alterations and clinicopathologic relevance. Virchows Arch 2024; 484:289-319. [PMID: 38108848 PMCID: PMC10948534 DOI: 10.1007/s00428-023-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/19/2023]
Abstract
Tumors of the endocrine glands are common. Knowledge of their molecular pathology has greatly advanced in the recent past. This review covers the main molecular alterations of tumors of the anterior pituitary, thyroid and parathyroid glands, adrenal cortex, and adrenal medulla and paraganglia. All endocrine gland tumors enjoy a robust correlation between genotype and phenotype. High-throughput molecular analysis demonstrates that endocrine gland tumors can be grouped into molecular groups that are relevant from both pathologic and clinical point of views. In this review, genetic alterations have been discussed and tabulated with respect to their molecular pathogenetic role and clinicopathologic implications, addressing the use of molecular biomarkers for the purpose of diagnosis and prognosis and predicting response to molecular therapy. Hereditary conditions that play a key role in determining predisposition to many types of endocrine tumors are also discussed.
Collapse
Affiliation(s)
- Antonio De Leo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Martina Ruscelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
| | - Thais Maloberti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Sara Coluccelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Andrea Repaci
- Division of Endocrinology and Diabetes Prevention and Care, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126, Bologna, Italy
| | - Giovanni Tallini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138, Bologna, Italy.
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy.
| |
Collapse
|
4
|
Rogala J, Zhou M. Hereditary succinate dehydrogenase-deficient renal cell carcinoma. Semin Diagn Pathol 2024; 41:32-41. [PMID: 37981479 DOI: 10.1053/j.semdp.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Succinate dehydrogenase (SDH), formed by four subunits SDHA, SDHB, SDHC, SDHD, and an assembly factor SDHAF2, functions as a key respiratory enzyme. Biallelic inactivation of genes encoding any of the components, almost always in the presence of a germline mutation, causes loss of function of the entire enzyme complex (so-called SDH deficiency) and subsequent development of SDH-deficient neoplasms which include pheochromocytoma/paraganglioma, gastrointestinal stromal tumor, and renal cell carcinoma (RCC). These tumors may occur in the same patient or kindred. SDH-deficient RCC shows distinctive morphological features with vacuolated eosinophilic cytoplasm due to distinctive cytoplasmatic inclusions containing flocculent material. The diagnosis is confirmed by loss of SDHB on immunohistochemistry with positive internal control. The majority of tumors occur in the setting of germline mutations in one of the SDH genes, most commonly SDHB. The prognosis is excellent for low-grade tumors but worse for high-grade tumors with high-grade nuclei, sarcomatoid change, or coagulative necrosis. Awareness of the morphological features and low-threshold for applying SDHB immunohistochemistry help identify patients with SDH-deficient RCC and hereditary SDH-deficient tumor syndromes. In this review we summarize recent development on the clinical and genetic features, diagnostic approach, and pitfalls of SDH-deficient syndrome, focusing on SDH-deficient renal cell carcinomas.
Collapse
Affiliation(s)
- Joanna Rogala
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Czech Republic; Department of Pathology, Regional Specialist Hospital, Wrocław, Poland; Department of Pathology, Public Specialist Hospital, Nowa Sól, Poland
| | - Ming Zhou
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA; Department of Anatomic and Clinical Pathology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Shi C, Liu JZ, Zeng ZP, Miao Q, Fang LG, Chen S, Ping F, Sun H, Lu L, Chen LB, Fu Y, Zhao DC, Yu CH, JiaJue RZ, Wang X, Liu XR, Ma GT, Zhang CJ, Pan H, Yang HB, Wang YN, Li M, Li F, Shen ZJ, Liang ZY, Xing XP, Zhu WL. Diagnosis, Genetics, and Management of 24 Patients With Cardiac Paragangliomas: Experience From a Single Center. J Endocr Soc 2023; 7:bvad093. [PMID: 37873498 PMCID: PMC10590637 DOI: 10.1210/jendso/bvad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 10/25/2023] Open
Abstract
Context Paragangliomas located within the pericardium represent a rare yet challenging clinical situation. Objective The current analysis aimed to describe the clinical characteristics of cardiac paragangliomas, with emphasis on the diagnostic approach, genetic background, and multidisciplinary management. Methods Twenty-four patients diagnosed with cardiac paraganglioma (PGL) in Peking Union Medical College Hospital, Beijing, China, between 2003 and 2021 were identified. Clinical data was collected from medical record. Genetic screening and succinate dehydrogenase subunit B immunohistochemistry were performed in 22 patients. Results The median age at diagnosis was 38 years (range 11-51 years), 8 patients (33%) were females, and 4 (17%) had familial history. Hypertension and/or symptoms related to catecholamine secretion were present in 22 (92%) patients. Excess levels of catecholamines and/or metanephrines were detected in 22 (96%) of the 23 patients who have completed biochemical testing. Cardiac PGLs were localized with 131I-metaiodobenzylguanidine scintigraphy in 11/22 (50%), and 99mTc-hydrazinonicotinyl-tyr3-octreotide scintigraphy in 24/24 (100%) patients. Genetic testing identified germline SDHx mutations in 13/22 (59%) patients, while immunohistochemistry revealed succinate dehydrogenase (SDH) deficiency in tumors from 17/22 (77%) patients. All patients were managed by a multidisciplinary team through medical preparation, surgery, and follow-up. Twenty-three patients received surgical treatment and perioperative death occurred in 2 cases. Overall, 21 patients were alive at follow-up (median 7.0 years, range 0.6-18 years). Local recurrence or metastasis developed in 3 patients, all of whom had SDH-deficient tumors. Conclusion Cardiac PGLs can be diagnosed based on clinical manifestations, biochemical tests, and appropriate imaging studies. Genetic screening, multidisciplinary approach, and long-term follow-up are crucial in the management of this disease.
Collapse
Affiliation(s)
- Chuan Shi
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jian-Zhou Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Zheng-Pei Zeng
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qi Miao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Li-Gang Fang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Shi Chen
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fan Ping
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Sun
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Lin Lu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Li-Bo Chen
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yong Fu
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Da-Chun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Chun-Hua Yu
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Rui-Zhi JiaJue
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xi Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xing-Rong Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Guo-Tao Ma
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Chao-Ji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Hui Pan
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong-Bo Yang
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi-Ning Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ming Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Zhu-Jun Shen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of National Health Commission, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wen-Ling Zhu
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
6
|
Gaisa NT, Hartmann A, Knüchel-Clarke R. [New WHO classification 2022: urinary bladder cancer]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:139-148. [PMID: 36826493 DOI: 10.1007/s00292-023-01183-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 02/25/2023]
Abstract
The new World Health Organization (WHO) classification of urogenital tumors is still primarily based on anatomic location, but is also a hierarchical taxonomic classification without separate chapters for tumors of the upper urinary tract and the urethra. It clarifies aspects regarding grading and noninvasive entities. It consolidates the use of the Paris system for urinary cytology as well as various subtypes/special types of neoplasms, and incorporates general concepts of the 5th edition of the WHO blue book. In addition to mesenchymal tumors, well-differentiated neuroendocrine tumors and neuroendocrine carcinomas are addressed in separate chapters. Papillary non-invasive low- and high-grade carcinomas and carcinoma in situ remain, while dysplasia and urothelial proliferation of unknown malignant potential (UPUMP) are no longer treated as separate entities. Former variants of urothelial carcinoma are now called subtypes and aberrant differentiation and special types are more precisely defined.
Collapse
Affiliation(s)
- Nadine Therese Gaisa
- Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland.
| | - Arndt Hartmann
- Institut für Pathologie, Uniklinikum Erlangen, Erlangen, Deutschland
| | - Ruth Knüchel-Clarke
- Institut für Pathologie, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Deutschland
| |
Collapse
|
7
|
Gupta S, Erickson LA. Back to Biochemistry: Evaluation for and Prognostic Significance of SDH Mutations in Paragangliomas and Pheochromocytomas. Surg Pathol Clin 2023; 16:119-129. [PMID: 36739159 DOI: 10.1016/j.path.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There is increasing recognition of the high prevalence of hereditary predisposition syndromes in patients diagnosed with paraganglioma/pheochromocytoma. It is widely acknowledged that germline pathogenic alterations of the succinate dehydrogenase complex genes (SDHA, SDHB, SDHC, SDHD, SDHAF2) contribute to the pathogenesis of most of these tumors. Herein, we have provided an update on the biology and diagnosis of succinate dehydrogenase-deficient paraganglioma/pheochromocytoma, including the molecular biology of the succinate dehydrogenase complex, mechanisms and consequences of inactivation of this complex, the prevalence of pathogenic alterations, and patterns of inheritance.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Lori A Erickson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Branzoli F, Salgues B, Marjańska M, Laloi-Michelin M, Herman P, Le Collen L, Delemer B, Riancho J, Kuhn E, Jublanc C, Burnichon N, Amar L, Favier J, Gimenez-Roqueplo AP, Buffet A, Lussey-Lepoutre C. SDHx mutation and pituitary adenoma: can in vivo 1H-MR spectroscopy unravel the link? Endocr Relat Cancer 2023; 30:ERC-22-0198. [PMID: 36449569 PMCID: PMC9885742 DOI: 10.1530/erc-22-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Germline mutations in genes encoding succinate dehydrogenase (SDH) are frequently involved in pheochromocytoma/paraganglioma (PPGL) development and were implicated in patients with the '3PAs' syndrome (associating pituitary adenoma (PA) and PPGL) or isolated PA. However, the causality link between SDHx mutation and PA remains difficult to establish, and in vivo tools for detecting hallmarks of SDH deficiency are scarce. Proton magnetic resonance spectroscopy (1H-MRS) can detect succinate in vivo as a biomarker of SDHx mutations in PGL. The objective of this study was to demonstrate the causality link between PA and SDH deficiency in vivo using 1H-MRS as a novel noninvasive tool for succinate detection in PA. Three SDHx-mutated patients suffering from a PPGL and a macroprolactinoma and one patient with an apparently sporadic non-functioning pituitary macroadenoma underwent MRI examination at 3 T. An optimized 1H-MRS semi-LASER sequence (TR = 2500 ms, TE = 144 ms) was employed for the detection of succinate in vivo. Succinate and choline-containing compounds were identified in the MR spectra as single resonances at 2.44 and 3.2 ppm, respectively. Choline compounds were detected in all the tumors (three PGL and four PAs), while a succinate peak was only observed in the three macroprolactinomas and the three PGL of SDHx-mutated patients, demonstrating SDH deficiency in these tumors. In conclusion, the detection of succinate by 1H-MRS as a hallmark of SDH deficiency in vivo is feasible in PA, laying the groundwork for a better understanding of the biological link between SDHx mutations and the development of these tumors.
