1
|
Wu L, Huang X, Wang R, Li Y, Zhu H, Ouyang Y, Huang W. Increased Expression of TGF-β1 Contributes to the Downregulation of Progesterone Receptor Expression in the Eutopic Endometrium of Infertile Women with Minimal/Mild Endometriosis. Reprod Sci 2023; 30:3578-3589. [PMID: 37531067 DOI: 10.1007/s43032-023-01315-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Endometriosis is a hormone-dependent disease associated with impaired immunoregulation. In our recent study, we have characterized the trascriptomic transformation of eutopic endometrium from patients with minimal/mild endometriosis and controls across the menstrual cycle. However, the regulatory mechanism of altered immune microenvironment in eutopic endometrial stromal cells (ESCs) remains unclear. Here, we want to explore the regulation of immune cell to progesterone resistance and endometrial receptivity in the eutopic ESCs by cytokine (TGF-β1), and to understand the effect of TGF-β1 on the decidualization of the eutopic ESCs. Primary culture of eutopic ESCs was performed to explore the effects of TGF-β1 on the expression of Smad and progesterone receptor (PR) and the in vitro decidualization. Additionally, co-immunoprecipitation (Co-IP) was used to explore the direct interaction between Smad and PR. We found an attenuate expression of PRB protein (p=0.026) after using TGF-β1 in eutopic ESCs, although the difference of PRA before and after treatment was not significant (p=0.678). Similarly, the results of qRT-PCR showed that the mRNA level of PR (p<0.001), PRB (p=0.003) and HOXA10 (p<0.001) decreased significantly after TGF-β1 treatment, but that increased (p<0.023, for all) after SB431542 treatment in the eutopic ESCs. Moreover, TGF-β1 has a negative effect on the in vitro decidualization of eutopic ESCs (p=0.003). And the group with treatment of both TGF-β1 and SB435142 in eutopic ESCs showed significant decidual-like changes with increased prolactin level (p=0.01). We did not observe any physical interaction between the PR and p-Smad3/Smad3 proteins by using Co-IP. By activating TGF-β/Smad signaling in eutopic ESCs, elevated TGF-β1 from CD45+ immune cells could attenuate expression of PR, and further decrease endometrial receptivity.
Collapse
Affiliation(s)
- Lukanxuan Wu
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xin Huang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruiying Wang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yujing Li
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Huili Zhu
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yunwei Ouyang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Wei Huang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, 610041, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Yang S, Bi J, Drnevich J, Li K, Nowak RA. Basigin is necessary for normal decidualization of human uterine stromal cells. Hum Reprod 2022; 37:2885-2898. [PMID: 36303457 PMCID: PMC9712941 DOI: 10.1093/humrep/deac229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION Does basigin (BSG) regulate human endometrial stromal cell (HESC) decidualization in vitro? SUMMARY ANSWER BSG regulates HESCs proliferation and decidualization. WHAT IS KNOWN ALREADY Studies have shown that in the human endometrium, BSG expression is menstrual-cycle dependent and its expression was significantly lower in uterine endometrium during the luteal phase of women experiencing multiple implantation failures after IVF than in women with normal fertility. STUDY DESIGN, SIZE, DURATION We utilized a telomerase-immortalized HESCs in an in vitro cell culture model system to investigate whether BSG regulates decidualization of stromal cells. Further, we used microarray analysis to identify changes in the gene expression profile of HESCs treated with BSG small interfering RNA (siRNA). All experiments were repeated at least three times. PARTICIPANTS/MATERIALS, SETTING, METHODS The effect of BSG knockdown (using siRNA) on HESC proliferation was determined by counting cell number and by tritiated thymidine incorporation assays. The effect of BSG on decidualization of HESCs was determined by RT-qPCR for the decidualization markers insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL). Immunoblotting was used to determine the effect of BSG siRNA on the expression of MMP-2,3. Microarray analysis was used to identify BSG-regulated genes in HESCs at Day 6 of decidualization. Functional and pathway enrichment analyses were then carried out on the differentially expressed genes (DEGs). The STRING online database was used to analyze protein-protein interaction (PPI) between DEG-encoded proteins, and CytoScape software was used to visualize the interaction. MCODE and CytoHubba were used to construct functional modules and screen hub genes separately. Several BSG-regulated genes identified in the microarray analysis were confirmed by qPCR. MAIN RESULTS AND THE ROLE OF CHANCE Knockdown of BSG expression in cultured stromal cells by siRNA significantly (P < 0.05) inhibited HESC proliferation, disrupted cell decidualization and down-regulated MMP-2 and MMP-3 expression. Microarray analysis identified 721 genes that were down-regulated, and 484 genes up-regulated with P < 0.05 in BSG siRNA treated HESCs. GO term enrichment analysis showed that the DEGs were significantly enriched in cell communication, signaling transduction and regulation, response to stimulus, cell adhesion, anatomical structure morphogenesis, extracellular matrix organization, as well as other functional pathways. KEGG pathway analysis identified upregulated gene enriched in pathways such as the MAPK signaling pathway, colorectal cancer, melanoma and axon guidance. In contrast, downregulated genes were mainly enriched in pathways including ECM-receptor