1
|
Rivoira MA, Peralta López ME, Areco V, Díaz de Barboza G, Dionisi MP, Tolosa de Talamoni N. Emerging concepts on the FGF23 regulation and activity. Mol Cell Biochem 2025; 480:75-89. [PMID: 38581553 DOI: 10.1007/s11010-024-04982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 04/08/2024]
Abstract
Fibroblast growth factor 23 (FGF23) discovery has provided new insights into the regulation of Pi and Ca homeostasis. It is secreted by osteoblasts and osteocytes, and acts mainly in the kidney, parathyroid, heart, and bone. The aim of this review is to highlight the current knowledge on the factors modulating the synthesis of FGF23, the canonical and non-canonical signaling pathways of the hormone, the role of FGF23 in different pathophysiological conditions, and the anti-FGF23 therapy. This is a narrative review based on the search of PubMed database in the range of years 2000-2023 using the keywords local and systemic regulators of FGF23 synthesis, FGF23 receptors, canonical and non-canonical pathways, pathophysiological conditions and FGF23, and anti-FGF23 therapy, focusing the data on the molecular mechanisms. The regulation of FGF23 synthesis is complex and multifactorial. It is regulated by local factors and systemic regulators mainly involved in bone mineralization. The excessive FGF23 production is associated with different congenital diseases and with diseases occurring with a secondary high FGF23 production such as in chronic disease kidney and tumor-induced osteomalacia (TIO). The anti-FGF23 therapy appears to be useful to treat chromosome X-linked hypophosphatemia and TIO, but there are doubts about the handle of excessive FGF23 production in CKD. FGF23 biochemistry and pathophysiology are generating a plethora of knowledge to reduce FGF23 bioactivity at many levels that might be useful for future therapeutics of diseases associated with high-serum FGF23 levels.
Collapse
Affiliation(s)
- María Angélica Rivoira
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Elena Peralta López
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Vanessa Areco
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, CONICET-UNVM), Córdoba, Argentina
| | - Gabriela Díaz de Barboza
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - María Paula Dionisi
- Cátedra de Clínica Médica II - UHMI Nº 2, Hospital San Roque, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Laboratorio "Dr. Fernando Cañas", Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Pabellón Argentina, 2do, Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
2
|
Phan P, Ternier G, Edirisinghe O, Kumar TKS. Exploring endocrine FGFs - structures, functions and biomedical applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 15:68-99. [PMID: 39309613 PMCID: PMC11411148 DOI: 10.62347/palk2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024]
Abstract
The family of fibroblast growth factors (FGFs) consists of 22 members with diverse biological functions in cells, from cellular development to metabolism. The family can be further categorized into three subgroups based on their three modes of action. FGF19, FGF21, and FGF23 are endocrine FGFs that act in a hormone-like/endocrine manner to regulate various metabolic activities. However, all three members of the endocrine family require both FGF receptors (FGFRs) and klotho co-receptors to elicit their functions. α-klotho and β-klotho act as scaffolds to bring endocrine FGFs closer to their receptors (FGFRs) to form active complexes. Numerous novel studies about metabolic FGFs' structures, mechanisms, and physiological insights have been published to further understand the complex molecular interactions and physiological activities of endocrine FGFs. Herein, we aim to review the structures, physiological functions, binding mechanisms to cognate receptors, and novel biomedical applications of endocrine FGFs in recent years.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Gaёtane Ternier
- Department of Chemistry and Biochemistry, Fulbright College of Art and Sciences, University of ArkansasFayetteville, AR 72701, USA
| | - Oshadi Edirisinghe
- Cell and Molecular Biology Program, University of ArkansasFayetteville, AR 72701, USA
| | | |
Collapse
|
3
|
Nabeshima Y, Sato T, Zukeran H, Komatsu R, Nakano S, Ichihashi Y, Tominaga T, Miwa M, Amano N, Ishii T, Hasegawa T. Fibroblast growth factor 23 levels in cord and peripheral blood during early neonatal period as possible predictors of affected offspring of X-linked hypophosphatemic rickets: report of three female cases from two pedigrees. J Pediatr Endocrinol Metab 2023; 36:786-790. [PMID: 37342899 DOI: 10.1515/jpem-2023-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/29/2023] [Indexed: 06/23/2023]
Abstract
OBJECTIVES The role of serum fibroblast growth factor 23 (FGF23) level in early neonatal period on the diagnosis of X-linked hypophosphatemic rickets (XLH) remains unclear. CASE PRESENTATION Two female patients from the first pedigree had an affected mother, and the other female from the second pedigree had an affected father. In all three cases, FGF23 levels were high in cord blood and peripheral blood at day 4-5. Additionally, the FGF23 levels considerably increased from birth to day 4-5. We identified a PHEX pathogenic variant and initiated treatment during infancy in each case. CONCLUSIONS In neonates with a parent diagnosed as PHEX-associated XLH, FGF23 in cord blood and peripheral blood at day 4-5 may be useful markers for predicting the presence of XLH.