Collapse
Affiliation(s)
- Francesca Branzoli
- Paris Brain Institute - Institut du Cerveau (ICM), Center for Neuroimaging Research (CENIR), Paris, France
- Sorbonne University, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, Paris, France
| | - Betty Salgues
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| | - Małgorzata Marjańska
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Marie Laloi-Michelin
- Endocrinology department, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
| | - Philippe Herman
- ENT unit, Lariboisière Hospital, Assistance -Publique Hôpitaux de Paris, Paris-Cité University, INSERM U1141, Paris, France
| | - Lauriane Le Collen
- Inserm/CNRS UMR 1283/8199, Pasteur Institute of Lille, EGID, University of Lille, Lille, France
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- Department of Genetic, University Hospital Center of Reims, Reims, France
| | - Brigitte Delemer
- Department of Endocrinology Diabetology, University Hospital Center of Reims, Reims, France
- CRESTIC EA 3804, University of Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Moulin de La Housse, BP 1039, Reims, France
| | - Julien Riancho
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
| | - Emmanuelle Kuhn
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Christel Jublanc
- Pituitary Unit, Pitié-Salpêtrière Hospital APHP, Sorbonne University, Paris, France
| | - Nelly Burnichon
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Laurence Amar
- AP-HP, Hôpital Européen Georges Pompidou, Hypertension Unit, and Reference centre for rare adrenal diseases, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | | | - Anne-Paule Gimenez-Roqueplo
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Alexandre Buffet
- Département de médecine génomique des tumeurs et des cancers, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Charlotte Lussey-Lepoutre
- Sorbonne University, nuclear medicine department, Pitié-Salpêtrière Hospital, Assistance -Publique Hôpitaux de Paris, Paris, France
- Paris Cardiovascular Research Center (PARCC), Inserm, Paris, France
| |
Collapse
|
9
|
Hanson H, Durkie M, Lalloo F, Izatt L, McVeigh TP, Cook JA, Brewer C, Drummond J, Butler S, Cranston T, Casey R, Tan T, Morganstein D, Eccles DM, Tischkowitz M, Turnbull C, Woodward ER, Maher ER. UK recommendations for SDHA germline genetic testing and surveillance in clinical practice. J Med Genet 2023; 60:107-111. [PMID: 35260474 PMCID: PMC9887350 DOI: 10.1136/jmedgenet-2021-108355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/13/2022] [Indexed: 02/03/2023]
Abstract
SDHA pathogenic germline variants (PGVs) are identified in up to 10% of patients with paraganglioma and phaeochromocytoma and up to 30% with wild-type gastrointestinal stromal tumours. Most SDHA PGV carriers present with an apparently sporadic tumour, but often the pathogenic variant has been inherited from parent who has the variant, but has not developed any clinical features. Studies of SDHA PGV carriers suggest that lifetime penetrance for SDHA-associated tumours is low, particularly when identified outside the context of a family history. Current recommended surveillance for SDHA PGV carriers follows an intensive protocol. With increasing implementation of tumour and germline large panel and whole-genome sequencing, it is likely more SDHA PGV carriers will be identified in patients with tumours not strongly associated with SDHA, or outside the context of a strong family history. This creates a complex situation about what to recommend in clinical practice considering low penetrance for tumour development, surveillance burden and patient anxiety. An expert SDHA working group was formed to discuss and consider this situation. This paper outlines the recommendations from this working group for testing and management of SDHA PGV carriers in clinical practice.
Collapse
Affiliation(s)
- Helen Hanson
- South West Thames Regional Genetic Services, St George's University Hospitals NHS Foundation Trust, London, UK
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Miranda Durkie
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, North East and Yorkshire Genomic Laboratory Hub, Sheffield, UK
| | - Fiona Lalloo
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Louise Izatt
- Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Terri P McVeigh
- Cancer Genetics Unit, Royal Marsden NHS Foundation Trust, London, UK
| | - Jackie A Cook
- Department of Clinical Genetics, Sheffield Children's NHS FoundationTrust, Sheffield, UK
| | - Carole Brewer
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - James Drummond
- East NHS Genomic Laboratory Hub, Cambridge University Hospitals Genomic Laboratory, Cambridge University Hospital Foundation Trust, Cambridge, UK
| | - Samantha Butler
- Molecular Genetics, West Midlands Regional Genetics Laboratory, Birmingham, West Midlands, UK
| | - Treena Cranston
- Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford, UK
| | - Ruth Casey
- Department of Endocrinology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tricia Tan
- Section of Investigative Medicine, Imperial College London, London, UK
| | | | - Diana M Eccles
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Emma Roisin Woodward
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | |
Collapse
|
10
|
Advances in Adrenal and Extra-adrenal Paraganglioma: Practical Synopsis for Pathologists. Adv Anat Pathol 2023; 30:47-57. [PMID: 36136370 DOI: 10.1097/pap.0000000000000365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adrenal paraganglioma (or "pheochromocytoma") and extra-adrenal paraganglioma, collectively abbreviated PPGL, are rare but spectacular nonepithelial neuroendocrine neoplasms. These are the most inheritable neoplasia of all, with a metastatic potential in a varying degree. As of such, these lesions demand careful histologic, immunohistochemical, and genetic characterization to provide the clinical team with a detailed report taking into account the anticipated prognosis and risk of syndromic/inherited disease. While no histologic algorithm, immunohistochemical biomarker, or molecular aberration single-handedly can identify potentially lethal cases upfront, the combined analysis of various risk parameters may stratify PPGL patients more stringently than previously. Moreover, the novel 2022 WHO Classification of Endocrine and Neuroendocrine Tumors also brings some new concepts into play, not least the reclassification of special neuroendocrine neoplasms (cauda equina neuroendocrine tumor and composite gangliocytoma/neuroma-neuroendocrine tumor) previously thought to belong to the spectrum of PPGL. This review focuses on updated key diagnostic and prognostic concepts that will aid when facing this rather enigmatic tumor entity in clinical practice.
Collapse
|
11
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
12
|
Gupta P, Strange K, Telange R, Guo A, Hatch H, Sobh A, Elie J, Carter AM, Totenhagen J, Tan C, Sonawane YA, Neuzil J, Natarajan A, Ovens AJ, Oakhill JS, Wiederhold T, Pacak K, Ghayee HK, Meijer L, Reddy S, Bibb JA. Genetic impairment of succinate metabolism disrupts bioenergetic sensing in adrenal neuroendocrine cancer. Cell Rep 2022; 40:111218. [PMID: 35977518 DOI: 10.1016/j.celrep.2022.111218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic dysfunction mutations can impair energy sensing and cause cancer. Loss of function of the mitochondrial tricarboxylic acid (TCA) cycle enzyme subunit succinate dehydrogenase B (SDHB) results in various forms of cancer typified by pheochromocytoma (PC). Here we delineate a signaling cascade where the loss of SDHB induces the Warburg effect, triggers dysregulation of [Ca2+]i, and aberrantly activates calpain and protein kinase Cdk5, through conversion of its cofactor from p35 to p25. Consequently, aberrant Cdk5 initiates a phospho-signaling cascade where GSK3 inhibition inactivates energy sensing by AMP kinase through dephosphorylation of the AMP kinase γ subunit, PRKAG2. Overexpression of p25-GFP in mouse adrenal chromaffin cells also elicits this phosphorylation signaling and causes PC. A potent Cdk5 inhibitor, MRT3-007, reverses this phospho-cascade, invoking a senescence-like phenotype. This therapeutic approach halted tumor progression in vivo. Thus, we reveal an important mechanistic feature of metabolic sensing and demonstrate that its dysregulation underlies tumor progression in PC and likely other cancers.
Collapse
Affiliation(s)
- Priyanka Gupta
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Keehn Strange
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Rahul Telange
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Heather Hatch
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Amin Sobh
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL 32608, USA
| | - Jonathan Elie
- Perha Pharmaceuticals, Hôtel de Recherche, Perharidy Peninsula, 29680 Roscoff, France
| | - Angela M Carter
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - John Totenhagen
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - Chunfeng Tan
- UT Health Science Center at Houston, Department of Neurology, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West 252 50, Czech Republic; School of Pharmacy Medical Science, Griffith University, Southport, QLD 4222, Australia
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashley J Ovens
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | | | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hans K Ghayee
- Department of Internal Medicine, Division of Endocrinology, University of Florida College of Medicine and Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
| | - Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Perharidy Peninsula, 29680 Roscoff, France
| | - Sushanth Reddy
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA
| | - James A Bibb
- Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center and the Department of Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA.
| |
Collapse
|
13
|
Patel M, Jha A, Ling A, Chen CC, Millo C, Kuo MJM, Nazari MA, Talvacchio S, Charles K, Miettinen M, Del Rivero J, Chen AP, Nilubol N, Lin FI, Civelek AC, Taïeb D, Carrasquillo JA, Pacak K. Performances of Functional and Anatomic Imaging Modalities in Succinate Dehydrogenase A-Related Metastatic Pheochromocytoma and Paraganglioma. Cancers (Basel) 2022; 14:cancers14163886. [PMID: 36010880 PMCID: PMC9406057 DOI: 10.3390/cancers14163886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pheochromocytoma and paraganglioma (PPGL) are rare neuroendocrine cancers which carry the risk of metastatic disease. Pathogenic variants in the succinate dehydrogenase subunit A gene (SDHA) have been shown to cause metastatic disease, occurring in various regions of the body. Imaging is an early and vital step in the diagnosis and clinical care of these patients. The study here identifies which imaging modality among positron emission tomography (PET), computed tomography (CT), and magnetic resonance imaging (MRI) performs better in localizing metastatic PPGL lesions related to SDHA. The study identified that 68Ga-DOTATATE PET/CT performed best at overall lesion detection; however, 18F-FDG PET/CT performed better in certain anatomic regions of the body. A combined approach with 68Ga-DOTATATE and 18F-FDG would optimize care and guide clinicians in selecting the appropriate interventions and therapies. Abstract The study identifies the importance of positron emission tomographic (PET) and anatomic imaging modalities and their individual performances in detecting succinate dehydrogenase A (SDHA)-related metastatic pheochromocytoma and paraganglioma (PPGL). The detection rates of PET modalities—68Ga-DOTATATE, 18F-FDG, and 18F-FDOPA—along with the combination of computed tomography (CT) and magnetic resonance imaging (MRI) are compared in a cohort of 11 patients with metastatic PPGL in the setting of a germline SDHA mutation. The imaging detection performances were evaluated at three levels: overall lesions, anatomic regions, and a patient-by-patient basis. 68Ga-DOTATATE PET demonstrated a lesion-based detection rate of 88.6% [95% confidence interval (CI), 84.3–92.5%], while 18F-FDG, 18F-FDOPA, and CT/MRI showed detection rates of 82.9% (CI, 78.0–87.1%), 39.8% (CI, 30.2–50.2%), and 58.2% (CI, 52.0–64.1%), respectively. The study found that 68Ga-DOTATATE best detects lesions in a subset of patients with SDHA-related metastatic PPGL. However, 18F-FDG did detect more lesions in the liver, mediastinum, and abdomen/pelvis anatomic regions, showing the importance of a combined approach using both PET modalities in evaluating SDHA-related PPGL.
Collapse
Affiliation(s)
- Mayank Patel
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alexander Ling
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Clara C. Chen
- Nuclear Medicine Department, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Corina Millo
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mickey J. M. Kuo
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew A. Nazari
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sara Talvacchio
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Kailah Charles
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20814, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice P. Chen
- Early Clinical Trials Development Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frank I. Lin
- Targeted Radionuclide Therapy Section, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ali Cahid Civelek
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD 21287, USA
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, 13273 Marseille, France
| | - Jorge A. Carrasquillo
- Targeted Radionuclide Therapy Section, Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
14
|
A Case for Genetic Testing in Isolated Tympanic Paragangliomas. Otol Neurotol 2022; 43:840-844. [PMID: 35802032 DOI: 10.1097/mao.0000000000003557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim of this study is to describe two clinical cases, which we believe highlight the need to consider routine genetic testing of all patients with new diagnosis of a tympanic paraganglioma (PGL). PATIENTS Two patients seen in the ENT clinic at a tertiary center with a diagnosis of isolated tympanic PGL, without family history. INTERVENTION Since 2016, all patients with newly diagnosed isolated tympanic PGL (glomus tympanicum) are offered review by the clinical genetic team and genetic testing of a panel of paraganglioma/phaeochromocytoma predisposition genes. Previously only those with multiple PGL or a family history were tested. MAIN OUTCOME MEASURES We describe the results of genetic testing, the clinical course and discuss the ongoing implications for management. RESULTS Both cases were identified to have a pathogenic variant in the SDHB gene after initial surgery. The clinical course for both cases was complicated by disease recurrence, as well as metastatic and secretory disease in one case. Knowledge of genetic status has influenced ongoing management, with annual MRI surveillance for other SDH-related tumors. CONCLUSION These two cases reinforce the importance of offering genetic testing for all cases of isolated tympanic PGL. The discovery of a significant underlying genetic variant may affect management decisions and subsequent follow-up.
Collapse
|
15
|
Lyle DA, Lopez A, Osofsky R, Wiemann B, Boyd N, Olson G, Rana MA. Outcomes of Carotid Body Tumor Management with Active Surveillance. Ann Otol Rhinol Laryngol 2022; 132:551-557. [PMID: 35723203 DOI: 10.1177/00034894221105833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To assess outcomes of carotid body tumors (CBTs) managed with active surveillance. METHODS Retrospective chart review of CBTs managed with active surveillance from 2001 to 2019. RESULTS A total of 115 cases were identified during chart review. Sixty-five of these patients were managed with active surveillance, and 11 patients had bilateral tumors for a total of 76 tumors. Follow-up records with symptomatic outcomes were available for 51 patients, and 47 tumors had follow-up imaging. Thirty-one (66%) actively surveilled CBTs remained stable or decreased in size while 16 (34%) increased in size. Patients undergoing active surveillance developed symptoms in 12 cases, 6 of these patients underwent surgical intervention. Nine CBTs managed with active surveillance (18%) were ultimately resected. The majority of patients who did not undergo surgical intervention never developed symptoms (36/42, 86%). CONCLUSIONS Active surveillance may be a reasonable approach for a subset of CBTs.