interaction, PI3K-Akt signaling pathway, pathways in cancer, antigen processing, type I diabetes mellitus and focal adhesion. The top 10 hub nodes were identified using 12 methods analyses. The hub genes that showed up in two methods were screened out. Among these genes, upregulated genes included EGFR, HSP90AA1, CCND1, PXN, PRKACB, MGAT4A, EVA1A, LGALS1, STC2, HSPA4; downregulated genes included WNT4/5, FOXO1, CDK1, PIK3R1, IGF1, JAK2, LAMB1, ITGAV, HGF, MXRA8, TMEM132A, UBE2C, QSOX1, ERBB2, GNB4, HSP90B1, LAMB2, LAMC1 and ITGA1. Hub genes and module genes involved in the top three modules of PPI analysis were analyzed through the string database. Analysis showed that hub and module genes were related mainly to the WNT signaling pathway, PI3K-AKT signaling pathway and pathways in cancer. LARGE SCALE DATA The microarray data set generated in this study has been published online at databank.illinois.edu. LIMITATIONS, REASONS FOR CAUTION Most of the findings were obtained using an in vitro cell culture system that may not necessarily reflect in vivo functions. WIDER IMPLICATIONS OF THE FINDINGS Our results demonstrate that BSG plays a vital role in decidualization and that downregulation of BSG in the uterine endometrium may be associated with infertility in women. The identified hub genes and pathways increase our understanding of the genetic etiology and molecular mechanisms underlying the regulation of decidualization by BSG. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the NIH U54 HD40093 (R.A.N.). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Shuhong Yang
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jiajia Bi
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA
| | - Kailiang Li
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
3
|
Liu R, Dai M, Gong G, Chen M, Cao C, Wang T, Hou Z, Shi Y, Guo J, Zhang Y, Xia X. The role of extracellular matrix on unfavorable maternal–fetal interface: focusing on the function of collagen in human fertility. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractExtracellular matrix (ECM) is characterized as widespread, abundant, and pluripotent. Among ECM members, collagen is widely accepted as one of the most prominent components for its essential structural property that can provide a scaffold for other components of ECM and the rich biological functions, which has been extensively used in tissue engineering. Emerging evidence has shown that the balance of ECM degradation and remodeling is vital to regulations of maternal–fetal interface including menstrual cycling, decidualization, embryo implantation and pregnancy maintenance. Moreover, disorders in these events may eventually lead to failure of pregnancy. Although the improvement of assisted conception and embryo culture technologies bring hope to many infertile couples, some unfavorable outcomes, such as recurrent implantation failure (RIF), recurrent pregnancy loss (RPL) or recurrent miscarriage (RM), keep troubling the clinicians and patients. Recently, in vitro three-dimensional (3D) model mimicking the microenvironment of the maternal–fetal interface is developed to investigate the physiological and pathological conditions of conception and pregnancy. The progress of this technology is based on clarifying the role of ECM in the endometrium and the interaction between endometrium and conceptus. Focusing on collagen, the present review summarized the degradation and regulation of ECM and its role in normal menstruation, endometrium receptivity and unsatisfying events occurring in infertility treatments, as well as the application in therapeutic approaches to improve pregnancy outcomes. More investigations about ECM focusing on the maternal–fetal interface interaction with mesenchymal stem cells or local immunoregulation may inspire new thoughts and advancements in the clinical application of infertility treatments.
Graphical abstract
Collapse
|
4
|
Vafashoar F, Mousavizadeh K, Poormoghim H, Haghighi A, Pashangzadeh S, Mojtabavi N. Progesterone Aggravates Lung Fibrosis in a Mouse Model of Systemic Sclerosis. Front Immunol 2021; 12:742227. [PMID: 34912332 PMCID: PMC8667310 DOI: 10.3389/fimmu.2021.742227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background Gender-related factors have explained the higher prevalence of autoimmune diseases in women. Sex hormones play a key role in the immune system and parenchymal cells function; therefore, these hormones can be important in the pathogenesis of autoimmune diseases as a risk or beneficial factor. Lung fibrosis is the main cause of mortality in systemic sclerosis, a female predominant autoimmune disease. The objective of this study was to examine the effect of progesterone on lung fibrosis in a mouse model of systemic sclerosis. Methods Mice with bleomycin-induced lung fibrosis treated with progesterone subcutaneously for 21 and 28 days. Blood was collected for hormone and cytokine measurement at the end of treatment then, skin and lung tissues were harvested for histological assessment, gene expression, cytokine, hydroxyproline, and gelatinase measurement. Results Trichrome staining and hydroxyproline measurements showed that progesterone treatment increased the content of collagen in fibrotic and normal lung tissues. Progesterone increased α-SMA (P < 0.01), TGF- β (P < 0.05) and decreased MMP9 (P < 0.05) in fibrotic lung tissues. Also progesterone treatment decreased the gene expression of Col1a2 (P <0.05), Ctgf (P <01), End1 (0.001) in bleomycin- injured lung tissues. The serum level of TNF-α was decreased, but the serum level of cortisol was increased by progesterone treatment in fibrotic mice (P< 0.05). Conclusion Our results showed that progesterone aggravates lung fibrosis in a mouse model of systemic sclerosis.