Collapse
Affiliation(s)
- Yukiyo Nabeshima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Tokyo Metropolitan Hospital Otsuka, Tokyo, Japan
| | - Takeshi Sato
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroaki Zukeran
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Rieko Komatsu
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Satsuki Nakano
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Ichihashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Masayuki Miwa
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Naoko Amano
- Department of Pediatrics, Saitama City Hospital, Saitama, Japan
| | - Tomohiro Ishii
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Pons-Belda OD, Alonso-Álvarez MA, González-Rodríguez JD, Mantecón-Fernández L, Santos-Rodríguez F. Mineral Metabolism in Children: Interrelation between Vitamin D and FGF23. Int J Mol Sci 2023; 24:ijms24076661. [PMID: 37047636 PMCID: PMC10094813 DOI: 10.3390/ijms24076661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) was identified at the turn of the century as the long-sought circulating phosphatonin in human pathology. Since then, several clinical and experimental studies have investigated the metabolism of FGF23 and revealed its relevant pathogenic role in various diseases. Most of these studies have been performed in adult individuals. However, the mineral metabolism of the child is, to a large extent, different from that of the adult because, in addition to bone remodeling, the child undergoes a specific process of endochondral ossification responsible for adequate mineralization of long bones’ metaphysis and growth in height. Vitamin D metabolism is known to be deeply involved in these processes. FGF23 might have an influence on bones’ growth as well as on the high and age-dependent serum phosphate concentrations found in infancy and childhood. However, the interaction between FGF23 and vitamin D in children is largely unknown. Thus, this review focuses on the following aspects of FGF23 metabolism in the pediatric age: circulating concentrations’ reference values, as well as those of other major variables involved in mineral homeostasis, and the relationship with vitamin D metabolism in the neonatal period, in vitamin D deficiency, in chronic kidney disease (CKD) and in hypophosphatemic disorders.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Santos-Rodríguez
- Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Faculty of Medicine, University of Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
5
|
Brescia V, Fontana A, Lovero R, Capobianco C, Marsico SV, De Chirico T, Pinto C, Varraso L, Cazzolla AP, Di Serio F. Determination of iFGF23 Upper Reference Limits (URL) in healthy pediatric population, for its better correct use. Front Endocrinol (Lausanne) 2022; 13:1018523. [PMID: 36440231 PMCID: PMC9681906 DOI: 10.3389/fendo.2022.1018523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The measurement of Fibroblast growth factor 23 (FGF23) may be useful in the diagnosis and management of abnormal phosphate metabolism in both patients with preserved renal function or with chronic kidney disease (CKD). FGF-23 tests differ considerably by molecule assayed (iFGF23 or cFGF23), analytical performance and reference ranges. We establish iFGF23 Upper Reference Limits (URL) in apparently healthy pediatric individuals using automated immunochemiluminescent assay. METHODS We measured the levels of plasma iFGF23 from 115 samples from apparently healthy pediatric subjects [59 (51.3%) individuals were male; median age 10 years (range 1-18)] included in an observational study conducted at Policlinico University Hospital of Bari. The method used for the iFGF23 assay was immunochemiluminescent sandwich assay developed by DiaSorin on the Liaison XL platform. Statistical calculation of 95% reference interval, right-sided (CLSI C28-A3) and verification of age and sex covariables was performed for the calculation of the URL. RESULTS The URL concentration of iFGF23 was 61.21 pg/mL (58.63 to 63.71, 90% CI). No significant differences were found between the median concentrations of iFGF23 differentiated by sex and age. CONCLUSIONS The dosage of iFGF23 is important both for the differential diagnosis of the various forms of rickets, and for the subsequent monitoring of the effectiveness of drug treatment. We have established the URL for the iFGF23 Liaison test in apparently healthy pediatric subjects. The availability of iFGF23 pediatric reference values will allow a better clinical use of the test.