Collapse
Affiliation(s)
- Daniel A Lyle
- School of Medicine, University of New Mexico School of Medicine MSC08 4720, Albuquerque, NM, USA
| | - Alexis Lopez
- Division of Otolaryngology-Head and Neck Surgery, University of New Mexico School of Medicine MSC10 5610, Albuquerque, NM, USA
| | - Robin Osofsky
- Department of Surgery, University of New Mexico School of Medicine MSC08 4720, Albuquerque, NM, USA
| | - Brianne Wiemann
- Department of Surgery, University of New Mexico School of Medicine MSC08 4720, Albuquerque, NM, USA
| | - Nathan Boyd
- Division of Otolaryngology-Head and Neck Surgery, University of New Mexico School of Medicine MSC10 5610, Albuquerque, NM, USA
| | - Garth Olson
- Division of Otolaryngology-Head and Neck Surgery, University of New Mexico School of Medicine MSC10 5610, Albuquerque, NM, USA
| | - Muhammad Ali Rana
- Department of Surgery, University of New Mexico School of Medicine MSC08 4720, Albuquerque, NM, USA.,Division of Vascular Surgery, University of New Mexico School of Medicine MSC10 5610, Albuquerque, NM, USA
| |
Collapse
|
16
|
Expanding the clinicopathological spectrum of succinate dehydrogenase-deficient renal cell carcinoma with a focus on variant morphologies: a study of 62 new tumors in 59 patients. Mod Pathol 2022; 35:836-849. [PMID: 34949766 DOI: 10.1038/s41379-021-00998-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Most succinate dehydrogenase (SDH)-deficient renal cell carcinomas (RCCs) demonstrate stereotypical morphology characterized by bland eosinophilic cells with frequent intracytoplasmic inclusions. However, variant morphologic features have been increasingly recognized. We therefore sought to investigate the incidence and characteristics of SDH-deficient RCC with variant morphologies. We studied a multi-institutional cohort of 62 new SDH-deficient RCCs from 59 patients. The median age at presentation was 39 years (range 19-80), with a slight male predominance (M:F = 1.6:1). A relevant family history was reported in 9 patients (15%). Multifocal or bilateral tumors were identified radiologically in 5 patients (8%). Typical morphology was present at least focally in 59 tumors (95%). Variant morphologies were seen in 13 (21%) and included high-grade nuclear features and various combinations of papillary, solid, and tubular architecture. Necrosis was present in 13 tumors, 7 of which showed variant morphology. All 62 tumors demonstrated loss of SDHB expression by immunohistochemistry. None showed loss of SDHA expression. Germline SDH mutations were reported in all 18 patients for whom the results of testing were known. Among patients for whom follow-up data was available, metastatic disease was reported in 9 cases, 8 of whom had necrosis and/or variant morphology in their primary tumor. Three patients died of disease. In conclusion, variant morphologies and high-grade nuclear features occur in a subset of SDH-deficient RCCs and are associated with more aggressive behavior. We therefore recommend grading all SDH-deficient RCCs and emphasize the need for a low threshold for performing SDHB immunohistochemistry in any difficult to classify renal tumor, particularly if occurring at a younger age.
Collapse
|
17
|
Prinzi N, Corti F, Torchio M, Niger M, Antista M, Pagani F, Beninato T, Pulice I, Rossi RE, Coppa J, Cascella T, Giacomelli L, Di Bartolomeo M, Milione M, de Braud F, Pusceddu S. Metastatic pheochromocytomas and paragangliomas: where are we? TUMORI JOURNAL 2022; 108:526-540. [PMID: 35593402 DOI: 10.1177/03008916221078621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) can metastasize in approximately 15-20% of cases. This review discusses the available evidence on the biology and treatment of metastatic PPGLs. Chemotherapy is the first-line treatment option for this evolving and symptomatic disease. In patients with high MIBG uptake and positive PETGa-68, radiometabolic treatment may be considered. The efficacy of sunitinib has been shown in observational studies, and pembrolizumab has been evaluated in phase II clinical studies, while other agents investigated in this setting are anti-angiogenic drugs cabozantinib, dovitinib, axitinib and lenvatinib. As these agents' efficacy and safety data, alone or in combination, are scant and based on few treated patients, enrollment in clinical trials is mandatory. Future therapeutic options may be represented by DNA repair system inhibitors (such as olaparib), HIF2 inhibitors and immunotherapy.
Collapse
Affiliation(s)
- Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Martina Torchio
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Monica Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Maria Antista
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Teresa Beninato
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Iolanda Pulice
- Clinical Trial Center, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Roberta Elisa Rossi
- Gastro-intestinal Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Pathophysiology and Organ Transplant, Università degli Studi di Milano, Milan, Italy
| | - Jorgelina Coppa
- Gastro-intestinal Surgery and Liver Transplantation Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Cascella
- Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Maria Di Bartolomeo
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| | - Massimo Milione
- Diagnostic Pathology and Laboratory Medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy.,Oncology and Hemato-Oncology Department, Università degli Studi di Milano, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Tumori Milano, Milan, Italy
| |
Collapse
|
18
|
Yue X, Liu B, Han T, Luo N, Lu G, Guo D, Bu F, Wang G. A Novel Germline SDHA Gene Mutation and Co-Occurring Somatic KIT Activating Mutation in a Patient With Pediatric Central Nervous System Germ Cell Tumor: Case Report. Front Oncol 2022; 12:835220. [PMID: 35651799 PMCID: PMC9149216 DOI: 10.3389/fonc.2022.835220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
Central nervous system germ cell tumors (CNS GCTs) are a heterogeneous group of primary CNS tumors. GCTs are more common and mostly observed in pediatric and young adult patients. CNS GCTs are divided into germinomas and non-germinomatous germ cell tumors (NGGCTs), with different therapeutic strategies depending on diagnosis. Herein, we report a patient with pediatric central nervous system germinoma harboring a somatic KIT p.Y823D and a heterozygous germline SDHA p. T396Nfs*14 mutation detected by next generation sequencing. After surgery, the patient received chemotherapy (temozolomide + nedaplatin + etoposide). This is the first report of a Chinese pediatric patient with CNS GCT harboring concurrent germline SDHA and somatic KIT mutation, which enriches molecular profiles of CNS GCTs and provides more molecular evidence of clinical diagnosis and potential targeted therapy in CNS GCTs.
Collapse
Affiliation(s)
- Xizan Yue
- Department of Neurosurgery, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Bo Liu
- Department of Neurosurgery, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Tiantian Han
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Ningning Luo
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Guanghua Lu
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Didi Guo
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Fanfeng Bu
- The Medical Department, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
- The Medical Department, Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
- The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Guangyu Wang
- Department of Neurosurgery, Qilu Children’s Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Hata S, Asano M, Tominaga H, Hamaguchi M, Hongo F, Usui T, Konishi E, Fukui M. Bilateral Pheochromocytoma with Germline MAX Variant without Family History. Clin Pract 2022; 12:299-305. [PMID: 35645312 PMCID: PMC9149808 DOI: 10.3390/clinpract12030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
Recently, the genetic background of pheochromocytomas/paragangliomas (PPGLs) has been rapidly revealed. These tumors have been referred to as the “ten percent tumor”; however, the frequency of genetic variants of PPGLs has turned out to be more common than expected. PPGLs are potentially hereditary tumors and appear clinically sporadic. Here, we report a case of bilateral pheochromocytoma (PCC) with a variant in the MYC-associated factor X (MAX) gene (c.295 + 1G > A). A male patient was diagnosed with adrenal pheochromocytoma (PCC) and underwent a left adrenalectomy at the age of 40. A new tumor in the right adrenal gland was detected at the age of 43. Urinary metanephrine and normetanephrine concentrations gradually increased. The size of the right adrenal PCC continued to increase one year after detection. Genetic testing of the peripheral blood revealed the presence of a pathogenic variant in MAX. The natural history of adrenal PCCs with the MAX variant has not yet been clarified, because the number of reported cases is not sufficient. Thus, clinicians should consider a MAX variant when they find bilateral or multiple PCCs.
Collapse
Affiliation(s)
- Shinnosuke Hata
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.H.); (H.T.); (M.H.); (M.F.)
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.H.); (H.T.); (M.H.); (M.F.)
- Department of Endocrinology and Metabolism, Kyoto First Red Cross Hospital, Kyoto 605-0981, Japan
| | - Hiroyuki Tominaga
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.H.); (H.T.); (M.H.); (M.F.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.H.); (H.T.); (M.H.); (M.F.)
| | - Fumiya Hongo
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Takeshi Usui
- Research Support Center, Shizuoka General Hospital, Shizuoka 420-8527, Japan;
- Department of Medical Genetics, Shizuoka General Hospital, Shizuoka 420-8527, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan;
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (S.H.); (H.T.); (M.H.); (M.F.)
| |
Collapse
|
20
|
Sobocki BK, Perdyan A, Szot O, Rutkowski J. Management of Pheochromocytomas and Paragangliomas: A Case-Based Review of Clinical Aspects and Perspectives. J Clin Med 2022; 11:jcm11092591. [PMID: 35566714 PMCID: PMC9103340 DOI: 10.3390/jcm11092591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Paraganglioma and pheochromocytoma are rare medical conditions. Thus, there are still a small number of studies, clinical trials, and evidence-based data in this field. This makes clinical decisions more difficult. In this study, we present a case report enriched with a short review of available essential clinical data, indicating the need for constant metoxycatecholamine level observation and a proper diagnostic imaging approach, especially in terms of ongoing pandemics. Our research also provides a summary of the molecular background of these diseases, indicating their future role in clinical management. We analyzed the ClinicalTrials.gov dataset in order to show future perspectives. In this paper, the use of the PET-CT before MRI or CT is proposed in specific cases during diagnosis processes contrary to the guidelines. PET-CT may be as effective as standard procedures and may provide a faster diagnosis, which is important in periods with more difficult access to health care, such as during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bartosz Kamil Sobocki
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
- Correspondence: (B.K.S.); (J.R.)
| | - Adrian Perdyan
- International Research Agenda 3P Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Olga Szot
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jacek Rutkowski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland
- Correspondence: (B.K.S.); (J.R.)