Collapse
Affiliation(s)
- Fatemeh Vafashoar
- Institute of Immunology and Infectious Disease, Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadi Poormoghim
- Scleroderma Study Group, Firuzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Haghighi
- Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Salar Pashangzadeh
- Institute of Immunology and Infectious Disease, Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Institute of Immunology and Infectious Disease, Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Garrido-Gomez T, Castillo-Marco N, Clemente-Ciscar M, Cordero T, Muñoz-Blat I, Amadoz A, Jimenez-Almazan J, Monfort-Ortiz R, Climent R, Perales-Marin A, Simon C. Disrupted PGR-B and ESR1 signaling underlies defective decidualization linked to severe preeclampsia. eLife 2021; 10:70753. [PMID: 34709177 PMCID: PMC8553341 DOI: 10.7554/elife.70753] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Decidualization of the uterine mucosa drives the maternal adaptation to invasion by the placenta. Appropriate depth of placental invasion is needed to support a healthy pregnancy; shallow invasion is associated with the development of severe preeclampsia (sPE). Maternal contribution to sPE through failed decidualization is an important determinant of placental phenotype. However, the molecular mechanism underlying the in vivo defect linking decidualization to sPE is unknown. Methods: Global RNA sequencing was applied to obtain the transcriptomic profile of endometrial biopsies collected from nonpregnant women who suffer sPE in a previous pregnancy and women who did not develop this condition. Samples were randomized in two cohorts, the training and the test set, to identify the fingerprinting encoding defective decidualization in sPE and its subsequent validation. Gene Ontology enrichment and an interaction network were performed to deepen in pathways impaired by genetic dysregulation in sPE. Finally, the main modulators of decidualization, estrogen receptor 1 (ESR1) and progesterone receptor B (PGR-B), were assessed at the level of gene expression and protein abundance. Results: Here, we discover the footprint encoding this decidualization defect comprising 120 genes—using global gene expression profiling in decidua from women who developed sPE in a previous pregnancy. This signature allowed us to effectively segregate samples into sPE and control groups. ESR1 and PGR were highly interconnected with the dynamic network of the defective decidualization fingerprint. ESR1 and PGR-B gene expression and protein abundance were remarkably disrupted in sPE. Conclusions: Thus, the transcriptomic signature of impaired decidualization implicates dysregulated hormonal signaling in the decidual endometria in women who developed sPE. These findings reveal a potential footprint that could be leveraged for a preconception or early prenatal screening of sPE risk, thus improving prevention and early treatments. Funding: This work has been supported by the grant PI19/01659 (MCIU/AEI/FEDER, UE) from the Spanish Carlos III Institute awarded to TGG. NCM was supported by the PhD program FDGENT/2019/008 from the Spanish Generalitat Valenciana. IMB was supported by the PhD program PRE2019-090770 and funding was provided by the grant RTI2018-094946-B-100 (MCIU/AEI/FEDER, UE) from the Spanish Ministry of Science and Innovation with CS as principal investigator. This research was funded partially by Igenomix S.L.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rogelio Monfort-Ortiz
- Department of Obstetrics and Gynecology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Reyes Climent
- Department of Obstetrics and Gynecology, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Alfredo Perales-Marin
- Department of Obstetrics and Gynecology, University and Polytechnic La Fe Hospital, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain
| | - Carlos Simon
- Igenomix Foundation, INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, School of Medicine, Valencia University, Valencia, Spain.,Obstetrics & Gynecology, BIDMC Harvard University, Boston, United States
| |
Collapse
|
6
|
Ma L, Andrieu T, McKinnon B, Duempelmann L, Peng RW, Wotzkow C, Müller C, Mueller MD. Epithelial-to-mesenchymal transition contributes to the downregulation of progesterone receptor expression in endometriosis lesions. J Steroid Biochem Mol Biol 2021; 212:105943. [PMID: 34144151 DOI: 10.1016/j.jsbmb.2021.105943] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/02/2021] [Accepted: 06/13/2021] [Indexed: 01/06/2023]
Abstract
Endometriosis is a common, estrogen-dependent disease, in which endometrial tissue grows in the peritoneal cavity. These lesions often express low levels of progesterone receptors (PR), which potentially play an important role in the insufficient response to progestin treatment. Here, we uncover an interconnection between the downregulated PR expression and the epithelial-to-mesenchymal transition (EMT) in endometriotic lesions. The majority of ectopic epithelial glands (93.1 %, n = 67/72) display heterogeneous states of EMT by immunohistochemistry staining. Interestingly, low PR expression associated with high N-cadherin expression, a hallmark of EMT. In order to gain mechanistic insights, we performed in vitro functional assays with the endometriotic epithelial cell lines EM'osis and 12Z. TGF-β-induced EMT, marked by elevations of CDH2 and SNAI1/2, led to a significant downregulation of PR gene expression in both cell lines. In contrast, silencing of SNAI1 in EM'osis and of SNAI1 plus SNAI2 in 12Z elevated PR gene expression significantly. We found that not only in vitro, but also in the epithelial component of endometriotic lesions strong expression of SNAI1/2 concurred with weak expression of PR. In summary, these results suggested the negative correlation association of the heterogeneous states of EMT and suppressed PR expression in endometriotic lesions. Our functional assays indicate that EMT contributes to the downregulation of PR expression via the upregulation of EMT-TFs, like SNAI1 and SNAI2, which may ultimately lead to progesterone resistance.
Collapse
Affiliation(s)
- Lijuan Ma
- Department of Gynecology and Gynecological Oncology, Inselspital, Bern University Hospital, University of Bern, Friedbuehlstrasse 19, 3010, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Thomas Andrieu
- Department of Gynecology and Gynecological Oncology, Inselspital, Bern University Hospital, University of Bern, Friedbuehlstrasse 19, 3010, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland.