Collapse
Affiliation(s)
- Vincenzo Brescia
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Antonietta Fontana
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
- *Correspondence: Roberto Lovero,
| | - Carmela Capobianco
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Stella Vita Marsico
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Tiziana De Chirico
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Carla Pinto
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Lucia Varraso
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, Foggia, Italy
| | - Francesca Di Serio
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria (AOU) Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, Bari, Italy
| |
Collapse
|
6
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
7
|
Enlund-Cerullo M, Hauta-Alus H, Valkama S, Rosendahl J, Andersson S, Mäkitie O, Holmlund-Suila E. Fibroblast growth factor 23 concentrations and modifying factors in children from age 12 to 24 months. Bone 2020; 141:115629. [PMID: 32919110 DOI: 10.1016/j.bone.2020.115629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/29/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Fibroblast growth factor 23 (FGF23) participates in phosphate, calcium and vitamin D metabolism. In children these interactions and modifying factors are largely unknown. PARTICIPANTS AND METHODS This study evaluates temporal changes and modifiers of FGF23 concentrations from 12 to 24 months, in healthy children, participating in a randomized vitamin D intervention (VIDI). Participants received vitamin D3 of 10 or 30 μg/day from age 2 weeks to 24 months. At 12 and 24 months, growth measurements and venous blood samples were obtained for analyses of intact (iFGF23) and C-terminal FGF23 (cFGF23), 25-hydroxyvitamin D (25-OHD), calcium, phosphate, parathyroid hormone, iron and ferritin. Changes in FGF23 and modifying factors were examined by linear mixed models. RESULTS The study included 594 infants. Girls had higher iFGF23 than boys (p < 0.001 for both 12 and 24 months), cFGF23 did not differ between the sexes. Adjusted mean iFGF23 decreased from 41.4 to 38.1 pg/mL in boys (p < 0.001) and from 45.2 to 42.5 pg/mL in girls (p = 0.002). Adjusted mean cFGF23 decreased from 2.89 to 2.00 pmol/L in boys (p < 0.001) and from 2.92 to 1.93 pmol/L in girls (p < 0.001). Iron modified FGF23 in both sexes, associating positively with iFGF23 and inversely with cFGF23. In girls, 25-OHD modified iFGF23. In boys, season modified FGF23, possibly through seasonal differences in 25-OHD. Vitamin D intervention dose did not affect FGF23. CONCLUSIONS FGF23 decreases from 12 to 24 months. Girls have higher iFGF23 than boys, at both time points. Iron modifies FGF23 in both sexes.
Collapse
Affiliation(s)
- Maria Enlund-Cerullo
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland.
| | - Helena Hauta-Alus
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Saara Valkama
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Jenni Rosendahl
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland; Center for Molecular Medicine, Karolinska Institutet, Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Elisa Holmlund-Suila
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
8
|
Everson TM, O'Shea TM, Burt A, Hermetz K, Carter BS, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, Soliman A, DellaGrotta SA, Dansereau LM, Padbury JF, Lester BM, Marsit CJ. Serious neonatal morbidities are associated with differences in DNA methylation among very preterm infants. Clin Epigenetics 2020; 12:151. [PMID: 33076993 PMCID: PMC7574188 DOI: 10.1186/s13148-020-00942-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background Infants born very preterm are more likely to experience neonatal morbidities compared to their term peers. Variations in DNA methylation (DNAm) associated with these morbidities may yield novel information about the processes impacted by these morbidities. Methods This study included 532 infants born < 30 weeks gestation, participating in the Neonatal Neurobehavior and Outcomes in Very Preterm Infants study. We used a neonatal morbidity risk score, which was an additive index of the number of morbidities experienced during the NICU stay, including bronchopulmonary dysplasia (BPD), severe brain injury, serious neonatal infections, and severe retinopathy of prematurity. DNA was collected from buccal cells at discharge from the NICU, and DNAm was measured using the Illumina MethylationEPIC. We tested for differential methylation in association with the neonatal morbidity risk score then tested for differentially methylated regions (DMRs) and overrepresentation of biological pathways. Results We identified ten differentially methylated CpGs (α Bonferroni-adjusted for 706,278 tests) that were associated with increasing neonatal morbidity risk scores at three intergenic regions and at HPS4, SRRD, FGFR1OP, TNS3, TMEM266, LRRC3B, ZNF780A, and TENM2. These mostly followed dose–response patterns, for 8 CpGs increasing DNAm associated with increased numbers of morbidities, while for 2 CpGs the risk score was associated with decreasing DNAm. BPD was the most substantial contributor to differential methylation. We also identified seven potential DMRs and over-representation of genes involved in Wnt signaling; however, these results were not significant after Bonferroni adjustment for multiple testing. Conclusions Neonatal DNAm, within genes involved in fibroblast growth factor activities, cellular invasion and migration, and neuronal signaling and development, are sensitive to the neonatal health complications of prematurity. We hypothesize that these epigenetic features may be representative of an integrated marker of neonatal health and development and are promising candidates to integrate with clinical information for studying developmental impairments in childhood.