| |
Collapse
|
21
|
Mete O, Asa SL, Gill AJ, Kimura N, de Krijger RR, Tischler A. Overview of the 2022 WHO Classification of Paragangliomas and Pheochromocytomas. Endocr Pathol 2022; 33:90-114. [PMID: 35285002 DOI: 10.1007/s12022-022-09704-6] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 12/12/2022]
Abstract
This review summarizes the classification of tumors of the adrenal medulla and extra-adrenal paraganglia as outlined in the 5th series of the WHO Classification of Endocrine and Neuroendocrine Tumors. The non-epithelial neuroendocrine neoplasms (NENs) known as paragangliomas produce predominantly catecholamines and secrete them into the bloodstream like hormones, and they represent a group of NENs that have exceptionally high genetic predisposition. This classification discusses the embryologic derivation of the cells that give rise to these lesions and the historical evolution of the terminology used to classify their tumors; paragangliomas can be sympathetic or parasympathetic and the term pheochromocytoma is used specifically for intra-adrenal paragangliomas that represent the classical sympathetic form. In addition to the general neuroendocrine cell biomarkers INSM1, synaptophysin, and chromogranins, these tumors are typically negative for keratins and instead have highly specific biomarkers, including the GATA3 transcription factor and enzymes involved in catecholamine biosynthesis: tyrosine hydroxylase that converts L-tyrosine to L-DOPA as the rate-limiting step in catecholamine biosynthesis, dopamine beta-hydroxylase that is present in cells expressing norepinephrine, and phenylethanolamine N-methyltransferase, which converts norepinephrine to epinephrine and therefore can be used to distinguish tumors that make epinephrine. In addition to these important tools that can be used to confirm the diagnosis of a paraganglioma, new tools are recommended to determine genetic predisposition syndromes; in addition to the identification of precursor lesions, molecular immunohistochemistry can serve to identify associations with SDHx, VHL, FH, MAX, and MEN1 mutations, as well as pseudohypoxia-related pathogenesis. Paragangliomas have a well-formed network of sustentacular cells that express SOX10 and S100, but this is not a distinctive feature, as other epithelial NENs also have sustentacular cells. Indeed, it is the presence of such cells and the association with ganglion cells that led to a misinterpretation of several unusual lesions as paragangliomas; in the 2022 WHO classification, the tumor formerly known as cauda equina paraganglioma is now classified as cauda equina neuroendocrine tumor and the lesion known as gangliocytic paraganglioma has been renamed composite gangliocytoma/neuroma and neuroendocrine tumor (CoGNET). Since the 4th edition of the WHO, paragangliomas have no longer been classified as benign and malignant, as any lesion can have metastatic potential and there are no clear-cut features that can predict metastatic behavior. Moreover, some tumors are lethal without metastatic spread, by nature of local invasion involving critical structures. Nevertheless, there are features that can be used to identify more aggressive lesions; the WHO does not endorse the various scoring systems that are reviewed but also does not discourage their use. The identification of metastases is also complex, particularly in patients with germline predisposition syndromes, since multiple lesions may represent multifocal primary tumors rather than metastatic spread; the identification of paragangliomas in unusual locations such as lung or liver is not diagnostic of metastasis, since these may be primary sites. The value of sustentacular cells and Ki67 labeling as prognostic features is also discussed in this new classification. A staging system for pheochromocytoma and extra-adrenal sympathetic PGLs, introduced in the 8th Edition AJCC Cancer Staging Manual, is now included. This paper also provides a summary of the criteria for the diagnosis of a composite paragangliomas and summarizes the classification of neuroblastic tumors. This review adopts a practical question-answer framework to provide members of the multidisciplinary endocrine oncology team with a most up-to-date approach to tumors of the adrenal medulla and extra-adrenal paraganglia.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON, Canada.
- Endocrine Oncology Site, Princess Margaret Cancer Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Anthony J Gill
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Anatomical Pathology, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Sydney, Australia
| | - Noriko Kimura
- Department of Clinical Research, Division of Diagnostic Pathology, National Hospital Organization Hakodate Hospital, Hakodate, Japan
| | - Ronald R de Krijger
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arthur Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
22
|
Nosé V, Gill A, Teijeiro JMC, Perren A, Erickson L. Overview of the 2022 WHO Classification of Familial Endocrine Tumor Syndromes. Endocr Pathol 2022; 33:197-227. [PMID: 35285003 DOI: 10.1007/s12022-022-09705-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/16/2022]
Abstract
This review of the familial tumor syndromes involving the endocrine organs is focused on discussing the main updates on the upcoming fifth edition of the WHO Classification of Endocrine and Neuroendocrine Tumors. This review emphasizes updates on histopathological and molecular genetics aspects of the most important syndromes involving the endocrine organs. We describe the newly defined Familial Cancer Syndromes as MAFA-related, MEN4, and MEN5 as well as the newly reported pathological findings in DICER1 syndrome. We also describe the updates done at the new WHO on the syndromic and non-syndromic familial thyroid diseases. We emphasize the problem of diagnostic criteria, mention the new genes that are possibly involved in this group, and at the same time, touching upon the role of some immunohistochemical studies that could support the diagnosis of some of these conditions. As pathologists play an important role in identifying tumors within a familial cancer syndrome, we highlight the most important clues for raising the suspicious of a syndrome. Finally, we highlight the challenges in defining these entities as well as determining their clinical outcome in comparison with sporadic tumors. Instead of the usual subject review, we present the highlights of the updates on familial cancer syndromes by answering select questions relevant to practicing pathologists.
Collapse
Affiliation(s)
- Vania Nosé
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| | | | - José Manuel Cameselle Teijeiro
- Clinical University Hospital Santiago de Compostela and Medical Faculty, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
23
|
Cleere EF, Martin‐Grace J, Gendre A, Sherlock M, O'Neill JP. Contemporary management of paragangliomas of the head and neck. Laryngoscope Investig Otolaryngol 2022; 7:93-107. [PMID: 35155787 PMCID: PMC8823187 DOI: 10.1002/lio2.706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors typically arising from nonsecretory head and neck parasympathetic ganglia. Historically thought of as aggressive tumors that warranted equally aggressive surgical intervention, evidence has emerged demonstrating that the vast majority of HNPGLs are slow growing and indolent. It is also now recognized that a large proportion of HNPGLs are hereditary with succinate dehydrogenase gene mutations typically implicated. These recent advances have led to significant changes in the way in which clinicians investigate and treat HNPGLs with most now opting for more conservative treatment strategies. However, a proportion of patients present with more aggressive disease and still require nonconservative treatment strategies. Recent studies have sought to determine in which groups of patients the morbidity associated with treatment is justified. We summarize the recent advances in the understanding and management of these tumors and we provide our recommendations regarding the management of HNPGLs.
Collapse
Affiliation(s)
- Eoin F. Cleere
- Department of Otolaryngology‐Head and Neck surgeryBeaumont HospitalDublinIreland
- Royal College of Surgeons in IrelandDublinIreland
| | - Julie Martin‐Grace
- Royal College of Surgeons in IrelandDublinIreland
- Department of EndocrinologyBeaumont HospitalDublinIreland
| | - Adrien Gendre
- Department of Otolaryngology‐Head and Neck surgeryBeaumont HospitalDublinIreland
- Royal College of Surgeons in IrelandDublinIreland
| | - Mark Sherlock
- Royal College of Surgeons in IrelandDublinIreland
- Department of EndocrinologyBeaumont HospitalDublinIreland
| | - James P. O'Neill
- Department of Otolaryngology‐Head and Neck surgeryBeaumont HospitalDublinIreland
- Royal College of Surgeons in IrelandDublinIreland
| |
Collapse
|
24
|
Caliò A, Marletta S, Brunelli M, Martignoni G. WHO 2022 Classification of Kidney Tumors: what is relevant? An update and future novelties for the pathologist. Pathologica 2022; 115:23-31. [PMID: 36645397 DOI: 10.32074/1591-951x-814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 01/17/2023] Open
Abstract
Classification systems reflect our technical abilities in the investigation of tumors and our current theories on tumor development. Herein, by providing a historical perspective on the evolution of classifying renal tumors, we assess the current WHO classification highlighting the novelties and the implications of these changes in daily clinical practice.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | - Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy.,Department of Pathology, Pederzoli Hospital, Peschiera, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Italy.,Department of Pathology, Pederzoli Hospital, Peschiera, Italy
| |
Collapse
|
25
|
Реброва ДВ, Ворохобина НВ, Имянитов ЕН, Русаков ВФ, Краснов ЛМ, Слепцов ИВ, Черников РА, Федоров ЕА, Семенов АА, Чинчук ИК, Саблин ИВ, Алексеев МА, Кулешов ОВ, Федотов ЮН. [Clinical and laboratory features of hereditary pheochromocytoma and paraganglioma]. PROBLEMY ENDOKRINOLOGII 2021; 68:8-17. [PMID: 35262293 PMCID: PMC9761867 DOI: 10.14341/probl12834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
The widespread introduction of genetic testing in recent years has made it possible to determine that more than a third of cases of pheochromocytomas and paragangliomas (PPPGs) are caused by germline mutations. Despite the variety of catecholamine-producing tumors manifestations, there is a sufficient number of clinical and laboratory landmarks that suggest a hereditary genesis of the disease and even a specific syndrome. These include a family history, age of patient, presence of concomitant conditions, and symptoms of the disease. Considering that each of the mutations is associated with certain diseases that often determine tactics of treatment and examination of a patient, e.g. high risk of various malignancies. Awareness of the practitioner on the peculiarities of the course of family forms of PPPGs will allow improving the tactics of managing these patients.The article provides up-to-date information on the prevalence of hereditary PPPGs. The modern views on the pathogenesis of the disease induced by different mutations are presented. The main hereditary syndromes associated with PPPGs are described, including multiple endocrine neoplasia syndrome type 2A and 2B, type 1 neurofibromatosis, von Hippel-Lindau syndrome, hereditary paraganglioma syndrome, as well as clinical and laboratory features of the tumor in these conditions. The main positions on the necessity of genetic screening in patients with PPPGs are given.
Collapse
Affiliation(s)
- Д. В. Реброва
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - Н. В. Ворохобина
- Северо-Западный государственный медицинский университет им. И.И. Мечникова
| | - Е. Н. Имянитов
- Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова
| | - В. Ф. Русаков
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - Л. М. Краснов
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - И. В. Слепцов
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - Р. А. Черников
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - Е. А. Федоров
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - А. А. Семенов
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - И. К. Чинчук
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - И.. В. Саблин
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - М. А. Алексеев
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - О. В. Кулешов
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| | - Ю. Н. Федотов
- Санкт-Петербургский государственный университет, Клиника высоких медицинских технологий им. Н.И. Пирогова
| |
Collapse
|
26
|
Mete O, Pakbaz S, Lerario AM, Giordano TJ, Asa SL. Significance of Alpha-inhibin Expression in Pheochromocytomas and Paragangliomas. Am J Surg Pathol 2021; 45:1264-1273. [PMID: 33826547 DOI: 10.1097/pas.0000000000001715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alpha-inhibin expression has been reported in pheochromocytomas and paragangliomas (PPGLs). We analyzed alpha-inhibin immunohistochemistry in 77 PPGLs (37 pheochromocytomas [PCCs] and 40 paragangliomas) and correlated the results with catecholamine profile, tumor size, Ki-67 labeling index, succinate dehydrogenase B subunit and carbonic anhydrase IX (CAIX) staining, and genetic pathogenesis. PPGLs were classified as pseudohypoxic cluster 1 disease with documented VHL mutation or SDHx mutation or biochemical phenotype, whereas NF1-driven and RET-driven PPGLs and those with a mature secretory (adrenergic or mixed adrenergic and noradrenergic) phenotype were classified as cluster 2 disease. The Cancer Genome Atlas data on INHA expression in PPGLs was examined. Alpha-inhibin was positive in 43 PPGLs (56%). Ki-67 labeling indices were 8.07% and 4.43% in inhibin-positive and inhibin-negative PPGLs, respectively (P<0.05). Alpha-inhibin expression did not correlate with tumor size. Alpha-inhibin was expressed in 92% of SDHx-related and 86% of VHL-related PPGLs. CAIX membranous staining was found in 8 of 51 (16%) tumors, including 1 SDHx-related PCC and all 5 VHL-related PCCs. NF1-driven and RET-driven PPGLs were negative for alpha-inhibin and CAIX. Alpha-inhibin was expressed in 77% of PPGLs with a pseudohypoxia signature, and 20% of PPGLs without a pseudohypoxia signature (P<0.05). PPGLs with a mature secretory phenotype were negative for CAIX. The Cancer Genome Atlas data confirmed higher expression of INHA in cluster 1 than in cluster 2 PPGLs. This study identifies alpha-inhibin as a highly sensitive (90.3%) marker for SDHx/VHL-driven pseudohypoxic PPGLs. Although CAIX has low sensitivity, it is the most specific biomarker of VHL-related pathogenesis. While alpha-inhibin cannot replace succinate dehydrogenase B subunit immunohistochemistry for detection of SDHx-related disease, it adds value in prediction of cluster 1 disease. Importantly, these data emphasize that alpha-inhibin is not a specific marker of adrenal cortical differentiation, as it is also expressed in PCCs.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Endocrine Oncology Site, The Princess Margaret Cancer Centre
| | - Sara Pakbaz
- Department of Pathology, University Health Network
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes
| | - Thomas J Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH
| |
Collapse
|
27
|
Huang LS, Lümmen P, Berry EA. Crystallographic investigation of the ubiquinone binding site of respiratory Complex II and its inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140679. [PMID: 34089891 PMCID: PMC8516616 DOI: 10.1016/j.bbapap.2021.140679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023]
Abstract
The quinone binding site (Q-site) of Mitochondrial Complex II (succinate-ubiquinone oxidoreductase) is the target for a number of inhibitors useful for elucidating the mechanism of the enzyme. Some of these have been developed as fungicides or pesticides, and species-specific Q-site inhibitors may be useful against human pathogens. We report structures of chicken Complex II with six different Q-site inhibitors bound, at resolutions 2.0-2.4 Å. These structures show the common interactions between the inhibitors and their binding site. In every case a carbonyl or hydroxyl oxygen of the inhibitor is H-bonded to Tyr58 in subunit SdhD and Trp173 in subunit SdhB. Two of the inhibitors H-bond Ser39 in subunit SdhC directly, while two others do so via a water molecule. There is a distinct cavity that accepts the 2-substituent of the carboxylate ring in flutolanil and related inhibitors. A hydrophobic "tail pocket" opens to receive a side-chain of intermediate-length inhibitors. Shorter inhibitors fit entirely within the main binding cleft, while the long hydrophobic side chains of ferulenol and atpenin A5 protrude out of the cleft into the bulk lipid region, as presumably does that of ubiquinone. Comparison of mitochondrial and Escherichia coli Complex II shows a rotation of the membrane-anchor subunits by 7° relative to the iron‑sulfur protein. This rotation alters the geometry of the Q-site and the H-bonding pattern of SdhB:His216 and SdhD:Asp57. This conformational difference, rather than any active-site mutation, may be responsible for the different inhibitor sensitivity of the bacterial enzyme.