| | - Brett McKinnon
- Department of Gynecology and Gynecological Oncology, Inselspital, Bern University Hospital, University of Bern, Friedbuehlstrasse 19, 3010, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Lea Duempelmann
- Department of Gynecology and Gynecological Oncology, Inselspital, Bern University Hospital, University of Bern, Friedbuehlstrasse 19, 3010, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Ren-Wang Peng
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland; Department of General Thoracic Surgery, Inselspital, Bern University Hospital, Murtenstrasse 50, 3008, Bern, Switzerland
| | - Carlos Wotzkow
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| | - Christoph Müller
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Michael D Mueller
- Department of Gynecology and Gynecological Oncology, Inselspital, Bern University Hospital, University of Bern, Friedbuehlstrasse 19, 3010, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008, Bern, Switzerland
| |
Collapse
|
7
|
Feng X, Qi L, Xu X, Feng Y, Gong X, Aili A, Chen Y, Xue Z, Xue J, Tong X. Analysis of differences in the transcriptomic profiles of eutopic and ectopic endometriums in women with ovarian endometriosis. PeerJ 2021; 9:e11045. [PMID: 33868805 PMCID: PMC8035894 DOI: 10.7717/peerj.11045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background Endometriosis is a common gynecological disease among women in their reproductive years. Although much effort has been made, the pathogenesis of this disease and the detailed differences between eutopic endometrial cells and ectopic endometrial cells are still unclear. Methods In this study, eutopic and ectopic endometrial cells were collected from patients with and without endometriosis and RNA sequencing was performed. The gene expression patterns and differentially expressed genes (DEGs) in eutopic and ectopic endometrial cells, as well as control endometrial cells, were analyzed using a weighted gene co-expression network analysis (WGCNA) and the DESeq2 package. The functions of significant genes were detected using Gene ontology (GO) enrichment analysis, and qRT-PCR validation was performed. Results The results indicated that eight gene modules were found among these three groups. They also indicated that the gene module, which is highly related to eutopic endometrial cells, was mainly enriched in cell adhesion, embryo implantation, etc., while the gene module related to ectopic endometrial cells was mainly enriched in cell migration, etc. The results of differential expression analysis were generally consistent with the WGCNA results through identified significant DEGs between different groups. These DEGs may play an important role in the occurrence of endometriosis, including the infertility associated gene ARNTL and PIWIL2, tissue remodeling gene MMP11, cell survival and migration gene FLT1, inflammatory response gene GNLY, the tumor suppressor genes PLCD1, etc. Further analysis suggested the function of adhesion is stronger in ectopic endometrial cells than in eutopic endometrial cells, while the ectopic endometrium may have a higher potential risk of malignant transformation than eutopic endometrium. Conclusions Overall, these data provide a reference for understanding the pathogenesis of endometriosis and its relationship with malignant transformation.
Collapse
Affiliation(s)
- Xiao Feng
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingbin Qi
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Xu
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Yun Feng
- Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Aixingzi Aili
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Chen
- School of Life Science and environment, Avans University of Applied Science, Breda, The Netherlands
| | - Zhigang Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Jinfeng Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Shen HH, Zhang T, Yang HL, Lai ZZ, Zhou WJ, Mei J, Shi JW, Zhu R, Xu FY, Li DJ, Ye JF, Li MQ. Ovarian hormones-autophagy-immunity axis in menstruation and endometriosis. Am J Cancer Res 2021; 11:3512-3526. [PMID: 33537101 PMCID: PMC7847674 DOI: 10.7150/thno.55241] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Menstruation occurs in few species and involves a cyclic process of proliferation, breakdown and regeneration under the control of ovarian hormones. Knowledge of normal endometrial physiology, as it pertains to the regulation of menstruation, is essential to understand disorders of menstruation. Accumulating evidence indicates that autophagy in the endometrium, under the regulation of ovarian hormones, can result in the infiltration of immune cells, which plays an indispensable role in the endometrium shedding, tissue repair and prevention of infections during menstruation. In addition, abnormal autophagy levels, together with resulting dysregulated immune system function, are associated with the pathogenesis and progression of endometriosis. Considering its potential value of autophagy as a target for the treatment of menstrual-related and endometrium-related disorders, we review the activity and function of autophagy during menstrual cycles. The role of the estrogen/progesterone-autophagy-immunity axis in endometriosis are also discussed.
Collapse
|
9
|
Reed BG, Babayev SN, Chen LX, Carr BR, Word RA, Jimenez PT. Estrogen-regulated miRNA-27b is altered by bisphenol A in human endometrial stromal cells. Reproduction 2020; 156:559-567. [PMID: 30328349 PMCID: PMC6215928 DOI: 10.1530/rep-18-0041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 09/28/2018] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRs) are small molecules important for regulation of transcription and translation. The objective was to identify hormonally regulated miRs in human endometrial stromal cells and to determine the impact of the endocrine disruptor, bisphenol A (BPA), on those miRs. miR microarray analysis and multiple confirmatory cell preparations treated with 17β-estradiol (E2) and BPA altered miR-27b, let-7c, let-7e and miR-181b. Further, decidualization downregulated miR-27b. VEGFB and VEGFC were validated as targets of miR-27b. Identification of miR-27b target genes suggests that BPA and E2 downregulate miR-27b thereby leading to upregulation of genes important for vascularization and angiogenesis of the endometrium during the menstrual cycle and decidualization.