Collapse
Affiliation(s)
- Todd M Everson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - T Michael O'Shea
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen Devos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Lundquist Institute At Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antoine Soliman
- Department of Pediatrics, Miller Children's and Women's Hospital Long Beach, Long Beach, CA, USA
| | - Sheri A DellaGrotta
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
| | - Lynne M Dansereau
- Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
| | - James F Padbury
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA
| | - Barry M Lester
- Department of Pediatrics, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA.,Brown Center for the Study of Children at Risk, Brown Alpert Medical School and Women and Infants Hospital, Providence, RI, USA.,Department of Psychiatry and Human Behavior, Brown Alpert Medical School, Providence, RI, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
9
|
Cross JH, Prentice AM, Cerami C. Hepcidin, Serum Iron, and Transferrin Saturation in Full-Term and Premature Infants during the First Month of Life: A State-of-the-Art Review of Existing Evidence in Humans. Curr Dev Nutr 2020; 4:nzaa104. [PMID: 32793848 PMCID: PMC7413980 DOI: 10.1093/cdn/nzaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
Neonates regulate iron at birth and in early postnatal life. We reviewed literature from PubMed and Ovid Medline containing data on umbilical cord and venous blood concentrations of hepcidin and iron, and transferrin saturation (TSAT), in human neonates from 0 to 1 mo of age. Data from 59 studies were used to create reference ranges for hepcidin, iron, and TSAT for full-term-birth (FTB) neonates over the first month of life. In FTB neonates, venous hepcidin increases 100% over the first month of life (to reach 61.1 ng/mL; 95% CI: 20.1, 102.0 ng/mL) compared with umbilical cord blood (29.7 ng/mL; 95% CI: 21.1, 38.3 ng/mL). Cord blood has a high concentration of serum iron (28.4 μmol/L; 95% CI: 26.0, 31.1 μmol/L) and levels of TSAT (51.7%; 95% CI: 46.5%, 56.9%). After a short-lived immediate postnatal hypoferremia, iron and TSAT rebounded to approximately half the levels in the cord by the end of the first month. There were insufficient data to formulate reference ranges for preterm neonates.
Collapse
Affiliation(s)
- James H Cross
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Andrew M Prentice
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| | - Carla Cerami
- Epidemiology and Population Health, Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Banjul, The Gambia
| |
Collapse
|
10
|
Ryan BA, Kovacs CS. Calciotropic and phosphotropic hormones in fetal and neonatal bone development. Semin Fetal Neonatal Med 2020; 25:101062. [PMID: 31786156 DOI: 10.1016/j.siny.2019.101062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are remarkable differences in bone and mineral metabolism between the fetus and adult. The fetal mineral supply is from active transport across the placenta. Calcium, phosphorus, and magnesium circulate at higher levels in the fetus compared to the mother. These high concentrations enable the skeleton to accrete required minerals before birth. Known key regulators in the adult include parathyroid hormone (PTH), calcitriol, fibroblast growth factor-23, calcitonin, and the sex steroids. But during fetal life, PTH plays a lesser role while the others appear to be unimportant. Instead, PTH-related protein (PTHrP) plays a critical role. After birth, serum calcium falls and phosphorus rises, which trigger an increase in PTH and a subsequent rise in calcitriol. The intestines become the main source of mineral supply while the kidneys reabsorb filtered minerals. This striking developmental switch is triggered by loss of the placenta, onset of breathing, and the drop in serum calcium.