Collapse
Affiliation(s)
- Li-Shar Huang
- Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, N.Y 13210, USA
| | - Peter Lümmen
- Bayer AG, Crop Science Division, Industrial Park Höchst, Frankfurt/Main, Germany
| | - Edward A Berry
- Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, N.Y 13210, USA.
| |
Collapse
|
28
|
New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol 2021; 34:1392-1424. [PMID: 33664427 DOI: 10.1038/s41379-021-00779-w] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
The Genitourinary Pathology Society (GUPS) reviewed recent advances in renal neoplasia, particularly post-2016 World Health Organization (WHO) classification, to provide an update on existing entities, including diagnostic criteria, molecular correlates, and updated nomenclature. Key prognostic features for clear cell renal cell carcinoma (RCC) remain WHO/ISUP grade, AJCC/pTNM stage, coagulative necrosis, and rhabdoid and sarcomatoid differentiation. Accrual of subclonal genetic alterations in clear cell RCC including SETD2, PBRM1, BAP1, loss of chromosome 14q and 9p are associated with variable prognosis, patterns of metastasis, and vulnerability to therapies. Recent National Comprehensive Cancer Network (NCCN) guidelines increasingly adopt immunotherapeutic agents in advanced RCC, including RCC with rhabdoid and sarcomatoid changes. Papillary RCC subtyping is no longer recommended, as WHO/ISUP grade and tumor architecture better predict outcome. New papillary RCC variants/patterns include biphasic, solid, Warthin-like, and papillary renal neoplasm with reverse polarity. For tumors with 'borderline' features between oncocytoma and chromophobe RCC, a term "oncocytic renal neoplasm of low malignant potential, not further classified" is proposed. Clear cell papillary RCC may warrant reclassification as a tumor of low malignant potential. Tubulocystic RCC should only be diagnosed when morphologically pure. MiTF family translocation RCCs exhibit varied morphologic patterns and fusion partners. TFEB-amplified RCC occurs in older patients and is associated with more aggressive behavior. Acquired cystic disease (ACD) RCC-like cysts are likely precursors of ACD-RCC. The diagnosis of renal medullary carcinoma requires a negative SMARCB1 (INI-1) expression and sickle cell trait/disease. Mucinous tubular and spindle cell carcinoma (MTSCC) can be distinguished from papillary RCC with overlapping morphology by losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22. MTSCC with adverse histologic features shows frequent CDKN2A/2B (9p) deletions. BRAF mutations unify the metanephric family of tumors. The term "fumarate hydratase deficient RCC" ("FH-deficient RCC") is preferred over "hereditary leiomyomatosis and RCC syndrome-associated RCC". A low threshold for FH, 2SC, and SDHB immunohistochemistry is recommended in difficult to classify RCCs, particularly those with eosinophilic morphology, occurring in younger patients. Current evidence does not support existence of a unique tumor subtype occurring after chemotherapy/radiation in early childhood.
Collapse
|
29
|
Sturrock BRH, Macnamara EF, McGuire P, Kruk S, Yang I, Murphy J, Tifft CJ, Gordon‐Lipkin E. Progressive cerebellar atrophy in a patient with complex II and III deficiency and a novel deleterious variant in SDHA: A Counseling Conundrum. Mol Genet Genomic Med 2021; 9:e1692. [PMID: 33960148 PMCID: PMC8222855 DOI: 10.1002/mgg3.1692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Complex II is an essential component of the electron transport chain, linking it with the tricarboxylic acid cycle. Its four subunits are encoded in the nuclear genome, and deleterious variants in these genes, including SDHA (OMIM 600857), are associated with a wide range of symptoms including neurological disease, cardiomyopathy, and neoplasia (paraganglioma-pheochromocytomas (PGL/PCC), and gastrointestinal stromal tumors). Deleterious variants of SDHA are most frequently associated with Leigh and Leigh-like syndromes. METHODS AND RESULTS Here, we describe a case of a 9-year-old boy with tremor, nystagmus, hypotonia, developmental delay, significant ataxia, and progressive cerebellar atrophy. He was found to have biallelic variants in SDHA, a known pathogenic variant (c.91C>T (p.R31*)), and a variant of unknown significance (c.454G>A (p.E152K)). Deficient activity of complexes II and III was detected in fibroblasts from the patient consistent with a diagnosis of a respiratory chain disorder. CONCLUSION We, therefore, consider whether c.454G>A (p.E152K) is, indeed, a pathogenic variant, and what implications it has for family members who carry the same variant.
Collapse
Affiliation(s)
- Beattie R. H. Sturrock
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
- Brighton and Sussex University Hospitals NHS TrustBrightonEngland
| | - Ellen F. Macnamara
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
| | - Peter McGuire
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Shannon Kruk
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Ivan Yang
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Jennifer Murphy
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
| | - Cyndi J. Tifft
- National Institutes of Health Undiagnosed Diseases ProgramCommon FundOffice of the DirectorNIHBethesdaMDUSA
- Office of the Clinical DirectorNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Eliza Gordon‐Lipkin
- Metabolism, Infection and Immunity SectionNational Human Genome Research InstituteNIHBethesdaMDUSA
| |
Collapse
|
30
|
Abstract
Abdominal paragangliomas and pheochromocytomas (PPGLs) are rare neuroendocrine tumors of the infradiaphragmatic paraganglia and adrenal medulla, respectively. Although few pathologists outside of endocrine tertiary centers will ever diagnose such a lesion, the tumors are well known through the medical community-possible due to a combination of the sheer rarity, their often-spectacular presentation due to excess catecholamine secretion as well as their unrivaled coupling to constitutional susceptibility gene mutations and hereditary syndromes. All PPGLs are thought to harbor malignant potential, and therefore pose several challenges to the practicing pathologist. Specifically, a responsible diagnostician should recognize both the capacity and limitations of histological, immunohistochemical, and molecular algorithms to pinpoint high risk for future metastatic disease. This focused review aims to provide the surgical pathologist with a condensed update regarding the current strategies available in order to deliver an accurate prognostication of these enigmatic lesions.
Collapse
Affiliation(s)
- C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
31
|
Pitsava G, Settas N, Faucz FR, Stratakis CA. Carney Triad, Carney-Stratakis Syndrome, 3PAS and Other Tumors Due to SDH Deficiency. Front Endocrinol (Lausanne) 2021; 12:680609. [PMID: 34012423 PMCID: PMC8126684 DOI: 10.3389/fendo.2021.680609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Succinate dehydrogenase (SDH) is a key respiratory enzyme that links Krebs cycle and electron transport chain and is comprised of four subunits SDHA, SDHB, SDHC and SDHD. All SDH-deficient tumors are caused by or secondary to loss of SDH activity. As many as half of the familial cases of paragangliomas (PGLs) and pheochromocytomas (PHEOs) are due to mutations of the SDHx subunits. Gastrointestinal stromal tumors (GISTs) associated with SDH deficiency are negative for KIT/PDGFRA mutations and present with distinctive clinical features such as early onset (usually childhood or adolescence) and almost exclusively gastric location. SDH-deficient GISTs may be part of distinct clinical syndromes, Carney-Stratakis syndrome (CSS) or dyad and Carney triad (CT). CSS is also known as the dyad of GIST and PGL; it affects both genders equally and is inherited in an autosomal dominant manner with incomplete penetrance. CT is a very rare disease; PGL, GIST and pulmonary chondromas constitute CT which shows female predilection and may be a mosaic disorder. Even though there is some overlap between CT and CSS, as both are due to SDH deficiency, CSS is caused by inactivating germline mutations in genes encoding for the SDH subunits, while CT is mostly caused by a specific pattern of methylation of the SDHC gene and may be due to germline mosaicism of the responsible genetic defect.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nikolaos Settas
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Fabio R. Faucz,
| | - Constantine A. Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
MacFarlane J, Seong KC, Bisambar C, Madhu B, Allinson K, Marker A, Warren A, Park SM, Giger O, Challis BG, Maher ER, Casey RT. A review of the tumour spectrum of germline succinate dehydrogenase gene mutations: Beyond phaeochromocytoma and paraganglioma. Clin Endocrinol (Oxf) 2020; 93:528-538. [PMID: 32686200 DOI: 10.1111/cen.14289] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
The citric acid cycle, also known as the Krebs cycle, plays an integral role in cellular metabolism and aerobic respiration. Mutations in genes encoding the citric acid cycle enzymes succinate dehydrogenase, fumarate hydratase and malate dehydrogenase all predispose to hereditary tumour syndromes. The succinate dehydrogenase enzyme complex (SDH) couples the oxidation of succinate to fumarate in the citric acid cycle and the reduction of ubiquinone to ubiquinol in the electron transport chain. A loss of function in the succinate dehydrogenase (SDH) enzyme complex is most commonly caused by an inherited mutation in one of the four SDHx genes (SDHA, SDHB, SDHC and SDHD). This mechanism was first implicated in familial phaeochromocytoma and paraganglioma. However, over the past two decades the spectrum of tumours associated with SDH deficiency has been extended to include gastrointestinal stromal tumours (GIST), renal cell carcinoma (RCC) and pituitary adenomas. The aim of this review is to describe the extended tumour spectrum associated with SDHx gene mutations and to consider how functional tests may help to establish the role of SDHx mutations in new or unexpected tumour phenotypes.
Collapse
Affiliation(s)
- James MacFarlane
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Keat Cheah Seong
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Chad Bisambar
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Basetti Madhu
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Kieren Allinson
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Alison Marker
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Anne Warren
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Soo-Mi Park
- Department of Clinical Genetics, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Olivier Giger
- Department of Pathology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Pathology, Cambridge University, Cambridge, UK
| | - Benjamin G Challis
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Translational Science & Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| | - Ruth T Casey
- Department of Endocrinology, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge University, Cambridge, UK
| |
Collapse
|
33
|
Huang YC, Chang HH, Chen MH, Huang KH, Li AFY, Lin CH, Shyr YM, Fang WL. Somatic SDHA mutations in paragangliomas in siblings: Case report of 2 cases. Medicine (Baltimore) 2020; 99:e22497. [PMID: 33031286 PMCID: PMC7544306 DOI: 10.1097/md.0000000000022497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Paragangliomas (PGLs) are rare neuroendocrine tumors that are strongly influenced by genetics, and succinate dehydrogenase-deficient PGLs appear to constitute one of the most important categories. Interestingly, somatic PGLs only possess genomic alterations involving the SDHB and SDHD subunits, and no SDHA alterations have been described. Here, we are presenting the clinical and genetic analyses of 2 cases with the first somatic SDHA variant identified in PGLs. PATIENT CONCERNS Here, we reported 2 family members with the diagnosis of PGL. Patient 1 is a 55-year-old woman with a functionally perigastric PGL that co-occurred with a gastric gastrointestinal stromal tumor (GIST), and patient 2 is a 43-year-old woman with a nonfunctionally pericardial PGL, who was the younger sister of the first patient. DIAGNOSES Imaging surveys of the 2 cases depicted the presence of a perigastric and a pericardial mass, respectively. A diagnosis of paragangliomas was established by immunohistochemistry (IHC). INTERVENTIONS Both patients underwent single-stage resection of the lesion after preoperative oral α-adrenoceptor therapy for 2 weeks. We later performed comprehensive genomic profiling on the tumor samples, including PGL and GIST from patient 1 and PGL from patient 2, and searched for novel actionable mutations, including in all succinate dehydrogenase subunits, as the IHC results were negative for SDHB. OUTCOMES Both patients had an uneventful recovery after surgery and the sequencing showed a novel somatic variant in the SDHA gene on chromosome 5q11 (c.1945_1946delTT). Regular follow-up with biochemical testing and image studies showed no evidence of recurrence after a year for patient 1 and 6 years for patient 2. LESSONS PGLs often lead to considerable diagnostic difficulty due to their multiple anatomical locations and variable symptoms, as presented by our cases. The comprehensive use of images and plasma/urine catecholamine measurement can aid the diagnosis of PGLs. In addition, our findings also demonstrate the usefulness and importance of genetic analysis of SDHA mutations in patients exhibiting SDHB IHC-negative PGL. Additional studies utilizing comprehensive genomic profiling are needed to identify the group of PGLs harboring this SDHA genomic alteration.
