1
|
Yu X, Zhang H, Zhang H, Hou C, Wang X, Gu P, Han Y, Yang Z, Zou W. The role of epigenetic methylations in thyroid Cancer. World J Surg Oncol 2024; 22:281. [PMID: 39456011 PMCID: PMC11515417 DOI: 10.1186/s12957-024-03568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Thyroid cancer (TC) represents one of the most prevalent endocrine malignancies, with a rising incidence worldwide. Epigenetic alterations, which modify gene expression without altering the underlying DNA sequence, have garnered significant attention in recent years. Increasing evidence underscores the pivotal role of epigenetic modifications, including DNA methylation, RNA methylation, and histone methylation, in the pathogenesis of TC. This review provides a comprehensive overview of these reversible and environmentally influenced epigenetic modifications, highlighting their molecular mechanisms and functional roles in TC. Additionally, the clinical implications, challenges associated with studying these epigenetic modifications, and potential future research directions are explored.
Collapse
Affiliation(s)
- Xiaojie Yu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Hao Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Haojie Zhang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Changran Hou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Xiaohong Wang
- Department of Breast Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Pengfei Gu
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China
| | - Yong Han
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Zhenlin Yang
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| | - Weiwei Zou
- Department of Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, P.R. China.
| |
Collapse
|
2
|
Lebrun L, Salmon I. Pathology and new insights in thyroid neoplasms in the 2022 WHO classification. Curr Opin Oncol 2024; 36:13-21. [PMID: 37975316 PMCID: PMC10715705 DOI: 10.1097/cco.0000000000001012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW The assessment of thyroid nodules is a common clinical problem, linked to the high incidence of thyroid nodules in the population and the low incidence of aggressive thyroid carcinoma. The screening is therefore one of the strengths of our patient care. Recently, the 2023 Bethesda System for Reporting Thyroid Cytopathology (TBSRTC) and 2022 WHO classification of thyroid neoplasms have been released based on the definition of new entities and the growing impact of molecular testing. The aim of this review is to analyze how these upgrades can help us in the daily routine practice diagnosis of thyroid cancer. RECENT FINDINGS Our review is focused on the most frequent thyroid tumors derived from thyroid follicular cell. Fine needle aspiration (FNA) is the gold standard for the screening of thyroid nodules with very high levels of sensitivity and specificity. These sensitivity and specificity are improved by molecular testing, which refines the risk of malignancy. The 2023 TBSRTC integrates molecular data and the upgrades integrated in the 2022 WHO classification such as the 'low-risk neoplasms' and the 'high-grade follicular-cells derived carcinoma'. The morphological examination remains crucial since the capsular and/or vascular invasion are key features of malignancy in the follicular thyroid neoplasms. Low-risk neoplasms represent a clinical challenge since no specific guidelines are available. Challenges remain regarding oncocytic thyroid lesions, which are not associated with specific diagnostic molecular biomarkers. Molecular testing can help not only in deciphering the prognosis but also in the targeted therapeutic strategy. SUMMARY While molecular testing has succeeded to substantially improve the pre and postoperative diagnosis and risk stratification of thyroid tumors, the morphological examination is still central in the daily routine diagnosis of thyroid pathology. Future is the integrated diagnosis of clinical, morphological, molecular and epigenetic features with the help of artificial intelligence algorithms.
Collapse
Affiliation(s)
- Laetitia Lebrun
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Department of Pathology, Brussels
| | - Isabelle Salmon
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Department of Pathology, Brussels
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| |
Collapse
|
3
|
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenetics 2022; 14:154. [PMID: 36443876 PMCID: PMC9706891 DOI: 10.1186/s13148-022-01382-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism that regulates gene expression. To date, most DNA methylation studies have focussed on CpG islands in the gene promoter region, and the mechanism of methylation and the regulation of gene expression after methylation have been clearly elucidated. However, genome-wide methylation studies have shown that DNA methylation is widespread not only in promoters but also in gene bodies. Gene body methylation is widely involved in the expression regulation of many genes and is closely related to the occurrence and progression of malignant tumours. This review focusses on the formation of gene body methylation patterns, its regulation of transcription, and its relationship with tumours, providing clues to explore the mechanism of gene body methylation in regulating gene transcription and its significance and application in the field of oncology.