Collapse
Affiliation(s)
- Beverly G Reed
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Samir N Babayev
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lucy X Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce R Carr
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - R Ann Word
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patricia T Jimenez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Green Center for Reproductive Biological Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
10
|
Activation of Uterine Smad3 Pathway Is Crucial for Embryo Implantation. Curr Med Sci 2019; 39:997-1002. [DOI: 10.1007/s11596-019-2134-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/25/2019] [Indexed: 11/26/2022]
|
11
|
Di Nicuolo F, D'Ippolito S, Castellani R, Rossi ED, Masciullo V, Specchia M, Mariani M, Pontecorvi A, Scambia G, Di Simone N. Effect of alpha-lipoic acid and myoinositol on endometrial inflammasome from recurrent pregnancy loss women. Am J Reprod Immunol 2019; 82:e13153. [PMID: 31148259 DOI: 10.1111/aji.13153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/05/2019] [Accepted: 05/24/2019] [Indexed: 12/22/2022] Open
Abstract
PROBLEM A significant increased expression/activation of one of the most well-characterized inflammasomes, the NAcht leucine-rich-repeat protein-3 (NALP-3), in the endometrium from idiopathic recurrent pregnancy loss women (RPL) has been previously found by our research group. We therefore, suggested this event as being one of the molecular mechanisms altering endometrial inflammatory status during early pregnancy. In the present research, we attempt to investigate whether molecules with anti-inflammatory activity, alpha-lipoic acid (ALA), and/or myoinositol affect the endometrial NALP-3 expression and activation. METHOD OF STUDY Women with a history of idiopathic RPL (n = 30) were included in the study and compared to a control group (n = 15). Endometrial tissues were collected by hysteroscopy during the mid-luteal phase. RPL women underwent a three-month prescription of tablets containing ALA plus myoinositol (Sinopol® ). After treatment, hysteroscopic biopsies were repeated in RPL patients. Inflammasome expression was evaluated by immunohistochemical and Western blot analysis. NALP-3 activation was studied by quantifying the secretion of both caspase-1 and interleukin (IL)-1ß and IL-18 through ELISA. In ex vivo experiments, the effects of each molecule on endometrial inflammasome were studied. RESULTS Sinopol® significantly reduced the RPL endometrial inflammasome expression and activation. ALA, but not myoinositol, significantly reduced the endometrial inflammasome expression and activity. CONCLUSION Our data suggest a role for ALA on RPL inflammasome. Understanding the mechanisms involved in RPL and the observation that specific molecules are able to interfere with such complex at the endometrium might provide new rational design approaches to a personalized evaluation of endometrial status and, ultimately, a targeted medicine.
Collapse
Affiliation(s)
- Fiorella Di Nicuolo
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Silvia D'Ippolito
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Roberta Castellani
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Esther Diana Rossi
- U.O.C. di Anatomia Patologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Valeria Masciullo
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia.,U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Monia Specchia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Marco Mariani
- Istituto di Sanità Pubblica, Sezione di Igiene, Università Cattolica Del Sacro Cuore, Roma, Italia
| | - Alfredo Pontecorvi
- Paolo VI International Scientific Institute, Università Cattolica del Sacro Cuore, Roma, Italia.,U.O.C di Endocrinologia e Diabetologia, Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.,Istituto di Patologia Medica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Giovanni Scambia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia.,U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
12
|
Mousazadeh S, Ghaheri A, Shahhoseini M, Aflatoonian R, Afsharian P. The Effect of Imbalanced Progesterone Receptor-A/-B Ratio on Gelatinase Expressions in Endometriosis. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2019; 13:127-134. [PMID: 31037923 PMCID: PMC6500082 DOI: 10.22074/ijfs.2019.5604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
Background Gelatinases degrade extracellular matrix (ECM) components to allow for physiological remodeling and contribute to pathological tissue destruction in endometriosis. It is known that the function of gelatinases is resistant to suppression by progesterone in endometriosis. The ability of progesterone to impact gene expression depends on the progesterone receptor-A/-B(PR-A/PR-B) ratio. An imbalanced PR-A/PR-B ratio in endometriotic tissue may be the result of the differential expression of MMP-2 and MMP-9, which could be important in the etiology and pathogenesis of the disease. Hence, we decided to study the association of PR-A/PR-B ratio and gelatinases expression in endometriosis. Materials and Methods In this prospective case-control study, we enrolled 40 women, 20 in the case group who were diagnosed with stage III/IV endometriosis and 20 normal subjects without endometriosis (controls) who referred to Royan Institute, Tehran, Iran during 2013-2014. We obtained 60 tissue samples [ectopic (n=20), eutopic (n=20), and normal endometrium (n=20)]. RNA was extracted from the tissue samples in order to analyze PR-A, PR-B, MMP-2, and MMP-9 mRNA levels through real-time polymerase chain reaction (PCR). Results There was significantly lower expression of the PR-B isoform in ectopic tissues compared to the control (P=0.002) and eutopic endometrium (P=0.006) tissues. PR-A expression was higher, but not significantly so, in the same ectopic and eutopic endometrium tissues compared to the control tissues (P=0.643). There was significant overexpression of MMP-9 in ectopic samples compared to control (P=0.014) and eutopic endometrium (P=0.012) samples. The PR-A/PR-B ratio was not significantly higher in either eutopic or ectopic samples compared to the control samples (P=0.305). Conclusion Our findings support an altered PR-B expression in endometriosis, which may be associated with MMP-9 overexpression. This finding can be important for disease pathogenesis.
Collapse
Affiliation(s)
- Sepideh Mousazadeh
- Department of Genetics, School of Natural Sciences, University of Tabriz, Tabriz, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Parvaneh Afsharian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. Electronic Address:
| |
Collapse
|
13
|
Pro-endometriotic niche in endometriosis. Reprod Biomed Online 2019; 38:549-559. [DOI: 10.1016/j.rbmo.2018.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
|
14
|
Itoh H, Mogami H, Bou Nemer L, Word L, Rogers D, Miller R, Word RA. Endometrial stromal cell attachment and matrix homeostasis in abdominal wall endometriomas. Hum Reprod 2018; 33:280-291. [PMID: 29300932 PMCID: PMC5850606 DOI: 10.1093/humrep/dex371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/26/2017] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does progesterone alter matrix remodeling in abdominal wall endometriomas compared with normal endometrium? SUMMARY ANSWER Progesterone may prevent attachment of endometrial cells to the abdominal wall, but does not ameliorate abnormal stromal cell responses of abdominal wall endometriomas. WHAT IS KNOWN ALREADY Menstruation is a tightly orchestrated physiologic event in which steroid hormones and inflammatory cells cooperatively initiate shedding of the endometrium. Abdominal wall endometriomas represent a unique form of endometriosis in which endometrial cells inoculate fascia or dermis at the time of obstetrical or gynecologic surgery. Invasion of endometrium into ectopic sites requires matrix metalloproteinases (MMPs) for tissue remodeling but endometrium is not shed externally. STUDY DESIGN SIZE, DURATION Observational study in 14 cases and 19 controls. PARTICIPANTS /MATERIALS, SETTING, METHODS Tissues and stromal cells isolated from 14 abdominal wall endometriomas were compared with 19 normal cycling endometrium using immunohistochemistry, quantitative PCR, gelatin zymography and cell attachment assays. P values < 0.05 were considered significant and experiments were repeated in at least three different cell preps to provide scientific rigor to the conclusions. MAIN RESULTS AND THE ROLE OF CHANCE The results indicate that MMP2 and MMP9 are not increased by TGFβ1 in endometrioma stromal cells. Although progesterone prevents attachment of endometrioma cells to matrix components of the abdominal wall, it does not ameliorate these abnormal stromal cell responses to TGFβ1. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION Endometriomas were collected from women identified pre-operatively. Not all endometriomas were collected. Stromal cells from normal endometrium were from different patients, not women undergoing endometrioma resection. WIDER IMPLICATIONS OF THE FINDINGS This work provides insight into the mechanisms by which progesterone may prevent abdominal wall endometriomas but, once established, are refractory to progesterone treatment. STUDY FUNDING/COMPETING INTEREST(S) Tissue acquisition was supported by NIH P01HD087150. Authors have no competing interests.