Collapse
Affiliation(s)
- Yen-Chun Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital
- School of Medicine, National Yang-Ming University
| | - Hsiao-Huang Chang
- School of Medicine, National Yang-Ming University
- Division of Cardiovascular Surgery, Department of Surgery
| | - Ming-Huang Chen
- School of Medicine, National Yang-Ming University
- Department of Oncology, Center of Immuno-Oncology
| | - Kuo-Hung Huang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital
- School of Medicine, National Yang-Ming University
| | - Anna Fen-Yau Li
- School of Medicine, National Yang-Ming University
- Department of Pathology, Taipei Veterans General Hospital
| | - Chien-Hsing Lin
- Genome Research Center, National Yang-Ming University, Taipei City, Taiwan
| | - Yi-Ming Shyr
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital
- School of Medicine, National Yang-Ming University
| | - Wen-Liang Fang
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital
- School of Medicine, National Yang-Ming University
| |
Collapse
|
34
|
Immunohistochemistry and Mutation Analysis of SDHx Genes in Carotid Paragangliomas. Int J Mol Sci 2020; 21:ijms21186950. [PMID: 32971818 PMCID: PMC7576476 DOI: 10.3390/ijms21186950] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Carotid paragangliomas (CPGLs) are rare neuroendocrine tumors often associated with mutations in SDHx genes. The immunohistochemistry of succinate dehydrogenase (SDH) subunits has been considered a useful instrument for the prediction of SDHx mutations in paragangliomas/pheochromocytomas. We compared the mutation status of SDHx genes with the immunohistochemical (IHC) staining of SDH subunits in CPGLs. To identify pathogenic/likely pathogenic variants in SDHx genes, exome sequencing data analysis among 42 CPGL patients was performed. IHC staining of SDH subunits was carried out for all CPGLs studied. We encountered SDHx variants in 38% (16/42) of the cases in SDHx genes. IHC showed negative (5/15) or weak diffuse (10/15) SDHB staining in most tumors with variants in any of SDHx (94%, 15/16). In SDHA-mutated CPGL, SDHA expression was completely absent and weak diffuse SDHB staining was detected. Positive immunoreactivity for all SDH subunits was found in one case with a variant in SDHD. Notably, CPGL samples without variants in SDHx also demonstrated negative (2/11) or weak diffuse (9/11) SDHB staining (42%, 11/26). Obtained results indicate that SDH immunohistochemistry does not fully reflect the presence of mutations in the genes; diagnostic effectiveness of this method was 71%. However, given the high sensitivity of SDHB immunohistochemistry, it could be used for initial identifications of patients potentially carrying SDHx mutations for recommendation of genetic testing.
Collapse
|
35
|
Kudryavtseva AV, Kalinin DV, Pavlov VS, Savvateeva MV, Fedorova MS, Pudova EA, Kobelyatskaya AA, Golovyuk AL, Guvatova ZG, Razmakhaev GS, Demidova TB, Simanovsky SA, Slavnova EN, Poloznikov AА, Polyakov AP, Melnikova NV, Dmitriev AA, Krasnov GS, Snezhkina AV. Mutation profiling in eight cases of vagal paragangliomas. BMC Med Genomics 2020; 13:115. [PMID: 32948195 PMCID: PMC7500026 DOI: 10.1186/s12920-020-00763-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Background Vagal paragangliomas (VPGLs) belong to a group of rare head and neck neuroendocrine tumors. VPGLs arise from the vagus nerve and are less common than carotid paragangliomas. Both diagnostics and therapy of the tumors raise significant challenges. Besides, the genetic and molecular mechanisms behind VPGL pathogenesis are poorly understood. Methods The collection of VPGLs obtained from 8 patients of Russian population was used in the study. Exome library preparation and high-throughput sequencing of VPGLs were performed using an Illumina technology. Results Based on exome analysis, we identified pathogenic/likely pathogenic variants of the SDHx genes, frequently mutated in paragangliomas/pheochromocytomas. SDHB variants were found in three patients, whereas SDHD was mutated in two cases. Moreover, likely pathogenic missense variants were also detected in SDHAF3 and SDHAF4 genes encoding for assembly factors for the succinate dehydrogenase (SDH) complex. In a patient, we found a novel variant of the IDH2 gene that was predicted as pathogenic by a series of algorithms used (such as SIFT, PolyPhen2, FATHMM, MutationTaster, and LRT). Additionally, pathogenic/likely pathogenic variants were determined for several genes, including novel genes and some genes previously reported as associated with different types of tumors. Conclusions Results indicate a high heterogeneity among VPGLs, however, it seems that driver events in most cases are associated with mutations in the SDHx genes and SDH assembly factor-coding genes that lead to disruptions in the SDH complex.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| | - Dmitry V Kalinin
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladislav S Pavlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria V Savvateeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Pudova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexander L Golovyuk
- Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zulfiya G Guvatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Razmakhaev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana B Demidova
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Simanovsky
- A. N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Elena N Slavnova
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey А Poloznikov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey P Polyakov
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
36
|
Carney-Stratakis Syndrome presenting as occult mediastinal paraganglioma. Radiol Case Rep 2020; 15:1528-1531. [PMID: 32670454 PMCID: PMC7339017 DOI: 10.1016/j.radcr.2020.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 12/04/2022] Open
Abstract
Carney-Stratakis Syndrome is defined as the combination of a paraganglioma and a gastrointestinal stromal tumor. This is recognized as unique from the more commonly known Carney Triad, which in addition to the above also has a pulmonary chondroma present. We present a case of Carney-Stratakis Syndrome which highlights the value of multimodality imaging in arriving at the diagnosis, as well as the role of genetic testing for definitively differentiating it from the more commonly recognized Carney Triad.
Collapse
|
37
|
Fullerton M, McFarland R, Taylor RW, Alston CL. The genetic basis of isolated mitochondrial complex II deficiency. Mol Genet Metab 2020; 131:53-65. [PMID: 33162331 PMCID: PMC7758838 DOI: 10.1016/j.ymgme.2020.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022]
Abstract
Mitochondrial complex II (succinate:ubiquinone oxidoreductase) is the smallest complex of the oxidative phosphorylation system, a tetramer of just 140 kDa. Despite its diminutive size, it is a key complex in two coupled metabolic pathways - it oxidises succinate to fumarate in the tricarboxylic acid cycle and the electrons are used to reduce FAD to FADH2, ultimately reducing ubiquinone to ubiquinol in the respiratory chain. The biogenesis and assembly of complex II is facilitated by four ancillary proteins, all of which are autosomally-encoded. Numerous pathogenic defects have been reported which describe two broad clinical manifestations, either susceptibility to cancer in the case of single, heterozygous germline variants, or a mitochondrial disease presentation, almost exclusively due to bi-allelic recessive variants and associated with an isolated complex II deficiency. Here we present a compendium of pathogenic gene variants that have been documented in the literature in patients with an isolated mitochondrial complex II deficiency. To date, 61 patients are described, harbouring 32 different pathogenic variants in four distinct complex II genes: three structural subunit genes (SDHA, SDHB and SDHD) and one assembly factor gene (SDHAF1). Many pathogenic variants result in a null allele due to nonsense, frameshift or splicing defects however, the missense variants that do occur tend to induce substitutions at highly conserved residues in regions of the proteins that are critical for binding to other subunits or substrates. There is phenotypic heterogeneity associated with defects in each complex II gene, similar to other mitochondrial diseases.
Collapse
Affiliation(s)
- Millie Fullerton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK; NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
38
|
Tretiakova MS. Renal Cell Tumors: Molecular Findings Reshaping Clinico-pathological Practice. Arch Med Res 2020; 51:799-816. [PMID: 32839003 DOI: 10.1016/j.arcmed.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, the number of subtypes of renal epithelial cell neoplasia has grown. This growth has resulted from detailed histological and immunohistochemical characterization of these tumors and their correlation with clinical outcomes. Distinctive molecular phenotypes have validated the unique nature of many of these tumors. This growth of unique renal neoplasms has continued after the 2016 World Health Organization (WHO) Classification of Tumours. A consequence is that both the pathologists who diagnose the tumors and the clinicians who care for these patients are confronted with a bewildering array of renal cell carcinoma variants. Many of these variants have important clinical features, i.e. familial or syndromic associations, genomics alterations that can be targeted with systemic therapy, and benignancy of tumors previously classified as carcinomas. Our goal in the review is to provide a practical guide to help recognize these variants, based on small and distinct sets of histological features and limited numbers of immunohistochemical stains, supplemented, as necessary, with molecular features.