Collapse
Affiliation(s)
- Qi Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Fei Xiong
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Guanhua Wu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Wenzheng Liu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Junsheng Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Bing Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Yongjun Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| |
Collapse
|
4
|
Baloch ZW, Asa SL, Barletta JA, Ghossein RA, Juhlin CC, Jung CK, LiVolsi VA, Papotti MG, Sobrinho-Simões M, Tallini G, Mete O. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr Pathol 2022; 33:27-63. [PMID: 35288841 DOI: 10.1007/s12022-022-09707-3] [Citation(s) in RCA: 466] [Impact Index Per Article: 155.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 12/15/2022]
Abstract
This review summarizes the changes in the 5th edition of the WHO Classification of Endocrine and Neuroendocrine Tumors that relate to the thyroid gland. The new classification has divided thyroid tumors into several new categories that allow for a clearer understanding of the cell of origin, pathologic features (cytopathology and histopathology), molecular classification, and biological behavior. Follicular cell-derived tumors constitute the majority of thyroid neoplasms. In this new classification, they are divided into benign, low-risk, and malignant neoplasms. Benign tumors include not only follicular adenoma but also variants of adenoma that are of diagnostic and clinical significance, including the ones with papillary architecture, which are often hyperfunctional and oncocytic adenomas. For the first time, there is a detailed account of the multifocal hyperplastic/neoplastic lesions that commonly occur in the clinical setting of multinodular goiter; the term thyroid follicular nodular disease (FND) achieved consensus as the best to describe this enigmatic entity. Low-risk follicular cell-derived neoplasms include non-invasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), thyroid tumors of uncertain malignant potential, and hyalinizing trabecular tumor. Malignant follicular cell-derived neoplasms are stratified based on molecular profiles and aggressiveness. Papillary thyroid carcinomas (PTCs), with many morphological subtypes, represent the BRAF-like malignancies, whereas invasive encapsulated follicular variant PTC and follicular thyroid carcinoma represent the RAS-like malignancies. This new classification requires detailed subtyping of papillary microcarcinomas similar to their counterparts that exceed 1.0 cm and recommends not designating them as a subtype of PTC. The criteria of the tall cell subtype of PTC have been revisited. Cribriform-morular thyroid carcinoma is no longer classified as a subtype of PTC. The term "Hürthle cell" is discouraged, since it is a misnomer. Oncocytic carcinoma is discussed as a distinct entity with the clear recognition that it refers to oncocytic follicular cell-derived neoplasms (composed of > 75% oncocytic cells) that lack characteristic nuclear features of PTC (those would be oncocytic PTCs) and high-grade features (necrosis and ≥ 5 mitoses per 2 mm2). High-grade follicular cell-derived malignancies now include both the traditional poorly differentiated carcinoma as well as high-grade differentiated thyroid carcinomas, since both are characterized by increased mitotic activity and tumor necrosis without anaplastic histology and clinically behave in a similar manner. Anaplastic thyroid carcinoma remains the most undifferentiated form; squamous cell carcinoma of the thyroid is now considered as a subtype of anaplastic carcinoma. Medullary thyroid carcinomas derived from thyroid C cells retain their distinct section, and there is a separate section for mixed tumors composed of both C cells and any follicular cell-derived malignancy. A grading system for medullary thyroid carcinomas is also introduced based on mitotic count, tumor necrosis, and Ki67 labeling index. A number of unusual neoplasms that occur in the thyroid have been placed into new sections based on their cytogenesis. Mucoepidermoid carcinoma and secretory carcinoma of the salivary gland type are now included in one section classified as "salivary gland-type carcinomas of the thyroid." Thymomas, thymic carcinomas and spindle epithelial tumor with thymus-like elements are classified as "thymic tumors within the thyroid." There remain several tumors whose cell lineage is unclear, and they are listed as such; these include sclerosing mucoepidermoid carcinoma with eosinophilia and cribriform-morular thyroid carcinoma. Another important addition is thyroblastoma, an unusual embryonal tumor associated with DICER1 mutations. As in all the WHO books in the 5th edition, mesenchymal and stromal tumors, hematolymphoid neoplasms, germ cell tumors, and metastatic malignancies are discussed separately. The current classification also emphasizes the value of biomarkers that may aid diagnosis and provide prognostic information.