Collapse
Affiliation(s)
- Brittany A Ryan
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Christopher S Kovacs
- Faculty of Medicine - Endocrinology, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
11
|
FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat Rev Nephrol 2019; 16:7-19. [PMID: 31519999 DOI: 10.1038/s41581-019-0189-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor 23 (FGF23) was initially characterized as an important regulator of phosphate and calcium homeostasis. New research advances demonstrate that FGF23 is also linked to iron economy, inflammation and erythropoiesis. These advances have been fuelled, in part, by the serendipitous development of two distinct FGF23 assays that can substitute for invasive bone biopsies to infer the activity of the three main steps of FGF23 regulation in bone: transcription, post-translational modification and peptide cleavage. This 'liquid bone biopsy for FGF23 dynamics' enables large-scale longitudinal studies of FGF23 regulation that would otherwise be impossible in humans. The balance between FGF23 production, post-translational modification and cleavage is maintained or perturbed in different hereditary monogenic conditions and in acquired conditions that mimic these genetic disorders, including iron deficiency, inflammation, treatment with ferric carboxymaltose and chronic kidney disease. Looking ahead, a deeper understanding of the relationships between FGF23 regulation, iron homeostasis and erythropoiesis can be leveraged to devise novel therapeutic targets for treatment of anaemia and states of FGF23 excess, including chronic kidney disease.
Collapse
|
12
|
Abstract
Fibroblast growth factor 23 (FGF23), one of the endocrine fibroblast growth factors, is a principal regulator in the maintenance of serum phosphorus concentration. Binding to its cofactor αKlotho and a fibroblast growth factor receptor is essential for its activity. Its regulation and interaction with other factors in the bone-parathyroid-kidney axis is complex. FGF23 reduces serum phosphorus concentration through decreased reabsorption of phosphorus in the kidney and by decreasing 1,25 dihydroxyvitamin D (1,25(OH)2D) concentrations. Various FGF23-mediated disorders of renal phosphate wasting share similar clinical and biochemical features. The most common of these is X-linked hypophosphatemia (XLH). Additional disorders of FGF23 excess include autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets, fibrous dysplasia, and tumor-induced osteomalacia. Treatment is challenging, requiring careful monitoring and titration of dosages to optimize effectiveness and to balance side effects. Conventional therapy for XLH and other disorders of FGF23-mediated hypophosphatemia involves multiple daily doses of oral phosphate salts and active vitamin D analogs, such as calcitriol or alfacalcidol. Additional treatments may be used to help address side effects of conventional therapy such as thiazides to address hypercalciuria or nephrocalcinosis, and calcimimetics to manage hyperparathyroidism. The recent development and approval of an anti-FGF23 antibody, burosumab, for use in XLH provides a novel treatment option.
Collapse
Affiliation(s)
- Anisha Gohil
- Indiana University School of Medicine, Riley Hospital for Children, Fellow, Endocrinology and Diabetes, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA, E-mail:
| | - Erik A Imel
- Indiana University School of Medicine, Riley Hospital for Children, Associate Professor of Medicine and Pediatrics, 1120 West Michigan Street, CL 459, Indianapolis, IN 46202, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW We will review non-renal-related mechanisms of fibroblast growth factor 23 (FGF23) pathophysiology. RECENT FINDINGS FGF23 production and metabolism may be affected by many bone, mineral, and kidney factors. However, it has recently been demonstrated that other factors, such as iron status, erythropoietin, and inflammation, also affect FGF23 production and metabolism. As these non-mineral factors are especially relevant in the setting of chronic kidney disease (CKD), they may represent emerging determinants of CKD-associated elevated FGF23 levels. Moreover, FGF23 itself may promote anemia and inflammation, thus contributing to the multifactorial etiologies of these CKD-associated comorbidities. CKD-relevant, non-mineral-related, bidirectional relationships exist between FGF23 and anemia, and between FGF23 and inflammation. Iron deficiency, anemia, and inflammation affect FGF23 production and metabolism, and FGF23 itself may contribute to anemia and inflammation, highlighting complex interactions that may affect aspects of CKD pathogenesis and treatment.