Collapse
Affiliation(s)
- Hiroko Itoh
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haruta Mogami
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Laurice Bou Nemer
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Larry Word
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Rogers
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rodney Miller
- ProPath Laboratory, Immunohistochemistry Division, Dallas, TX
| | - R Ann Word
- Cecil H and Ida Green Center for Reproductive Biological Sciences, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening. Am J Obstet Gynecol 2017; 217:695.e1-695.e14. [PMID: 29031893 DOI: 10.1016/j.ajog.2017.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND The progestogen 17-α hydroxyprogesterone caproate (17-OHPC) is 1 of only 2 agents recommended for clinical use in the prevention of spontaneous preterm delivery, and studies of its efficacy have been conflicting. We have developed an in-vitro model to study the fetal membrane weakening process that leads to rupture in preterm premature rupture of the fetal membranes (pPROM). Inflammation/infection associated with tumor necrosis factor-α (TNF-α) induction and decidual bleeding/abruption associated thrombin release are leading causes of preterm premature rupture of the fetal membranes. Both agents (TNF-α and thrombin) cause fetal membrane weakening in the model system. Furthermore, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical intermediate for both TNF-α and thrombin-induced fetal membrane weakening. In a previous report, we demonstrated that 3 progestogens, progesterone, 17-alpha hydroxyprogesterone (17-OHP), and medroxyprogesterone acetate (MPA), each inhibit both TNF-α- and thrombin-induced fetal membrane weakening at 2 distinct points of the fetal membrane weakening pathway. Each block both the production of and the downstream action of the critical intermediate granulocyte-macrophage colony-stimulating factor. OBJECTIVE The objective of the study was to characterize the inhibitory effects of 17-OHPC on TNF-α- and thrombin-induced fetal membrane weakening in vitro. STUDY DESIGN Full-thickness human fetal membrane fragments from uncomplicated term repeat cesarean deliveries were mounted in 2.5 cm Transwell inserts and cultured with/without 17-alpha hydroxyprogesterone caproate (10-9 to 10-7 M). After 24 hours, medium (supernatant) was removed and replaced with/without the addition of tumor necrosis factor-alpha (20 ng/mL) or thrombin (10 U/mL) or granulocyte-macrophage colony-stimulating factor (200 ng/mL). After 48 hours of culture, medium from the maternal side compartment of the model was assayed for granulocyte-macrophage colony-stimulating factor and the fetal membrane fragments were rupture strength tested. RESULTS Tumor necrosis factor-alpha and thrombin both weakened fetal membranes (43% and 62%, respectively) and increased granulocyte-macrophage colony-stimulating factor levels (3.7- and 5.9-fold, respectively). Pretreatment with 17-alpha hydroxyprogesterone caproate inhibited both tumor necrosis factor-alpha- and thrombin-induced fetal membrane weakening and concomitantly inhibited the induced increase in granulocyte-macrophage colony-stimulating factor in a concentration-dependent manner. However, contrary to our prior reports regarding progesterone and other progestogens, 17-alpha hydroxyprogesterone caproate did not also inhibit granulocyte-macrophage colony-stimulating factor-induced fetal membrane weakening. CONCLUSION 17-Alpha hydroxyprogesterone caproate blocks tumor necrosis factor-alpha- and thrombin-induced fetal membrane weakening by inhibiting the production of granulocyte-macrophage colony-stimulating factor. However, 17-alpha hydroxyprogesterone caproate did not also inhibit granulocyte-macrophage colony-stimulating factor-induced weakening. We speculate that progestogens other than 17-alpha hydroxyprogesterone caproate may be more efficacious in preventing preterm premature rupture of the fetal membranes-related spontaneous preterm birth.