Collapse
Affiliation(s)
- Zubair W Baloch
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sylvia L Asa
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Christofer Juhlin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Chan Kwon Jung
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Virginia A LiVolsi
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Manuel Sobrinho-Simões
- Department of Pathology, Institute of Molecular Pathology and Immunology, IPATIMUP, University of Porto, Porto, Portugal
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Ozgur Mete
- Department of Pathology, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Gu P, Zeng Y, Ma W, Zhang W, Liu Y, Guo F, Ruan X, Chi J, Zheng X, Gao M. Characterization of the CpG island methylator phenotype subclass in papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2022; 13:1008301. [PMID: 36353231 PMCID: PMC9637834 DOI: 10.3389/fendo.2022.1008301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
CpG island methylator phenotype (CIMP), characterized by the concurrent and widespread hypermethylation of a cluster of CpGs, has been reported to play an important role in carcinogenesis. Limited studies have explored the role of CIMP in papillary thyroid carcinomas (PTCs). Here, in genome-wide DNA methylation analysis of 350 primary PTCs from the Cancer Genome Atlas database that were assessed using the Illumina HumanMethylation450K platform, our study helps to identify two subtypes displayed markedly distinct DNA methylation levels, termed CIMP (high levels of DNA methylation) and nCIMP subgroup (low levels of DNA methylation). Interestingly, PTCs with CIMP tend to have a higher degree of malignancy, since this subtype was tightly associated with older age, advanced pathological stage, and lymph node metastasis (all P < 0.05). Differential methylation analysis showed a broad methylation gain in CIMP and subsequent generalized gene set testing analysis based on the significantly methylated probes in CIMP showed remarkable enrichment in epithelial mesenchymal transition and angiogenesis hallmark pathways, confirming that the CIMP phenotype may promote the tumor progression from another perspective. Analysis of tumor microenvironment showed that CIMP PTCs are in an immune-depletion status, which may affect the effectiveness of immunotherapy. Genetically, the significantly higher tumor mutation burden and copy number alteration both at the genome and focal level confirmed the genomic heterogeneity and chromosomal instability of CIMP. tumor Corresponding to the above findings, PTC patients with CIMP showed remarkable poor clinical outcome as compared to nCIMP regarding overall survival and progression-free survival. More importantly, CIMP was associated with worse survival independent of known prognostic factors.
Collapse
Affiliation(s)
- Pengfei Gu
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zeng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Weike Ma
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wei Zhang
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yu Liu
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Fengli Guo
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xianhui Ruan
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jiadong Chi
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Jiadong Chi, ; Xiangqian Zheng, ; Ming Gao,
| | - Xiangqian Zheng
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Jiadong Chi, ; Xiangqian Zheng, ; Ming Gao,
| | - Ming Gao
- Department of Thyroid and Neck Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Thyroid and Breast Surgery, Tianjin Union Medical Center, Tianjin, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Jiadong Chi, ; Xiangqian Zheng, ; Ming Gao,
| |
Collapse
|
6
|
Banerjee R, Smith J, Eccles MR, Weeks RJ, Chatterjee A. Epigenetic basis and targeting of cancer metastasis. Trends Cancer 2021; 8:226-241. [DOI: 10.1016/j.trecan.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
|
7
|
Chang A, Ling J, Ye H, Zhao H, Zhuo X. Enhancement of nanoparticle-mediated double suicide gene expression driven by 'E9-hTERT promoter' switch in dedifferentiated thyroid cancer cells. Bioengineered 2021; 12:6572-6578. [PMID: 34506254 PMCID: PMC8806866 DOI: 10.1080/21655979.2021.1974648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Differentiated thyroid cancer (DTC), such as papillary thyroid cancer, has a good prognosis after routine treatment. However, in the course of treatment, 5% to 20% of cases may dedifferentiate and can be transformed into dedifferentiated DTC (deDTC) or anaplastic thyroid cancer, leading to treatment failure. To date, several drugs have been used effectively for dedifferentiated thyroid cancer, whereas gene therapy may be a potential method. Literature reported that double suicide genes driven by human telomerase reverse transcriptase promoter (hTERTp) can specifically express in cancer cells and kill them. However, the weak activity of hTERTp limits its further research. To overcome this weakness, we constructed a novel chitosan nanocarrier containing double suicide genes driven by a ‘gene switch’ (a cascade of radiation enhancer E9 and a hTERTp). The vector was labeled with iodine-131 (131I). On one hand, E9 can significantly enhance the activity of hTERTp under the weak radiation of 131I, thereby increasing the expression of double suicide genes in deDTC cells. On the other hand, 131I also plays a certain killing role when it enters host cells. The proposed nanocarrier has good specificity for deDTC cells and thus deserves further study.