Collapse
Affiliation(s)
- Mark R Hanudel
- UCLA Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA.
| | - Marciana Laster
- UCLA Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| | - Isidro B Salusky
- UCLA Department of Pediatrics, Division of Pediatric Nephrology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, MDCC A2-383, Los Angeles, CA, 90095-1752, USA
| |
Collapse
|
14
|
Holmlund-Suila E, Enlund-Cerullo M, Valkama S, Hauta-Alus H, Rosendahl J, Helve O, Hytinantti T, Viljakainen H, Andersson S, Mäkitie O. Sex and Iron Modify Fibroblast Growth Factor 23 Concentration in 1-Year-Old Children. J Clin Endocrinol Metab 2017; 102:4526-4533. [PMID: 29029193 DOI: 10.1210/jc.2017-01211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/29/2017] [Indexed: 01/29/2023]
Abstract
CONTEXT Fibroblast growth factor 23 (FGF23) plays an important role in phosphate homeostasis, but its regulation is inadequately characterized. OBJECTIVE To examine FGF23 regulators, especially sex and iron status, in early childhood. DESIGN A cross-sectional study involving 1-year-old children. SETTING AND PARTICIPANTS Healthy term infants with a birth weight appropriate for gestational age were recruited to an ongoing vitamin D trial at Kätilöopisto Maternity Hospital, Helsinki, Finland. At 12-month follow-up visits, serum FGF23, 25-hydroxyvitamin D (25OHD), phosphate, ionized calcium, parathyroid hormone, and iron status were measured. All 721 children (51% girls) with complete data were included. MAIN OUTCOME MEASURES Intact and C-terminal FGF23 concentrations and iron status at 1 year of age. RESULTS Intact FGF23 was greater in girls than in boys [median, 44.4 pg/mL; interquartile range (IQR), 36.8 to 51.9; median, 40.9 pg/mL; IQR, 34.5 to 49.0, respectively; P < 0.001]. C-terminal FGF23 was similar in boys and girls (median, 2.8 pmol/L; IQR, 2.1 to 3.7; median, 2.9 pmol/L; IQR, 2.2 to 3.7, respectively; P = 0.393). The iron concentration was positively associated with intact FGF23 and was the strongest modifier of intact FGF23 (regression coefficient, 0.498; 95% confidence interval, 0.333 to 0.663; P < 0.001) with ferritin, season, ionized calcium, 25OHD, and sex as other covariates. The association between iron and C-terminal FGF23 was inversely related (regression coefficient, -0.072; 95% confidence interval, -0.092 to -0.051; P < 0.001). CONCLUSIONS At 1 year of age, FGF23 status was different in girls and boys, with intact FGF23 concentrations higher in girls. Iron modified FGF23 concentrations, with intact FGF23 higher and C-terminal lower, in those with greater iron concentrations.