Collapse
|
16
|
Krasnyi AM, Volgina NE, Sadekova AA, Shchipitsyna VS, Sukhikh GT, Adamyan LV, Ozernyuk ND. Activation of α7-nicotinic acetylcholine receptors causes secretion of matrix metalloproteinases-9 in the human endometrium. BIOL BULL+ 2017. [DOI: 10.1134/s1062359017020078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Serralheiro P, Cairrão E, Maia CJ, João M, Almeida CMC, Verde I. Effect of TGF-beta1 on MMP/TIMP and TGF-beta1 receptors in great saphenous veins and its significance on chronic venous insufficiency. Phlebology 2016; 32:334-341. [DOI: 10.1177/0268355516655067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objectives Transforming growth factor-beta1 (TGF-β1) may participate in local chronic inflammatory processes in varicose veins and in venous wall structure modifications through regulation of matrix metalloproteinases (MMP) and their inhibitors (tissue inhibitor of metalloproteinase (TIMP)). The aim of this study was to analyze the effect of TGF-β1 in the vein wall, namely on the gene expression of selected MMP, TIMP and TGF-β1 receptors. Methods Healthy vein samples were harvested from eight subjects who underwent coronary bypass graft surgery with great saphenous vein. Each vein sample was divided into two segments, which were cultivated separately in vitro (one of the segments had TGF-β1 added) and then submitted to gene expression analysis. Results In the TGF-β1 supplemented group, there was a general increase in the mean gene expression. Specifically, expression of MMP9, MMP12, TIMP1 and TIMP2 were statistically significant. Conclusion The results of this study demonstrate that the gene expression of MMP9, MMP12, TIMP1 and TIMP2 was influenced by the addition of TGF-β1. These results may be translated to chronic venous insufficiency framework and suggest involvement of TGF-β1 in the vein wall pathology.
Collapse
Affiliation(s)
- Pedro Serralheiro
- Department of General Surgery, Norfolk and Norwich University Hospital, UK
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Elisa Cairrão
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Cláudio J Maia
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Marina João
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| | - Carlos M Costa Almeida
- Department of General Surgery, Coimbra University Hospital Centre, Portugal
- Faculdade de Medicina, University of Coimbra, Portugal
| | - Ignacio Verde
- Faculdade de Ciências da Saúde, University of Beira Interior, Portugal
| |
Collapse
|
18
|
Zhang X, Huang S, Guo J, Zhou L, You L, Zhang T, Zhao Y. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics (Review). Int J Oncol 2016; 48:1783-93. [PMID: 26892540 DOI: 10.3892/ijo.2016.3400] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/21/2016] [Indexed: 11/06/2022] Open
Abstract
The biological processes of cancer cells such as tumorigenesis, proliferation, angiogenesis, apoptosis and invasion are greatly influenced by the surrounding microenvironment. The ability of solid malignant tumors to alter the microenvironment represents an important characteristic through which tumor cells are able to acquire specific functions necessary for their malignant biological behaviors. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases with the capacity of remodeling extracellular matrix (ECM) by degrading almost all ECM proteins, which plays essential roles during the invasion and metastasis process of solid malignant tumors, including allowing tumor cells to modify the ECM components and release cytokines, ultimately facilitating protease-dependent tumor progression. MMP-11, also named stromelysin-3, is a member of the stromelysin subgroup belonging to MMPs superfamily, which has been detected in cancer cells, stromal cells and adjacent microenvironment. Differently, MMP-11 exerts a dual effect on tumors. On the one hand MMP-11 promotes cancer development by inhibiting apoptosis as well as enhancing migration and invasion of cancer cells, on the other hand MMP-11 plays a negative role against cancer development via suppressing metastasis in animal models. Overexpression of MMP-11 was discovered in sera of cancer patients compared with normal control group as well as in multiple tumor tissue specimens, such as gastric cancer, breast cancer, and pancreatic cancer. At present, some evidence supports that MMP-11 may work as a significant tumor biomarker for early detection of cancer, tumor staging, prognostic analysis, monitoring recurrence during follow-up and also a potential target for immunotherapy against cancer. In view of the importance of MMP-11 in modifying tumor microenvironment and potent antitumoral effects on solid tumors, there is an urgent need for a deeper understanding of how MMP-11 modulates tumor progression, and exploring its potential clinical application.
Collapse
Affiliation(s)
- Xu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Shuai Huang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
19
|
Quattrone F, Sanchez AM, Pannese M, Hemmerle T, Viganò P, Candiani M, Petraglia F, Neri D, Panina-Bordignon P. The Targeted Delivery of Interleukin 4 Inhibits Development of Endometriotic Lesions in a Mouse Model. Reprod Sci 2015; 22:1143-52. [PMID: 25850899 DOI: 10.1177/1933719115578930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endometriosis is caused by the displacement of endometrium outside the uterus contributing heavily to infertility and debilitating pelvic pain. Ectopic adhesion and growth are believed to occur under the influence of a favorable hormonal environment and immunological factors. The objective of this study is to analyze the effect of a targeted therapy with an antibody-based pharmacodelivery of interleukin 4 (F8-IL4) in a mouse model of experimentally induced endometriosis. Endometriosis-like lesions were induced in Balb/c mice. The animals were treated intravenously with F8-IL4 or with untargeted IL4 (KSF-IL4). Twelve days after disease induction, the lesions were isolated. A significant reduction in the number of total lesions/mouse and in the total volume of lesions/mouse was observed in mice treated with F8-IL4 compared to controls (P = .029 and P = .006, respectively), while no difference was found between KSF-IL4-treated mice and their controls. Gene expression was evaluated by quantitative real-time polymerase chain reaction. Expression of genes involved in cell adhesion, extracellular matrix invasion, and neovascularization was significantly downregulated in F8-IL4-treated mice compared to their controls (integrin β1: P = .02; metalloproteinase [MMP] 3: P = .02; MMP9: P = .04; vascular endothelial growth factor: P = .04). Gene expression of inflammatory cytokines (tumor necrosis factor α, IL1β, IL1α, and IL6) did not vary in the ectopic lesions isolated from F8-IL4-treated mice compared to their controls. Immunohistochemistry demonstrated a significantly reduced expression of E-cadherin and β-catenin in the lesions of mice treated with F8-IL4. Our results show that the antibody-mediated targeted delivery of IL4 inhibits the development of endometriosis in a syngeneic mouse model by likely impairing adhesion, invasion, and vascularization of the ectopic endometrium.