Collapse
Affiliation(s)
- Aoshuang Chang
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Department of Oncology, Chongqing Institute of Traditional Chinese Medicine, Chongqing, China
| | - Huiping Ye
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Houyu Zhao
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xianlu Zhuo
- Department of Otorhinolaryngology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Yan Q, Tang Y, He F, Xue J, Zhou R, Zhang X, Luo H, Zhou D, Wang X. Global analysis of DNA methylation in hepatocellular carcinoma via a whole-genome bisulfite sequencing approach. Genomics 2021; 113:3618-3634. [PMID: 34461228 DOI: 10.1016/j.ygeno.2021.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 05/01/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023]
Abstract
Alterations in DNA methylation patterns are considered early events in hepatocellular carcinoma (HCC). However, their mechanism and significance remain to be elucidated. We studied the genome-wide DNA methylation landscape of HCC by applying whole-genome bisulfite sequencing (WGBS) techonlogy. Overall, HCC exhibits a genome-wide hypomethylation pattern. After further annotation, we obtained 590 differentially hypermethylated genes (hyper-DMGs) and 977 differentially hypomethylated genes (hypo-DMGs) from three groups. Hyper-DMGs were mainly involved in ascorbate and alternate metabolism pathways, while hypo-DMGs were mainly involved in focal adhesion. By integrating the DMGs with HCC-related differentially expressed genes (DEGs) and DMGs from the TCGA database, we constructed prognostic model based on thirteen aberrantly methylated DEGs, and verified our prognostic model in GSE14520 dataset. This study compares the patterns of global epigenomic DNA methylation during the development of HCC, focusing on the role of DNA methylation in the early occurrence and development of HCC, providing a direction for future research on its epigenetic mechanism.
Collapse
Affiliation(s)
- Qian Yan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Tang
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan He
- The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, China
| | - Jiao Xue
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruisheng Zhou
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiyan Luo
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Daihan Zhou
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xiongwen Wang
- Department of Oncology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Luo H, Liao X, Qin Y, Hou Q, Xue Z, Liu Y, Shen F, Wang Y, Jiang Y, Song L, Chen H, Zhang L, Wei T, Dai L, Yang L, Zhang W, Li Z, Xu H, Zhu J, Shu Y. Longitudinal Genomic Evolution of Conventional Papillary Thyroid Cancer With Brain Metastasis. Front Oncol 2021; 11:620924. [PMID: 34249677 PMCID: PMC8260944 DOI: 10.3389/fonc.2021.620924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Brain metastasis is extremely rare but predicts dismal prognosis in papillary thyroid cancer (PTC). Dynamic evaluation of stepwise metastatic lesions was barely conducted to identify the longitudinal genomic evolution of brain metastasis in PTC. METHOD Chronologically resected specimen was analyzed by whole exome sequencing, including four metastatic lymph nodes (lyn 1-4) and brain metastasis lesion (BM). Phylogenetic tree was reconstructed to infer the metastatic pattern and the potential functional mutations. RESULTS Contrasting with lyn1, ipsilateral metastatic lesions (lyn2-4 and BM) with shared biallelic mutations of TSC2 indicated different genetic originations from multifocal tumors. Lyn 3/4, particularly lyn4 exhibited high genetic similarity with BM. Besides the similar mutational compositions and signatures, shared functional mutations (CDK4 R24C , TP53R342*) were observed in lyn3/4 and BM. Frequencies of these mutations gradually increase along with the metastasis progression. Consistently, TP53 knockout and CDK4 R24C introduction in PTC cells significantly decreased radioiodine uptake and increased metastatic ability. CONCLUSION Genomic mutations in CDK4 and TP53 during the tumor evolution may contribute to the lymph node and brain metastasis of PTC.