Collapse
Affiliation(s)
- Elisa Holmlund-Suila
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Maria Enlund-Cerullo
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
- Folkhälsan Research Center, Finland
| | - Saara Valkama
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Helena Hauta-Alus
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Jenni Rosendahl
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Otto Helve
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Timo Hytinantti
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Heli Viljakainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
- Folkhälsan Research Center, Finland
| | - Sture Andersson
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
| | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Finland
- Folkhälsan Research Center, Finland
- Center for Molecular Medicine, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Sweden
| |
Collapse
|
15
|
Ma Y, Kirby BJ, Fairbridge NA, Karaplis AC, Lanske B, Kovacs CS. FGF23 Is Not Required to Regulate Fetal Phosphorus Metabolism but Exerts Effects Within 12 Hours After Birth. Endocrinology 2017; 158:252-263. [PMID: 27929669 PMCID: PMC5413075 DOI: 10.1210/en.2016-1369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023]
Abstract
Loss of fibroblast growth factor-23 (FGF23) causes hyperphosphatemia, extraskeletal calcifications, and early mortality; excess FGF23 causes hypophosphatemia with rickets or osteomalacia. However, FGF23 may not be important during fetal development. FGF23 deficiency (Fgf23 null) and FGF23 excess (Phex null) did not alter fetal phosphorus or skeletal parameters. In this study, we further tested our hypothesis that FGF23 is not essential for fetal phosphorus regulation but becomes important after birth. Although coreceptor Klotho null adults have extremely high FGF23 concentrations, intact FGF23 was normal in Klotho null fetuses, as were fetal phosphorus and skeletal parameters and placental and renal expression of FGF23 target genes. Pth/Fgf23 double mutants had the same elevation in serum phosphorus as Pth null fetuses, as compared with normal serum phosphorus in Fgf23 nulls. We examined the postnatal time courses of Fgf23 null, Klotho null, and Phex null mice. Fgf23 nulls and Klotho nulls were normal at birth, but developed hyperphosphatemia, increased renal expression of NaPi2a and NaPi2c, and reduced renal phosphorus excretion between 5 and 7 days after birth. Parathyroid hormone remained normal. In contrast, excess FGF23 exerted effects in Phex null males within 12 hours after birth, with the development of hypophosphatemia, reduced renal expression of NaPi2a and NaPi2c, and increased renal phosphorus excretion. In conclusion, although FGF23 is present in the fetal circulation at levels that may equal adult values, and there is robust expression of FGF23 target genes in placenta and fetal kidneys, FGF23 itself is not an important regulator of fetal phosphorous metabolism.
Collapse
Affiliation(s)
- Yue Ma
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| | - Beth J. Kirby
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| | - Nicholas A. Fairbridge
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| | - Andrew C. Karaplis
- McGill University and Jewish General Hospital, Montréal, Quebec H3T 1E2, Canada; and
| | - Beate Lanske
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Christopher S. Kovacs
- Faculty of Medicine–Endocrinology, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada;
| |
Collapse
|
16
|
Neves PDMM, Graciolli FG, Oliveira IB, Bridi RA, Moysés RMA, Elias RM. Effect of Mineral and Bone Metabolism on Restless Legs Syndrome in Hemodialysis Patients. J Clin Sleep Med 2017; 13:89-94. [PMID: 28173916 DOI: 10.5664/jcsm.6396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/07/2016] [Indexed: 02/02/2023]
Abstract
STUDY OBJECTIVES Restless legs syndrome (RLS) is a highly prevalent sleep disease among patients on hemodialysis. The physiopathology is still unclear, and may be multifactorial. Because of the association between iron metabolism and chronic kidney disease-mineral and bone disorders (CKD-MBD), we hypothesized that both factors would be associated with RLS. METHODS We have evaluated hemodialysis patients, in a face-to-face interview for the diagnosis and severity of RLS, as measured by the International Restless Legs Syndrome Study Group. Clinical, demographic, and biochemical characteristics were measured. RESULTS Out of 101 adult patients included, RLS was found in 29 (28.7%). Adjusted multinomial regression analysis revealed that age older than 35 years, transferrin saturation less than 47%, serum ferritin level less than 700 ng/mL, hemoglobin level less than 9.8 g/dL, serum phosphate level higher than 5.2 mg/dL, FGF-23 higher than 2,000 RU/mL, and C-reactive protein less than 1.24 mg/dL were independently associated with RLS. RLS was classified as mild, moderate, severe, and very severe in 3.4%, 41.7%, 44.8%, and 10.1% of patients, respectively. Scores of severity correlated significantly with erythropoietin dose/kg/w (p = 0.046), phosphate (p = 0.003), and inversely with serum albumin (p = 0.003) and calcium (p = 0.008). Phosphate and 25(OH)-vitamin D correlated with transferrin saturation. Patients with severe/very severe symptoms were mostly women, presented with lower serum iron, ionic calcium, and serum albumin levels and higher levels of serum phosphate, and higher percentage of 25(OH)-vitamin D deficiency and levels of FGF-23 higher than 2,000 RU/mL than did those with mild/moderate symptoms. CONCLUSIONS CKD-MBD factors besides iron metabolism are associated with RLS in patients on hemodialysis, providing new insights into the understanding of RLS in this population.
Collapse
Affiliation(s)
| | | | | | | | - Rosa M A Moysés
- Nephrology Division, Universidade São Paulo, São Paulo, Brazil.,Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | |
Collapse
|