Collapse
Affiliation(s)
- Federica Quattrone
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ana Maria Sanchez
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Pannese
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Teresa Hemmerle
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Paola Viganò
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Massimo Candiani
- Department of Obstetrics and Gynecology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Felice Petraglia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Paola Panina-Bordignon
- Division of Genetics and Cell Biology, Reproductive Sciences Laboratory, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
20
|
Izumi G, Koga K, Nagai M, Urata Y, Takamura M, Harada M, Hirata T, Hirota Y, Ogawa K, Inoue S, Fujii T, Osuga Y. Cyclic Stretch Augments Production of Neutrophil Chemokines, Matrix Metalloproteinases, and Activin A in Human Endometrial Stromal Cells. Am J Reprod Immunol 2015; 73:501-6. [DOI: 10.1111/aji.12359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/02/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Gentaro Izumi
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Kaori Koga
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Miwako Nagai
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yoko Urata
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | | | - Miyuki Harada
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Tetsuya Hirata
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yasushi Hirota
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Kenji Ogawa
- Chemical Genetics Laboratory; RIKEN; Saitama Japan
| | - Satoshi Inoue
- Anti-Aging Medicine; The University of Tokyo; Tokyo Japan
| | - Tomoyuki Fujii
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yutaka Osuga
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| |
Collapse
|
21
|
Gao Y, Duran S, Lydon JP, DeMayo FJ, Burghardt RC, Bayless KJ, Bartholin L, Li Q. Constitutive activation of transforming growth factor Beta receptor 1 in the mouse uterus impairs uterine morphology and function. Biol Reprod 2014; 92:34. [PMID: 25505200 DOI: 10.1095/biolreprod.114.125146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Samantha Duran
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
22
|
Diverse roles of prostaglandins in blastocyst implantation. ScientificWorldJournal 2014; 2014:968141. [PMID: 24616654 PMCID: PMC3925584 DOI: 10.1155/2014/968141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023] Open
Abstract
Prostaglandins (PGs), derivatives of arachidonic acid, play an indispensable role in embryo implantation. PGs have been reported to participate in the increase in vascular permeability, stromal decidualization, blastocyst growth and development, leukocyte recruitment, embryo transport, trophoblast invasion, and extracellular matrix remodeling during implantation. Deranged PGs syntheses and actions will result in implantation failure. This review summarizes up-to-date literatures on the role of PGs in blastocyst implantation which could provide a broad perspective to guide further research in this field.
Collapse
|
23
|
Johary J, Xue M, Zhu X, Xu D, Velu PP. Efficacy of estrogen therapy in patients with intrauterine adhesions: systematic review. J Minim Invasive Gynecol 2013; 21:44-54. [PMID: 23933351 DOI: 10.1016/j.jmig.2013.07.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/25/2013] [Accepted: 07/27/2013] [Indexed: 11/25/2022]
Abstract
Hysteroscopic adhesiolysis has become the preferred option for management of intrauterine adhesions (IUA). Use of estrogen as perioperative adjuvant therapy has been suggested for preventing recurrent adhesions. The primary objective of this article was to review the literature for evidence of the efficacy of estrogen therapy in the management of IUA. All eligible studies were identified using computerized databases (PubMed, Scopus. and Web of Science) from their earliest publication date to July 2013. Additional relevant articles were identified from citations in these publications. Twenty-six studies were identified that reported use of hormone therapy as ancillary treatment after adhesiolysis. Of these studies, 19 used at least one of the following methods: intrauterine device, Foley catheter, hyaluronic acid gel, or amnion graft, in addition to hormone therapy as ancillary treatment. In 7 studies, hormone therapy was used as a single ancillary treatment. In 2 studies, no adjunctive therapy was used after adhesiolysis. Meta-analysis could not be performed because of the differences in treatment methods in these articles. There was a wide range of reported menstrual and fertility outcomes. Better menstrual and fertility outcomes were associated with use of estrogen in combination with other methods of ancillary treatment. At present, hormone therapy, in particular estrogen therapy, is beneficial in patients with IUA, regardless of stage of adhesions. However, estrogen therapy needs to be combined with ancillary treatment to obtain maximal outcomes, in particular in patients with moderate to severe IUA.
Collapse
Affiliation(s)
- Jolinda Johary
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Min Xue
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Xiaogang Zhu
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha City, Hunan Province, China.
| | - Prasad Palani Velu
- The Systematic Review Unit, Collaborative Research (CORE) Group, Sydney, Australia
| |
Collapse
|
24
|
Young VJ, Brown JK, Saunders PT, Horne AW. The role of the peritoneum in the pathogenesis of endometriosis. Hum Reprod Update 2013; 19:558-69. [DOI: 10.1093/humupd/dmt024] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Halasz M, Szekeres-Bartho J. The role of progesterone in implantation and trophoblast invasion. J Reprod Immunol 2013; 97:43-50. [DOI: 10.1016/j.jri.2012.10.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 01/28/2023]
|
26
|
Abstract
The ovarian steroid hormones progesterone and estradiol are well established regulators of human endometrial function. However, more recent evidence suggests that androgens and locally generated steroids, such as the glucocorticoids, also have a significant impact on endometrial breakdown and repair. The temporal and spatial pattern of steroid receptor presence in endometrial cells has a significant impact on the endometrial response to steroids. Furthermore, regulation of steroid receptor function by modulatory proteins further refines local responses. This review focuses on steroid regulation of endometrial function during the luteo-follicular transition with a focus on menstruation and endometrial repair.
Collapse
Affiliation(s)
- Jacqueline A Maybin
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | | |
Collapse
|