Collapse
Affiliation(s)
- Han Luo
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xue Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhinan Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Feiyang Shen
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuelan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Song
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Haining Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyun Zhang
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid and Parathyroid Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Pappalardo XG, Barra V. Losing DNA methylation at repetitive elements and breaking bad. Epigenetics Chromatin 2021; 14:25. [PMID: 34082816 PMCID: PMC8173753 DOI: 10.1186/s13072-021-00400-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Background DNA methylation is an epigenetic chromatin mark that allows heterochromatin formation and gene silencing. It has a fundamental role in preserving genome stability (including chromosome stability) by controlling both gene expression and chromatin structure. Therefore, the onset of an incorrect pattern of DNA methylation is potentially dangerous for the cells. This is particularly important with respect to repetitive elements, which constitute the third of the human genome. Main body Repetitive sequences are involved in several cell processes, however, due to their intrinsic nature, they can be a source of genome instability. Thus, most repetitive elements are usually methylated to maintain a heterochromatic, repressed state. Notably, there is increasing evidence showing that repetitive elements (satellites, long interspersed nuclear elements (LINEs), Alus) are frequently hypomethylated in various of human pathologies, from cancer to psychiatric disorders. Repetitive sequences’ hypomethylation correlates with chromatin relaxation and unscheduled transcription. If these alterations are directly involved in human diseases aetiology and how, is still under investigation. Conclusions Hypomethylation of different families of repetitive sequences is recurrent in many different human diseases, suggesting that the methylation status of these elements can be involved in preservation of human health. This provides a promising point of view towards the research of therapeutic strategies focused on specifically tuning DNA methylation of DNA repeats.
Collapse
Affiliation(s)
- Xena Giada Pappalardo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125, Catania, Italy.,National Council of Research, Institute for Biomedical Research and Innovation (IRIB), Unit of Catania, 95125, Catania, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
11
|
Wu J, Lin D, Jiu L, Liu Q, Gu Z, Luo J, Zhao Y. Exploring epigenetic biomarkers of universal specificities and commonalities among pan-cancer cohorts in The Cancer Genome Atlas. Epigenomics 2021; 13:599-612. [PMID: 33787302 DOI: 10.2217/epi-2021-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the mechanism of cancer by employing a comprehensive analysis of DNA methylation patterns and variations among pan-cancer cohorts. Materials & methods: This research focused on the discovery of universally specific or common biomarkers by mathematical statistics and machine learning methods in The Cancer Genome Atlas. Results: We found 138 differently methylated CpGs (DMCs) with a common methylation trend and eight common differently methylated regions in different cancer cohorts. Additionally, we found 99 DMCs to distinguish 32 different cancer cohorts in random forest analysis because of the specificity mechanism, but each DMC still had high instability. Conclusion: Our results could facilitate the development of biomarkers that are universally specific and common features across pan-cancer cohorts.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Deng Lin
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Liandi Jiu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Zhenglong Gu
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China.,Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Junjie Luo
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.,Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition & Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Canberk S, Lima AR, Pinto M, Máximo V. Translational Potential of Epigenetic-Based Markers on Fine-Needle Aspiration Thyroid Specimens. Front Med (Lausanne) 2021; 8:640460. [PMID: 33834032 PMCID: PMC8021713 DOI: 10.3389/fmed.2021.640460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The awareness of epigenetic alterations leading to neoplasia attracted the attention of researchers toward its potential use in the management of cancer, from diagnosis to prognosis and prediction of response to therapies. Our group has focused its attention on the epigenomics of thyroid neoplasms. Although most of the epigenetic studies have been applied on histological samples, the fact is that cytology, through fine-needle aspiration, is a primary diagnostic method for many pathologies, of which thyroid nodules are one of the most paradigmatic examples. This has led to an increasing literature report of epigenetic studies using these biological samples over the past decade. In this review, our group aimed to document recent research of epigenetic alterations and its associated assessment techniques, based on cytology material. Our review covers the main epigenetic categories—DNA methylation, histone modification, and RNA-silencing—whose evidence in thyroid cytology samples may represent solid soil for future prospectively designed studies aiming at validating patterns of epigenetic alterations and their potential use in the clinical management of thyroid neoplasms.