Collapse
Affiliation(s)
- Maria S Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
39
|
Williamson SR, Gill AJ, Argani P, Chen YB, Egevad L, Kristiansen G, Grignon DJ, Hes O. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: III: Molecular Pathology of Kidney Cancer. Am J Surg Pathol 2020; 44:e47-e65. [PMID: 32251007 PMCID: PMC7289677 DOI: 10.1097/pas.0000000000001476] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) subtypes are increasingly being discerned via their molecular underpinnings. Frequently this can be correlated to histologic and immunohistochemical surrogates, such that only simple targeted molecular assays, or none at all, are needed for diagnostic confirmation. In clear cell RCC, VHL mutation and 3p loss are well known; however, other genes with emerging important roles include SETD2, BAP1, and PBRM1, among others. Papillary RCC type 2 is now known to include likely several different molecular entities, such as fumarate hydratase (FH) deficient RCC. In MIT family translocation RCC, an increasing number of gene fusions are now described. Some TFE3 fusion partners, such as NONO, GRIPAP1, RBMX, and RBM10 may show a deceptive fluorescence in situ hybridization result due to the proximity of the genes on the same chromosome. FH and succinate dehydrogenase deficient RCC have implications for patient counseling due to heritable syndromes and the aggressiveness of FH-deficient RCC. Immunohistochemistry is increasingly available and helpful for recognizing both. Emerging tumor types with strong evidence for distinct diagnostic entities include eosinophilic solid and cystic RCC and TFEB/VEGFA/6p21 amplified RCC. Other emerging entities that are less clearly understood include TCEB1 mutated RCC, RCC with ALK rearrangement, renal neoplasms with mutations of TSC2 or MTOR, and RCC with fibromuscular stroma. In metastatic RCC, the role of molecular studies is not entirely defined at present, although there may be an increasing role for genomic analysis related to specific therapy pathways, such as for tyrosine kinase or MTOR inhibitors.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mutation
- Neoplasm Metastasis
- Neoplastic Syndromes, Hereditary/diagnosis
- Neoplastic Syndromes, Hereditary/genetics
- Neoplastic Syndromes, Hereditary/metabolism
- Neoplastic Syndromes, Hereditary/pathology
- Pathology, Clinical
- Pathology, Molecular
- Prognosis
- Societies, Medical
- Urology
Collapse
Affiliation(s)
- Sean R Williamson
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Anthony J Gill
- NSW Health Pathology, Department of Anatomical Pathology
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - David J Grignon
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Ondrej Hes
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Pilsen, Czechia
| |
Collapse
|
40
|
Wallace PW, Conrad C, Brückmann S, Pang Y, Caleiras E, Murakami M, Korpershoek E, Zhuang Z, Rapizzi E, Kroiss M, Gudziol V, Timmers HJ, Mannelli M, Pietzsch J, Beuschlein F, Pacak K, Robledo M, Klink B, Peitzsch M, Gill AJ, Tischler AS, de Krijger RR, Papathomas T, Aust D, Eisenhofer G, Richter S. Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas. J Pathol 2020; 251:378-387. [PMID: 32462735 DOI: 10.1002/path.5472] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/28/2020] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours with a hereditary background in over one-third of patients. Mutations in succinate dehydrogenase (SDH) genes increase the risk for PPGLs and several other tumours. Mutations in subunit B (SDHB) in particular are a risk factor for metastatic disease, further highlighting the importance of identifying SDHx mutations for patient management. Genetic variants of unknown significance, where implications for the patient and family members are unclear, are a problem for interpretation. For such cases, reliable methods for evaluating protein functionality are required. Immunohistochemistry for SDHB (SDHB-IHC) is the method of choice but does not assess functionality at the enzymatic level. Liquid chromatography-mass spectrometry-based measurements of metabolite precursors and products of enzymatic reactions provide an alternative method. Here, we compare SDHB-IHC with metabolite profiling in 189 tumours from 187 PPGL patients. Besides evaluating succinate:fumarate ratios (SFRs), machine learning algorithms were developed to establish predictive models for interpreting metabolite data. Metabolite profiling showed higher diagnostic specificity compared to SDHB-IHC (99.2% versus 92.5%, p = 0.021), whereas sensitivity was comparable. Application of machine learning algorithms to metabolite profiles improved predictive ability over that of the SFR, in particular for hard-to-interpret cases of head and neck paragangliomas (AUC 0.9821 versus 0.9613, p = 0.044). Importantly, the combination of metabolite profiling with SDHB-IHC has complementary utility, as SDHB-IHC correctly classified all but one of the false negatives from metabolite profiling strategies, while metabolite profiling correctly classified all but one of the false negatives/positives from SDHB-IHC. From 186 tumours with confirmed status of SDHx variant pathogenicity, the combination of the two methods resulted in 185 correct predictions, highlighting the benefits of both strategies for patient management. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Paal W Wallace
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Catleen Conrad
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sascha Brückmann
- Institute of Pathology, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ying Pang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Eduardo Caleiras
- Histopathology Core Unit, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro, Madrid, Spain
| | - Masanori Murakami
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Esther Korpershoek
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zhengping Zhuang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matthias Kroiss
- Department of Internal Medicine, Division of Endocrinology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Volker Gudziol
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Plastische Operationen, Städtisches Klinikum Dresden, Akademisches Lehrkrankenhaus der Technischen Universität Dresden, Dresden, Germany.,Departments of Otorhinolaryngology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Henri Jlm Timmers
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Massimo Mannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Medizinische Klinik and Poliklinik IV, Ludwig-Maximilians-Universität München, Munich, Germany.,Department for Endocrinology, Diabetology and Clinical Nutrition, UniversitätsSpital Zürich, Zurich, Switzerland
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, CNIO, Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Barbara Klink
- Institute for Clinical Genetics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anthony J Gill
- Royal North Shore Hospital, Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Sydney, Australia.,School of Medicine, University of Sydney, Sydney, Australia.,NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, Australia
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts University School of Medicine, Boston, MA, USA
| | - Ronald R de Krijger
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Daniela Aust
- Institute of Pathology, Tumor and Normal Tissue Bank of the UCC/NCT Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medicine III, University Hospital Dresden, Dresden, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Powers JF, Cochran B, Baleja JD, Sikes HD, Pattison AD, Zhang X, Lomakin I, Shepard-Barry A, Pacak K, Moon SJ, Langford TF, Stein KT, Tothill RW, Ouyang Y, Tischler AS. A xenograft and cell line model of SDH-deficient pheochromocytoma derived from Sdhb+/- rats. Endocr Relat Cancer 2020; 27:337-354. [PMID: 32252027 PMCID: PMC7219221 DOI: 10.1530/erc-19-0474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Tumors caused by loss-of-function mutations in genes encoding TCA cycle enzymes have been recently discovered and are now of great interest. Mutations in succinate dehydrogenase (SDH) subunits cause pheochromocytoma/paraganglioma (PCPG) and syndromically associated tumors, which differ phenotypically and clinically from more common SDH-intact tumors of the same types. Consequences of SDH deficiency include rewired metabolism, pseudohypoxic signaling and altered redox balance. PCPG with SDHB mutations are particularly aggressive, and development of treatments has been hampered by lack of valid experimental models. Attempts to develop mouse models have been unsuccessful. Using a new strategy, we developed a xenograft and cell line model of SDH-deficient pheochromocytoma from rats with a heterozygous germline Sdhb mutation. The genome, transcriptome and metabolome of this model, called RS0, closely resemble those of SDHB-mutated human PCPGs, making it the most valid model now available. Strategies employed to develop RS0 may be broadly applicable to other SDH-deficient tumors.
Collapse
Affiliation(s)
- James F Powers
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
- Correspondence should be addressed to J F Powers:
| | - Brent Cochran
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - James D Baleja
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hadley D Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew D Pattison
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Xue Zhang
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Inna Lomakin
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Annette Shepard-Barry
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver Division National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Sun Jin Moon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Troy F Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kassi Taylor Stein
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Richard W Tothill
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Martins RG, Cunha N, Simões H, Matos MJ, Silva J, Torres I, Rodrigues F, Leite V, Teixeira MR, Bugalho MJ. Surveillance of succinate dehydrogenase gene mutation carriers: Insights from a nationwide cohort. Clin Endocrinol (Oxf) 2020; 92:545-553. [PMID: 32181896 DOI: 10.1111/cen.14184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Mutations in the genes coding for succinate dehydrogenase (SDHx) are the most frequent germline alterations in pheochromocytomas and paragangliomas. Evidence for the advantages associated with presymptomatic screening for SDHx mutation carriers is scarce. This study describes a nationwide cohort of these mutation carriers and aims to compare patients with clinical manifestations of the disease and those diagnosed through genetic screening. DESIGN Cross-sectional study. PATIENTS SDHx mutation carriers (n = 118) followed through the Portuguese Oncology referral centres: 41 probands and 77 nonprobands. MEASUREMENTS All participants were subjected to biochemical and body imaging examinations for a complete assessment of the extent and spread of disease. Clinical data obtained this way were further analysed. RESULTS The mean age of this cohort was 44.5 ± 17.4 years, and more than half carried the same founder SDHB mutation. About 50.8% of the mutation carriers developed pheochromocytomas or paragangliomas. Compared to patients diagnosed through genetic screening, those diagnosed clinically were characterized by larger tumours (P < .001), more frequent metastases (P = .024), were more frequently subjected to surgery (P = .011) and radiotherapy (P = .013), and had worse outcomes, such as macroscopic positive margins (P = .034). Persistent and/or unresectable disease and disease-related mortality were also more frequent in symptomatic patients compared to those diagnosed through genetic screening (P = .014). CONCLUSIONS In this nationwide cohort study, a large proportion of mutation carriers were found to develop SDHx-related neoplasia. Genetic testing and subsequent follow-up resulted in the diagnosis of smaller and nonmetastatic tumours, fewer treatment procedures, fewer complications and greater number of disease-free patients.
Collapse
Affiliation(s)
- Raquel G Martins
- Endocrinology Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, School of Medicine, University of Porto, Porto, Portugal
- Research Centre, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Nuno Cunha
- Clinical Laboratory Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | - Helder Simões
- Endocrinology Department, Portuguese Oncology Institute of Lisbon, Lisbon, Portugal
- Faculty of Medical Sciences, Nova Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Maria João Matos
- Endocrinology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - João Silva
- Genetics Department and Research Centre, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Isabel Torres
- Endocrinology Department, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Fernando Rodrigues
- Endocrinology Department, Portuguese Oncology Institute of Coimbra, Coimbra, Portugal
| | - Valeriano Leite
- Endocrinology Department, Portuguese Oncology Institute of Lisbon, Lisbon, Portugal
- Faculty of Medical Sciences, Nova Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - Manuel R Teixeira
- Genetics Department and Research Centre, Portuguese Oncology Institute of Porto, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Maria João Bugalho
- Endocrinology, Diabetes and Metabolism Department, CHULN-Hospital Santa Maria, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
43
|
Withey SJ, Perrio S, Christodoulou D, Izatt L, Carroll P, Velusamy A, Obholzer R, Lewington V, Jacques AET. Imaging Features of Succinate Dehydrogenase-deficient Pheochromocytoma-Paraganglioma Syndromes. Radiographics 2020; 39:1393-1410. [PMID: 31498738 DOI: 10.1148/rg.2019180151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Pheochromocytoma (PC) and paraganglioma (PGL) are rare neuroendocrine tumors that occur throughout the body from the base of the skull to the pelvis. Sympathetic catecholamine-secreting tumors may be associated with hyperadrenergic symptoms and long-term morbidity if they are untreated. Typically biochemically silent, head and neck PGLs may result in cranial nerve palsies and symptoms due to localized mass effect. Tumors can arise sporadically or as part of an inheritable PC-PGL syndrome. Up to 40% of tumors are recognized to be associated with germline mutations in an increasing array of susceptibility genes, including those that appear to arise sporadically. Most commonly, up to 25% of all PC-PGLs are associated with mutations in one of the succinate dehydrogenase (SDH) enzyme subunit genes. The resulting familial PC-PGL syndrome varies according to the affected enzyme subunit (most commonly SDHB and SDHD mutations) with respect to tumor prevalence, location, age of onset, and risk of malignancy. Patients with SDH enzyme mutations have increased lifetime risk of developing multifocal tumors and malignancy. Early recognition of individuals at high risk, genetic testing, screening of family members, and lifelong surveillance programs are recommended, but not without health, economic, and psychologic implications. Anatomic and functional imaging is key to diagnosis, staging, treatment planning, and lifelong surveillance of these individuals. Radiologists must be aware of the imaging appearance of these varied tumors.©RSNA, 2019.
Collapse
Affiliation(s)
- Samuel Joseph Withey
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Stephen Perrio
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Dimitra Christodoulou
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Louise Izatt
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Paul Carroll
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Anand Velusamy
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Rupert Obholzer
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Valerie Lewington
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| | - Audrey Eleanor Therese Jacques
- From the Departments of Radiology (S.J.W., S.P., D.C., A.E.T.J.), Genetics (L.I.), Endocrinology (P.C., A.V.), Ear, Nose, and Throat Surgery (R.O.), and Nuclear Medicine (V.L.), Guy's and St Thomas' National Health Service Foundation Trust, St Thomas' Hospital, Level 1, Lambeth Wing, London SE1 7EH, England; and Division of Imaging Sciences and Biomedical Engineering, King's College London, London, England (V.L.)
| |
Collapse
|
44
|
[Pathologist contribution in the diagnosis of hereditary predisposition to paranganglioma and pheochromocytoma]. Ann Pathol 2020; 40:134-141. [PMID: 32146049 DOI: 10.1016/j.annpat.2020.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 11/20/2022]
Abstract
Hereditary predispositions are responsible for more than 30% of or paraganglioma. Their identification is essential to optimize medical care and to offer an appropriate screening to relatives. To date, there are more than 15 known paraganglioma/pheochromocytoma predisposing genes. The most frequently involved are those encoding the succinate dehydrogenase (SDHx), accounting for half of cases and the VHL gene, causing the Von Hippel Lindau syndrome and representing approximately 20% of genetically determined cases. Patients with SDHB genes mutations have a higher risk of metastatic disease. An oncogenetic counseling is recommended to all patients developing one or several paragangliomas, isolated or associated with other tumors. Apart from the clinical presentation and in particular the syndromic forms characterized by specific tumor spectra, there is no validated morphological criterion allowing to suspect a hereditary form. On the other hand, pathologists have now access to several immunohistochemical tools allowing the identification of some hereditary forms, in particular those linked to the SDHx, VHL and FH genes. Thus, the loss of expression in immunohistochemistry of the SDHB or FH proteins orientates respectively, towards SDHx and FH genes, while the membrane expression of carbonic anhydrase IX (CA-IX) is a sensitive and specific tool pointing towards a VHL anomaly. Other immunohistochemical markers are under evaluation. A systematic SDHB immunohistochemical staining is recommended on all paragangliomas/pheochromocytomas in order to allow an early detection of the most common hereditary forms and to contribute to the interpretation of the genetic results in these patients seen in oncogenetics consultation.