Collapse
Affiliation(s)
- Sule Canberk
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana Rita Lima
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| | - Mafalda Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Valdemar Máximo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Cancer Signalling and Metabolism Group, Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal.,Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, Porto, Portugal
| |
Collapse
|
13
|
Volante M, Lam AK, Papotti M, Tallini G. Molecular Pathology of Poorly Differentiated and Anaplastic Thyroid Cancer: What Do Pathologists Need to Know? Endocr Pathol 2021; 32:63-76. [PMID: 33543394 PMCID: PMC7960587 DOI: 10.1007/s12022-021-09665-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The molecular characterization of poorly and anaplastic thyroid carcinomas has been greatly improved in the last years following the advent of high throughput technologies. However, with special reference to genomic data, the prevalence of reported alterations is partly affected by classification criteria. The impact of molecular pathology in these tumors is multifaceted and bears diagnostic, prognostic, and predictive implications although its use in the clinical practice is not completely assessed. Genomic profiling data claim that genetic alterations in poorly differentiated and anaplastic thyroid carcinomas include "Early" and "Late" molecular events, which are consistent with a multi-step model of progression. "Early" driver events are mostly RAS and BRAF mutations, whereas "Late" changes include above all TP53 and TERT promoter mutations, as well as dysregulation of gene involved in the cell cycle, chromatin remodeling, histone modifications, and DNA mismatch repair. Gene fusions are rare but represent relevant therapeutic targets. Epigenetic modifications are also playing a relevant role in poorly differentiated and anaplastic thyroid carcinomas, with altered regulation of either genes by methylation/deacetylation or non-coding RNAs. The biological effects of epigenetic modifications are not fully elucidated but interfere with a wide spectrum of cellular functions. From a clinical standpoint, the combination of genomic and epigenetic data shows that several molecular alterations affect druggable cellular pathways in poorly differentiated and anaplastic thyroid carcinomas, although the clinical impact of molecular typing of these tumors in terms of predictive biomarker testing is still under exploration.
Collapse
Affiliation(s)
- Marco Volante
- Department of Oncology, University of Turin, Turin, Italy.
| | - Alfred K Lam
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Mauro Papotti
- Department of Oncology, University of Turin, Turin, Italy
| | - Giovanni Tallini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, Bologna, Italy
| |
Collapse
|
14
|
Pils D, Steindl E, Bachmayr-Heyda A, Dekan S, Aust S. A Global Gene Body Methylation Measure Correlates Independently with Overall Survival in Solid Cancer Types. Cancers (Basel) 2020; 12:cancers12082257. [PMID: 32806596 PMCID: PMC7464642 DOI: 10.3390/cancers12082257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetics, CpG methylation of CpG islands (CGI) and gene bodies (GBs), plays an important role in gene regulation and cancer biology, the former established as a transcription regulator. Genome wide CpG methylation, summarized over GBs and CGIs, was analyzed for impact on overall survival (OS) in cancer. The averaged GB and CGI methylation status of each gene was categorized into methylated and unmethylated (defined) or undefined. Differentially methylated GBs and genes associated with their GB methylation status were compared to the corresponding CGI methylation states and biologically annotated. No relevant correlations of GB and CGI methylation or GB methylation and gene expression were observed. Summarized GB methylation showed impact on OS in ovarian, breast, colorectal, and pancreatic cancer, and glioblastoma, but not in lung cancer. In ovarian, breast, and colorectal cancer more defined GBs correlated with unfavorable OS, in pancreatic cancer with favorable OS and in glioblastoma more methylated GBs correlated with unfavorable OS. The GB methylation of genes were similar over different samples and even over cancer types; nevertheless, the clustering of different cancers was possible. Gene expression differences associated with summarized GB methylation were cancer specific. A genome-wide dysregulation of gene-body methylation showed impact on the outcome in different cancers.
Collapse
Affiliation(s)
- Dietmar Pils
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-41690; Fax: +43-1-40400-66740
| | - Elisabeth Steindl
- Division of General Surgery, Department of Surgery, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria;
| | - Anna Bachmayr-Heyda
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria; (A.B.-H.); (S.A.)
| | - Sabine Dekan
- Department of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Stefanie Aust
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center (CCC) Vienna, Medical University of Vienna, 1090 Vienna, Austria; (A.B.-H.); (S.A.)
| |
Collapse
|
15
|
Ravi N, Yang M, Mylona N, Wennerberg J, Paulsson K. Global RNA Expression and DNA Methylation Patterns in Primary Anaplastic Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12030680. [PMID: 32183222 PMCID: PMC7140095 DOI: 10.3390/cancers12030680] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/27/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is one of the most malignant tumors, with a median survival of only a few months. The tumorigenic processes of this disease have not yet been completely unraveled. Here, we report an mRNA expression and DNA methylation analysis of fourteen primary ATCs. ATCs clustered separately from normal thyroid tissue in unsupervised analyses, both by RNA expression and by DNA methylation. In expression analysis, enrichment of cell-cycle-related genes as well as downregulation of genes related to thyroid function were seen. Furthermore, ATC displayed a global hypomethylation of the genome but with hypermethylation of CpG islands. Notably, several cancer-related genes displayed a correlation between RNA expression and DNA methylation status, including MTOR, NOTCH1, and MAGI1. Furthermore, TSHR and SLC26A7, encoding the thyroid-stimulating hormone receptor and an iodine receptor highly expressed in normal thyroid, respectively, displayed low expression as well as aberrant gene body DNA methylation. This study is the largest investigation of global DNA methylation in ATC to date. It shows that aberrant DNA methylation is common in ATC and likely contributes to tumorigenesis in this disease. Future explorations of novel treatments should take this into consideration.
Collapse
Affiliation(s)
- Naveen Ravi
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, SE-221 85 Lund, Sweden; (N.R.); (M.Y.)
| | - Minjun Yang
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, SE-221 85 Lund, Sweden; (N.R.); (M.Y.)
| | - Nektaria Mylona
- Division of Oncology and Pathology, Clinical Sciences, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden;
| | - Johan Wennerberg
- Division of Otorhinolaryngology/Head and Neck Surgery, Clinical Sciences, Lund University and Skåne University Hospital, SE-221 85 Lund, Sweden;
| | - Kajsa Paulsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, SE-221 85 Lund, Sweden; (N.R.); (M.Y.)
- Correspondence: ; Tel.: +46-46-222-69-95
| |
Collapse
|
16
|
Martín B, Pappa S, Díez-Villanueva A, Mallona I, Custodio J, Barrero MJ, Peinado MA, Jordà M. Tissue and cancer-specific expression of DIEXF is epigenetically mediated by an Alu repeat. Epigenetics 2020; 15:765-779. [PMID: 32041475 DOI: 10.1080/15592294.2020.1722398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alu repeats constitute a major fraction of human genome and for a small subset of them a role in gene regulation has been described. The number of studies focused on the functional characterization of particular Alu elements is very limited. Most Alu elements are DNA methylated and then assumed to lie in repressed chromatin domains. We hypothesize that Alu elements with low or variable DNA methylation are candidates for a functional role. In a genome-wide study in normal and cancer tissues, we pinpointed an Alu repeat (AluSq2) with differential methylation located upstream of the promoter region of the DIEXF gene. DIEXF encodes a highly conserved factor essential for the development of zebrafish digestive tract. To characterize the contribution of the Alu element to the regulation of DIEXF we analysed the epigenetic landscapes of the gene promoter and flanking regions in different cell types and cancers. Alternate epigenetic profiles (DNA methylation and histone modifications) of the AluSq2 element were associated with DIEXF transcript diversity as well as protein levels, while the epigenetic profile of the CpG island associated with the DIEXF promoter remained unchanged. These results suggest that AluSq2 might directly contribute to the regulation of DIEXF transcription and protein expression. Moreover, AluSq2 was DNA hypomethylated in different cancer types, pointing out its putative contribution to DIEXF alteration in cancer and its potential as tumoural biomarker.