Collapse
|
45
|
Manojlovic-Gacic E, Rostami E, Karavitaki N, Casar-Borota O. Histopathology of Parasellar Neoplasms. Neuroendocrinology 2020; 110:740-752. [PMID: 32155632 PMCID: PMC7490502 DOI: 10.1159/000507084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023]
Abstract
The anatomical and histological complexity of the parasellar region as well as the presence of embryonic remnants determine the huge diversity of parasellar neoplasms. Some of them are only located in the parasellar region, whereas others can occur elsewhere, within or outside the central nervous system. Their spectrum ranges from histologically benign and low-grade malignant to high-grade malignant tumours. Although rare, metastases can pose differential diagnostic dilemmas. The severity of the clinical picture, the challenges of surgery and the risk of adverse sequelae related to surgery or radiotherapy make parasellar tumours interesting entities for the clinicians irrespective of their histological malignancy grade. Due to the different cell origins of parasellar tumours, the World Health Organization classification system does not categorise them as a distinct group. Detailed criteria for classification and malignancy grading are presented in the classification systems covering central nervous system tumours, haematological malignancies and tumours of the soft tissue and bone. In the last few years, molecular genetic features have been integrated into the diagnosis of several types of the parasellar tumours enhancing diagnostic accuracy and providing information of the value for targeting therapies. In this review, we will present histopathological and molecular genetic features, updated classification criteria and recent advances in the diagnostics and rationale for novel pharmacological therapies of selected types of parasellar neoplasms.
Collapse
Affiliation(s)
| | - Elham Rostami
- Section of Neurosurgery, Department of Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Niki Karavitaki
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden,
- Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden,
| |
Collapse
|
46
|
Moosavi B, Zhu XL, Yang WC, Yang GF. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur J Cell Biol 2020; 99:151057. [DOI: 10.1016/j.ejcb.2019.151057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/19/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
|
47
|
Carbonic anhydrase 9 immunohistochemistry as a tool to predict or validate germline and somatic VHL mutations in pheochromocytoma and paraganglioma-a retrospective and prospective study. Mod Pathol 2020; 33:57-64. [PMID: 31383958 DOI: 10.1038/s41379-019-0343-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/08/2022]
Abstract
The development of pheochromocytomas and paragangliomas is strongly linked to the presence of germline mutations in more than 15 predisposing genes. Among them, germline and somatic VHL mutations account for ~10% of all cases. In contrast with SDHA and SDHB immunohistochemistries that are routinely used to validate SDHx gene mutations, there is no such tool available for VHL mutations. The aim of this study was to evaluate whether CA9 immunostaining could be used as a tool to predict the presence or validate the pathogenicity of VHL gene mutations in paraganglioma. Immunohistochemistry for CA9 was performed on 207 tumors. A retrospective series of 100 paragangliomas with known mutation status for paraganglioma susceptibility genes was first investigated. Then, a prospective series of 107 paragangliomas was investigated for CA9 immunostaining followed by germline and/or somatic genetic testing of all paraganglioma susceptibility genes by next-generation sequencing. Cytosolic CA9 protein expression was heterogeneous in the different samples. However, we observed that a membranous CA9 staining was almost exclusively observed in VHL-related cases. Forty two of 48 (88%) VHL-mutated samples showed a CA9 membranous immunostaining. Positive cells were either isolated, varying from 1 or 2 cells (5% of cases) to 10-20 cells per tumor block (35% of cases), grouped in areas of focal positivity representing between 1 and 20% of the tissue section (35% of cases), or widely distributed on 80-100% of the tumor sections (25% of samples). In contrast, 142/159 (91%) of non-VHL-mutated tumors presented no membrane CA9 localization. Our results demonstrate that VHL gene mutations can be predicted or validated reliably by an easy-to-perform and low-cost immunohistochemical procedure. CA9 immunohistochemistry on paragangliomas will improve the diagnosis of VHL-related disease, which is important for the surveillance and therapeutic management of paraganglioma patients, and in case of germline mutation, their family members.
Collapse
|
48
|
Peng S, Zhang J, Tan X, Huang Y, Xu J, Silk N, Zhang D, Liu Q, Jiang J. The VHL/HIF Axis in the Development and Treatment of Pheochromocytoma/Paraganglioma. Front Endocrinol (Lausanne) 2020; 11:586857. [PMID: 33329393 PMCID: PMC7732471 DOI: 10.3389/fendo.2020.586857] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells in the adrenal medulla (PCCs) or extra-adrenal sympathetic or parasympathetic paraganglia (PGLs). About 40% of PPGLs result from germline mutations and therefore they are highly inheritable. Although dysfunction of any one of a panel of more than 20 genes can lead to PPGLs, mutations in genes involved in the VHL/HIF axis including PHD, VHL, HIF-2A (EPAS1), and SDHx are more frequently found in PPGLs. Multiple lines of evidence indicate that pseudohypoxia plays a crucial role in the tumorigenesis of PPGLs, and therefore PPGLs are also known as metabolic diseases. However, the interplay between VHL/HIF-mediated pseudohypoxia and metabolic disorder in PPGLs cells is not well-defined. In this review, we will first discuss the VHL/HIF axis and genetic alterations in this axis. Then, we will dissect the underlying mechanisms in VHL/HIF axis-driven PPGL pathogenesis, with special attention paid to the interplay between the VHL/HIF axis and cancer cell metabolism. Finally, we will summarize the currently available compounds/drugs targeting this axis which could be potentially used as PPGLs treatment, as well as their underlying pharmacological mechanisms. The overall goal of this review is to better understand the role of VHL/HIF axis in PPGLs development, to establish more accurate tools in PPGLs diagnosis, and to pave the road toward efficacious therapeutics against metastatic PPGLs.
Collapse
Affiliation(s)
- Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xintao Tan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yiqiang Huang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Natalie Silk
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Qiuli Liu,
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Jun Jiang, ; Qiuli Liu,
| |
Collapse
|
49
|
Lussey-Lepoutre C, Bellucci A, Burnichon N, Amar L, Buffet A, Drossart T, Fontaine S, Clement O, Benit P, Rustin P, Groussin L, Meatchi T, Gimenez-Roqueplo AP, Tavitian B, Favier J. Succinate detection using in vivo 1H-MR spectroscopy identifies germline and somatic SDHx mutations in paragangliomas. Eur J Nucl Med Mol Imaging 2019; 47:1510-1517. [PMID: 31834447 DOI: 10.1007/s00259-019-04633-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Germline mutations in genes encoding succinate dehydrogenase (SDH) are frequent in patients with pheochromocytoma and paraganglioma (PPGL). They lead to SDH inactivation, mediating a massive accumulation of succinate, which constitutes a highly specific biomarker of SDHx-mutated tumors when measured in vitro. In a recent pilot study, we showed that magnetic resonance spectroscopy (1H-MRS) optimized for succinate detection (SUCCES) could detect succinate in vivo in both allografted mouse models and PPGL patients. The objective of this study was to prospectively assess the diagnostic performances of 1H-MRS SUCCES sequence for the identification of SDH deficiency in PPGL patients. METHODS Forty-nine patients presenting with 50 PPGLs were prospectively enrolled in our referral center for 1H-MRS SUCCES. Two observers blinded to the clinical characteristics and genetic status analyzed the presence of a succinate peak and confronted the results to a composite gold standard combining PPGL genetic testing and/or in vitro protein analyses in the tumor. RESULTS A succinate peak was observed in 20 tumors, all of which had proven SDH deficiency using the gold standard (17 patients with germline SDHx mutations, 2 with a somatic SDHD mutation, and 1 with negative SDHB IHC and SDH loss of function). A false negative result was observed in 3 tumors. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 1H-MRS SUCCES were respectively 87%, 100%, 100%, 90%, and 94%. CONCLUSIONS Detection of succinate using 1H-MRS is a highly specific and sensitive hallmark of SDH-deficiency in PPGLs.
Collapse
Affiliation(s)
- Charlotte Lussey-Lepoutre
- Department of Nuclear Medicine, Sorbonne Université, AP-HP, Pitie-Salpêtrière Hospital, F-75013, Paris, France. .,PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.
| | - Alexandre Bellucci
- Radiology department, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Nelly Burnichon
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Genetic department, adrenal referral center, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Laurence Amar
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Hypertension Unit, adrenal referral center and EURACAN, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Alexandre Buffet
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Clinical Investigation Center, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Tom Drossart
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Genetic department, adrenal referral center, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Sébastien Fontaine
- Radiology department, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Olivier Clement
- Radiology department, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France.,Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| | - Paule Benit
- Hôpital Robert Debré, Université de Paris, NeuroDiderot, Inserm UMR1141, F-75015, Paris, France
| | - Pierre Rustin
- Hôpital Robert Debré, Université de Paris, NeuroDiderot, Inserm UMR1141, F-75015, Paris, France
| | - Lionel Groussin
- INSERM UMR1016 et CNRS UMR 8104, Institut Cochin, Université de Paris, Paris, France.,Department of Endocrinology, APHP, Cochin Hospital, Paris, France
| | - Tchao Meatchi
- Department of Pathology, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Anne-Paule Gimenez-Roqueplo
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France.,Genetic department, adrenal referral center, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France
| | - Bertrand Tavitian
- Radiology department, AP-HP, Hôpital Européen Georges Pompidou, F-75015, Paris, France.,Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| | - Judith Favier
- Université de Paris, PARCC, INSERM, Equipe Labellisée par la Ligue contre le Cancer, F-75015, Paris, France
| |
Collapse
|
50
|
Gómez AM, Soares DC, Costa AAB, Pereira DP, Achatz MI, Formiga MN. Pheochromocytoma and paraganglioma: implications of germline mutation investigation for treatment, screening, and surveillance. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:369-375. [PMID: 31365623 PMCID: PMC10528659 DOI: 10.20945/2359-3997000000145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 03/18/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Paraganglioma (PGL) and pheochromocytoma (PCC) are rare neuroendocrine tumors that were considered to be predominantly sporadic. However, with the identification of novel susceptibility genes over the last decade, it is currently estimated that up to 40% of cases can occur in the context of a hereditary syndrome. We aimed to characterize PGL/PCC families to exemplify the different scenarios in which hereditary syndromes can be suspected and to emphasize the importance for patients and their families of making an opportune genetic diagnosis. MATERIALS AND METHODS Retrospective analysis of patients diagnosed with PGL/PCC. Germline mutations were studied using next-generation sequencing panels including SDHA, SDHB, SDHC and SDHD. Clinical data were collected from clinical records, and all patients received genetic counseling. RESULTS We describe 4 families with PGL/PCC and germline mutations in SDH complex genes. 2 families have SDHB mutations and 2 SDHD mutations. The clinical presentation of the patients and their families was heterogeneous, with some being atypical according to the literature. CONCLUSIONS PGL/PCC are more commonly associated with a germline mutation than any other cancer type, therefore, all individuals with these types of tumors should undergo genetic risk evaluation. NGS multigene panel testing is a cost-effective approach given the overlapping phenotypes. Individuals with germline mutations associated with PGL/PCC should undergo lifelong clinical, biochemical and imaging surveillance and their families should undergo genetic counseling. For all these reasons, it is critical that all medical staff can suspect and diagnose these inherited cancer predisposition syndromes.
Collapse
Affiliation(s)
- Ana Milena Gómez
- Hospital Universitario San IgnacioBogotáColombiaHospital Universitario San Ignacio, Bogotá, Colombia
| | - Diogo Cordeiro Soares
- Departamento de OncogenéticaA.C. Camargo Cancer CenterSão PauloSPBrasilDepartamento de Oncogenética, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - Alexandre André Balieiro Costa
- Departamento de OncogenéticaA.C. Camargo Cancer CenterSão PauloSPBrasilDepartamento de Oncogenética, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - Daniele Paixão Pereira
- Departamento de OncogenéticaA.C. Camargo Cancer CenterSão PauloSPBrasilDepartamento de Oncogenética, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| | - Maria Isabel Achatz
- Hospital Sírio-LibanêsCentro de OncologiaHospital Sírio-LibanêsSão PauloSPBrasilCentro de Oncologia, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - Maria Nirvana Formiga
- Departamento de OncogenéticaA.C. Camargo Cancer CenterSão PauloSPBrasilDepartamento de Oncogenética, A.C. Camargo Cancer Center, São Paulo, SP, Brasil
| |
Collapse
|