Collapse
Affiliation(s)
- Berta Martín
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Stella Pappa
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Anna Díez-Villanueva
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Izaskun Mallona
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Joaquín Custodio
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - María José Barrero
- Center for Regenerative Medicine in Barcelona (CMRB), Avinguda de la Granvia de l'Hospitalet , Barcelona, Spain
| | - Miguel A Peinado
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| | - Mireia Jordà
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP) , Barcelona, Spain
| |
Collapse
|
17
|
Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer 2019; 26:R415-R439. [PMID: 31035251 DOI: 10.1530/erc-19-0093] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
In recent years, cancer genomics has provided new insights into genetic alterations and signaling pathways involved in thyroid cancer. However, the picture of the molecular landscape is not yet complete. DNA methylation, the most widely studied epigenetic mechanism, is altered in thyroid cancer. Recent technological advances have allowed the identification of novel differentially methylated regions, methylation signatures and potential biomarkers. However, despite recent progress in cataloging methylation alterations in thyroid cancer, many questions remain unanswered. The aim of this review is to comprehensively examine the current knowledge on DNA methylation in thyroid cancer and discuss its potential clinical applications. After providing a general overview of DNA methylation and its dysregulation in cancer, we carefully describe the aberrant methylation changes in thyroid cancer and relate them to methylation patterns, global hypomethylation and gene-specific alterations. We hope this review helps to accelerate the use of the diagnostic, prognostic and therapeutic potential of DNA methylation for the benefit of thyroid cancer patients.
Collapse
Affiliation(s)
- Carles Zafon
- Diabetes and Metabolism Research Unit (VHIR) and Department of Endocrinology, University Hospital Vall d'Hebron and Autonomous University of Barcelona, Barcelona, Spain
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
| | - Joan Gil
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Beatriz Pérez-González
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| | - Mireia Jordà
- Consortium for the Study of Thyroid Cancer (CECaT), Catalonia, Spain
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (PMPPC-IGTP), Barcelona, Spain
| |
Collapse
|
18
|
Jiang Y, Zong W, Ju S, Jing R, Cui M. Promising member of the short interspersed nuclear elements ( Alu elements): mechanisms and clinical applications in human cancers. J Med Genet 2019; 56:639-645. [PMID: 30852527 DOI: 10.1136/jmedgenet-2018-105761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Alu elements are one of most ubiquitous repetitive sequences in human genome, which were considered as the junk DNA in the past. Alu elements have been found to be associated with human diseases including cancers via events such as amplification, insertion, recombination or RNA editing, which provide a new perspective of oncogenesis at both DNA and RNA levels. Due to the prevalent distribution, Alu elements are widely used as target molecule of liquid biopsy. Alu-based cell-free DNA shows feasible application value in tumour diagnosis, postoperative monitoring and adjuvant therapy. In this review, the special tumourigenesis mechanism of Alu elements in human cancers is discussed, and the application of Alu elements in various tumour liquid biopsy is summarised.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
19
|
Gonzalez-Fierro A, Dueñas-González A. Emerging DNA methylation inhibitors for cancer therapy: challenges and prospects. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1571906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Alfonso Dueñas-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM/Instituto Nacional de Can cerología, México City, Mexico
| |
Collapse
|